File size: 72,865 Bytes
2010c83 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 |
import gc
import io
import logging
import pickle
import shutil
import traceback
from abc import ABCMeta, abstractmethod
from collections import defaultdict
from concurrent.futures import ProcessPoolExecutor, ThreadPoolExecutor, as_completed
from contextlib import contextmanager
from copy import deepcopy
from dataclasses import dataclass, field, replace
from functools import reduce
from multiprocessing import shared_memory
from pathlib import Path
from typing import Any, Dict, Generator, List, Optional, Set, Tuple, cast
import numpy as np
import torch
import torch.distributed.checkpoint as dist_cp
import torch.multiprocessing as mp
from packaging import version
from torch.distributed import _remote_device
from torch.distributed._shard._utils import narrow_tensor_by_index
from torch.distributed._shard.metadata import ShardMetadata
from torch.distributed._shard.sharded_tensor import ShardedTensor
from torch.distributed.checkpoint.filesystem import WriteResult, _StorageInfo
from torch.distributed.checkpoint.metadata import Metadata, MetadataIndex
from torch.distributed.checkpoint.optimizer import load_sharded_optimizer_state_dict
from torch.distributed.checkpoint.planner import LoadItemType, ReadItem
from torch.distributed.fsdp import FullyShardedDataParallel as FSDP
from torch.distributed.fsdp import StateDictType
from torch.distributed.fsdp.api import (
FullOptimStateDictConfig,
FullStateDictConfig,
ShardedOptimStateDictConfig,
ShardedStateDictConfig,
)
from torch.futures import Future
try:
from torch.distributed.fsdp.flat_param import FlatParamHandle # type: ignore
except ModuleNotFoundError:
from torch.distributed.fsdp._flat_param import FlatParamHandle # type: ignore
from . import util
from .aliases import PathOrStr
from .config import BaseConfig, ShardedCheckpointerType, TrainConfig
from .exceptions import OLMoCheckpointError
from .optim import Optimizer, fix_optim_state_dict
from .safetensors_util import safetensors_file_to_state_dict
from .torch_util import (
barrier,
gc_cuda,
get_fs_local_rank,
get_global_rank,
get_world_size,
)
from .util import (
_get_s3_client,
default_thread_count,
dir_is_empty,
get_bytes_range,
get_progress_bar,
resource_path,
upload,
wait_for,
)
__all__ = [
"save_fsdp_model_and_optim_state",
"load_fsdp_model_and_optim_state",
"load_fsdp_optim_state",
"save_state_dict",
"load_state_dict",
"load_model_state",
"RemoteFileSystemWriter",
"RemoteFileSystemReader",
"Checkpointer",
"FullCheckpointer",
"TorchNewStyleShardedCheckpointer",
"TorchLegacyShardedCheckpointer",
"LocalShardedCheckpointer",
"build_sharded_checkpointer",
]
log = logging.getLogger(__name__)
MODEL_AND_OPTIM_FOLDER = "model_and_optim"
def save_fsdp_model_and_optim_state(
checkpoint_dir: PathOrStr,
fsdp_model: FSDP,
optim: Optimizer,
*,
upload_to: Optional[str] = None,
save_overwrite: bool = False,
):
"""
Use this to save a state dict for an FSDP model and its optimizer via :module:`torch.distributed.checkpoint`
functions. This should be used during distributed training and should be called by all ranks.
:param checkpoint_dir: The directory to save to.
:param fsdp_model: The FSDP model.
:param optim: The FSDP model's optimizer.
:param upload_to: Optional, a remote "directory" to upload the checkpoint files to.
:param save_overwrite: Overwrite existing files.
:raises FileExistsError: If a model and optim checkpoint already exists in ``checkpoint_dir`` and ``save_overwrite=False``.
"""
checkpoint_dir = Path(checkpoint_dir)
target_dir = checkpoint_dir / MODEL_AND_OPTIM_FOLDER
if save_overwrite:
if get_fs_local_rank() == 0:
shutil.rmtree(target_dir, ignore_errors=True)
elif not dir_is_empty(target_dir):
raise FileExistsError(target_dir)
barrier()
if get_fs_local_rank() == 0:
target_dir.mkdir(exist_ok=True, parents=True)
barrier()
with FSDP.state_dict_type(
fsdp_model,
state_dict_type=StateDictType.SHARDED_STATE_DICT,
state_dict_config=ShardedStateDictConfig(offload_to_cpu=True),
optim_state_dict_config=ShardedOptimStateDictConfig(offload_to_cpu=True),
):
model_and_optim_state = {
"model": fsdp_model.state_dict(),
"optim": FSDP.optim_state_dict(fsdp_model, optim),
}
dist_cp.save_state_dict(
model_and_optim_state,
RemoteFileSystemWriter(
target_dir,
upload_to=None if upload_to is None else f"{upload_to.rstrip('/')}/{MODEL_AND_OPTIM_FOLDER}",
save_overwrite=save_overwrite,
),
)
def load_fsdp_model_and_optim_state(
checkpoint_dir: PathOrStr,
fsdp_model: FSDP,
optim: Optimizer,
*,
local_cache: Optional[PathOrStr] = None,
load_optimizer_state: bool = True,
):
"""
Use this to load a state dict for an FSDP model and its optimizer via :module:`torch.distributed.checkpoint`
functions. This should be used during distributed training and should be called by all ranks.
:param checkpoint_dir: The checkpoint directory to load from. This can be a local or remote directory.
:param fsdp_model: The FSDP model.
:param optim: The FSDP model's optimizer.
:param local_cache: A local cache of the checkpoint directory. Use this when the ``checkpoint_dir`` is a
remote "directory" but there might be a cached version of the same artifacts.
:param load_optimizer_state: Set to ``False`` to skip loading the optimizer state.
:raises FileNotFoundError: If the ``checkpoint_dir`` doesn't contain a model and optimizer checkpoint.
"""
load_path = str(checkpoint_dir).rstrip("/")
local_cache = None if local_cache is None else Path(local_cache)
with FSDP.state_dict_type(
fsdp_model,
state_dict_type=StateDictType.SHARDED_STATE_DICT,
state_dict_config=ShardedStateDictConfig(offload_to_cpu=True),
optim_state_dict_config=ShardedOptimStateDictConfig(offload_to_cpu=True),
):
# Load the model state dict in place.
log.info("Loading model state...")
model_state = {"model": fsdp_model.state_dict()}
dist_cp.load_state_dict(
model_state,
RemoteFileSystemReader(
f"{load_path}/{MODEL_AND_OPTIM_FOLDER}",
local_cache=None if local_cache is None else local_cache / MODEL_AND_OPTIM_FOLDER,
),
)
fsdp_model.load_state_dict(model_state["model"])
if not load_optimizer_state:
return
# Load optim state dict in place.
log.info("Loading sharded optimizer state...")
optim_state = load_sharded_optimizer_state_dict(
model_state_dict=model_state["model"],
optimizer_key="optim",
storage_reader=RemoteFileSystemReader(
f"{load_path}/{MODEL_AND_OPTIM_FOLDER}",
local_cache=None if local_cache is None else local_cache / MODEL_AND_OPTIM_FOLDER,
),
)
del model_state
gc_cuda()
load_fsdp_optim_state(fsdp_model, optim, optim_state["optim"])
def load_fsdp_optim_state(fsdp_model: FSDP, optim: Optimizer, optim_state: Dict[str, Any]):
log.info("Flattening sharded optimizer state...")
# NOTE: Careful! The order of the these arguments has changed from 2.0 to 2.1... ¯\_(ツ)_/¯
if version.parse(torch.__version__) < version.parse("2.1.0"):
flattened_osd = FSDP.optim_state_dict_to_load(optim_state, fsdp_model, optim) # type: ignore
else:
flattened_osd = FSDP.optim_state_dict_to_load(fsdp_model, optim, optim_state) # type: ignore
del optim_state
gc.collect()
log.info("Loading flattened optimizer state...")
# Put optim state on CPU since `Optimizer.load_state_dict()` will create a deepcopy of the whole state dict,
# which takes up unnecessary GPU memory.
for state in flattened_osd["state"].values():
for k in state.keys():
v = state[k]
if isinstance(v, torch.Tensor):
state[k] = v.to(device="cpu")
gc_cuda()
optim.load_state_dict(fix_optim_state_dict(optim, flattened_osd))
def save_state_dict(
checkpoint_dir: PathOrStr,
fname: str,
state_dict: Dict[str, Any],
*,
upload_to: Optional[str] = None,
save_overwrite: bool = False,
synchronize: bool = True,
):
"""
Save a regular state dict to the file ``fname`` within ``checkpoint_dir`` using :func:`torch.save()`.
This can be used during distributed training or not. If during distributed training the ``fname`` should be unique
for each rank.
:param checkpoint_dir: The directory to save to.
:param fname: The target file within ``checkpoint_dir`` to save to. This should be a path relative to the ``checkpoint_dir``.
:param state_dict: The state dict to save.
:param upload_to: Optional, a remote "directory" to upload the file to.
:param save_overwrite: Overwrite existing files.
:param synchronize: If ``False``, don't do any distributed synchronization. Use this when only calling
this function from a single rank.
:raises FileExistsError: If the ``fname`` already exists within ``checkpoint_dir`` and ``save_overwrite=False``.
"""
checkpoint_dir = Path(checkpoint_dir)
target_path = checkpoint_dir / fname
if save_overwrite:
target_path.unlink(missing_ok=True)
elif target_path.is_file():
raise FileExistsError(target_path)
if synchronize:
barrier()
target_path.parent.mkdir(exist_ok=True, parents=True)
if synchronize:
barrier()
torch.save(state_dict, target_path)
if upload_to is not None:
upload_target = f"{upload_to.rstrip('/')}/{fname}"
log.info(f"Uploading {target_path} to {upload_target}...")
upload(target_path, upload_target, save_overwrite=save_overwrite)
def load_state_dict(
checkpoint_dir: PathOrStr,
fname: str,
*,
local_cache: Optional[PathOrStr] = None,
map_location: Optional[str] = None,
):
"""
Load a regular state dict from the file ``fname`` within ``checkpoint_dir`` using :func:`torch.load()`.
This can be used during distributed training or not.
:param checkpoint_dir: A local or remote checkpoint directory.
:param fname: The target file within the ``checkpoint_dir``. This should be a path relative to the ``checkpoint_dir``.
:param local_cache: A local cache of the checkpoint directory. Use this when the ``checkpoint_dir`` is a
remote "directory" but there might be a cached version of the same artifacts.
:raises FileNotFoundError: If ``fname`` doesn't exist in the ``checkpoint_dir`` or the local cache.
"""
if fname.endswith(".pt"):
# Try safetensors version first.
try:
path = resource_path(
str(checkpoint_dir).rstrip("/"), fname[:-2] + "safetensors", local_cache=local_cache
)
return safetensors_file_to_state_dict(path, map_location=map_location)
except FileNotFoundError:
pass
path = resource_path(str(checkpoint_dir).rstrip("/"), fname, local_cache=local_cache)
return torch.load(path, map_location=map_location)
def load_model_state(checkpoint_dir: PathOrStr, model: torch.nn.Module):
"""
Load model state from a distributed FSDP model checkpoint created from :func:`save_fsdp_model_and_optim_state()`.
Note that ``model`` should not be wrapped with FSDP.
"""
state_dict = {"model": model.state_dict()}
dist_cp.load_state_dict(
state_dict,
RemoteFileSystemReader(f"{str(checkpoint_dir).rstrip('/')}/{MODEL_AND_OPTIM_FOLDER}"),
no_dist=True,
)
model.load_state_dict(state_dict["model"])
class RemoteFileSystemWriter(dist_cp.FileSystemWriter):
"""
A subclass of :class:`~torch.distributed.checkpoint.FileSystemWriter` that can upload files
directly to a cloud bucket when ``upload_to`` is specified.
"""
def __init__(
self,
path: PathOrStr,
single_file_per_rank: bool = True,
sync_files: bool = True,
thread_count: Optional[int] = None,
per_thread_copy_ahead: int = 10_000_000,
upload_to: Optional[str] = None,
save_overwrite: bool = False,
) -> None:
if thread_count is not None and thread_count <= 0:
raise ValueError("thread count must be at least 1")
super().__init__(
path,
single_file_per_rank=single_file_per_rank,
sync_files=sync_files,
# NOTE: we default to 1 thread here instead of whatever `default_thread_count()`
# returns because uploading big checkpoint files with multiple threads causes
# boto3 to fail in weird ways.
thread_count=thread_count or 1,
per_thread_copy_ahead=per_thread_copy_ahead,
)
self.upload_to = None if upload_to is None else upload_to.rstrip("/")
self.save_overwrite = save_overwrite
def write_data(
self,
plan: dist_cp.SavePlan,
planner: dist_cp.SavePlanner,
) -> Future[List[WriteResult]]:
fut = super().write_data(plan, planner)
if self.upload_to is not None:
files_to_upload = set()
for write_result in fut.wait():
files_to_upload.add(write_result.storage_data.relative_path)
# Create the global S3 client up front to work around a threading issue in boto.
if self.upload_to.startswith("s3://"):
_get_s3_client("s3")
elif self.upload_to.startswith("r2://"):
_get_s3_client("r2")
with ThreadPoolExecutor(max_workers=self.thread_count) as executor:
futures = []
for fname in files_to_upload:
source = self.path / fname
target = f"{self.upload_to}/{fname}"
log.info(f"Uploading {source} to {target}...")
futures.append(executor.submit(upload, source, target, save_overwrite=self.save_overwrite))
for f in as_completed(futures):
try:
f.result()
except BaseException:
# NOTE: we might get an error here that can't be pickled, which causes a different failure
# later when PyTorch tries to reduce that error across ranks. So here we just make
# sure we're raising a simple error type that can be pickled.
raise OLMoCheckpointError(f"Original error:\n{traceback.format_exc()}")
return fut
def finish(self, metadata: Metadata, results: List[List[WriteResult]]) -> None:
super().finish(metadata, results)
if self.upload_to is not None:
source = self.path / ".metadata"
target = f"{self.upload_to}/.metadata"
log.info(f"Uploading {source} to {target}...")
upload(source, target, save_overwrite=self.save_overwrite)
class RemoteFileSystemReader(dist_cp.StorageReader):
"""
A :class:`~torch.distributed.checkpoint.StorageReader` based on :class:`~torch.distributed.checkpoint.FileSystemReader`
that can read data directly from cloud storage as well as a local directory.
"""
def __init__(
self, path: PathOrStr, *, local_cache: Optional[PathOrStr] = None, thread_count: Optional[int] = None
):
super().__init__()
if thread_count is not None and thread_count <= 0:
raise ValueError("thread count must be at least 1")
self.path = str(path).rstrip("/")
self.cache = None if local_cache is None else Path(local_cache)
self.thread_count = thread_count or default_thread_count()
self.storage_data: Dict[MetadataIndex, _StorageInfo] = dict()
self._metadata: Optional[Metadata] = None
def _get_bytes(self, relative_path: str, offset: int, length: int) -> bytes:
if self.cache is not None and (path := self.cache / relative_path).is_file():
return get_bytes_range(path, offset, length)
else:
return get_bytes_range(f"{self.path}/{relative_path}", offset, length)
def _get_content_for_read(self, read_item: ReadItem) -> Tuple[ReadItem, bytes]:
sinfo = self.storage_data[read_item.storage_index]
content = self._get_bytes(sinfo.relative_path, sinfo.offset, sinfo.length)
return (read_item, content)
def read_data(self, plan: dist_cp.LoadPlan, planner: dist_cp.LoadPlanner) -> Future[None]:
# Create the global S3 client up front to work around a threading issue in boto.
if isinstance(self.path, str):
if self.path.startswith("s3://"):
_get_s3_client("s3")
elif self.path.startswith("r2://"):
_get_s3_client("r2")
with ThreadPoolExecutor(max_workers=self.thread_count) as executor:
read_item_content_futures = []
for read_item in plan.items:
read_item_content_futures.append(executor.submit(self._get_content_for_read, read_item))
read_item_content_results = []
for f in as_completed(read_item_content_futures):
try:
read_item_content_results.append(f.result())
except BaseException:
# NOTE: we might get an error here that can't be pickled, which causes a different failure
# later when PyTorch tries to reduce that error across ranks. So here we just make
# sure we're raising a simple error type that can be pickled.
raise OLMoCheckpointError(f"Original error:\n{traceback.format_exc()}")
# Modified from `FileSystemReader.read_data()`
for read_item, content in read_item_content_results:
bytes = io.BytesIO(content)
bytes.seek(0)
if read_item.type == LoadItemType.BYTE_IO:
planner.load_bytes(read_item, bytes)
else:
tensor = cast(torch.Tensor, torch.load(bytes, map_location="cpu"))
tensor = narrow_tensor_by_index(tensor, read_item.storage_offsets, read_item.lengths)
target_tensor = planner.resolve_tensor(read_item).detach()
assert (
target_tensor.size() == tensor.size()
), f"req {read_item.storage_index} mismatch sizes {target_tensor.size()} vs {tensor.size()}"
target_tensor.copy_(tensor)
planner.commit_tensor(read_item, target_tensor)
fut: Future = Future()
fut.set_result(None)
return fut
def read_metadata(self) -> Metadata:
if self._metadata is None:
with resource_path(self.path, ".metadata", local_cache=self.cache).open("rb") as metadata_file:
self._metadata = pickle.load(metadata_file)
return self._metadata
def set_up_storage_reader(self, metadata: Metadata, is_coordinator: bool) -> None:
del is_coordinator
self.storage_data = metadata.storage_data
assert self.storage_data is not None
def prepare_local_plan(self, plan: dist_cp.LoadPlan) -> dist_cp.LoadPlan:
return plan
def prepare_global_plan(self, global_plan: List[dist_cp.LoadPlan]) -> List[dist_cp.LoadPlan]:
return global_plan
class Checkpointer(metaclass=ABCMeta):
def __init__(self, cfg: TrainConfig, thread_count: Optional[int] = None):
self.cfg = cfg
self.thread_count = thread_count or default_thread_count()
@abstractmethod
def save_checkpoint(
self,
dir: PathOrStr,
fsdp_model: FSDP,
optim: Optimizer,
train_state: Dict[str, Any],
*,
upload_to: Optional[str] = None,
) -> None:
raise NotImplementedError
@abstractmethod
def restore_checkpoint(
self,
load_path: PathOrStr,
fsdp_model: FSDP,
optim: Optimizer,
*,
local_cache: Optional[PathOrStr] = None,
load_optimizer_state: bool = True,
) -> Dict[str, Any]:
"""
Restores a checkpoint to the model and optimizer. Returns the remaining trainer state.
"""
raise NotImplementedError
def unshard_checkpoint(
self,
load_path: PathOrStr,
*,
local_cache: Optional[PathOrStr] = None,
load_optimizer_state: bool = True,
load_trainer_state: bool = True,
device: Optional[torch.device] = None,
) -> Tuple[Dict[str, torch.Tensor], Optional[Dict[str, Any]], Optional[Dict[str, Any]]]:
"""
Unshard a checkpoint.
Note this is not marked abstract because child classes are not required to implemented this.
"""
del load_path, local_cache, load_optimizer_state, load_trainer_state, device
raise NotImplementedError
@contextmanager
def _temporary_wd(self, dir: PathOrStr) -> Generator[Path, None, None]:
# Make sure checkpoint directory doesn't exist unless it's okay to overwrite it.
checkpoint_dir = Path(dir)
if not dir_is_empty(checkpoint_dir):
if self.cfg.save_overwrite:
if get_fs_local_rank() == 0:
shutil.rmtree(checkpoint_dir, ignore_errors=True)
else:
raise FileExistsError(checkpoint_dir)
# No need to mkdir here since we'll directly replace the temporary directory with
# this directory below.
barrier()
# Prepare temporary directory. We don't have to be as careful here, we can
# just remove it if it already exists.
checkpoint_dir_tmp = checkpoint_dir.with_name(checkpoint_dir.name + "-tmp")
if get_fs_local_rank() == 0:
shutil.rmtree(checkpoint_dir_tmp, ignore_errors=True)
checkpoint_dir_tmp.mkdir(exist_ok=True, parents=True)
barrier()
# Yield temporary directory for `.save_checkpoint()` to use.
yield checkpoint_dir_tmp
barrier()
# Finally if all went well replace the temporary directory with the actual
# checkpoint directory.
if get_fs_local_rank() == 0:
# Replace temp directory with target checkpoint directory.
try:
checkpoint_dir_tmp.replace(checkpoint_dir)
except FileNotFoundError:
# Caught when another (file-system) local rank 0 has already replaced the tmp directory.
# This can happen when nodes are saving to a common NFS drive but otherwise have distinct
# file-systems.
if not checkpoint_dir.exists():
raise
# In the cases where we're using a shared NFS drive between ranks to save checkpoints,
# replacing the temp directory with the final directory from rank 0 might not be immediately
# realized in the file systems of the other ranks.
# So we wait here across all ranks until that final checkpoint directory is visible.
wait_for(lambda: checkpoint_dir.exists(), "Waiting for checkpoint directory", timeout=10.0)
barrier()
def _save_config(self, dir: PathOrStr, *, upload_to: Optional[str] = None) -> None:
if get_global_rank() == 0:
log.info("Saving config...")
self.cfg.save(config_path := Path(dir) / "config.yaml")
if upload_to is not None:
upload_target = f"{upload_to}/config.yaml"
log.info(f"Uploading {config_path} to {upload_target}")
upload(config_path, upload_target, save_overwrite=self.cfg.save_overwrite)
class FullCheckpointer(Checkpointer):
"""
A :class:`Checkpointer` that saves a single full model and optimizer state dictionary.
"""
def save_checkpoint(
self,
dir: PathOrStr,
fsdp_model: FSDP,
optim: Optimizer,
trainer_state: Dict[str, Any],
*,
upload_to: Optional[str] = None,
) -> None:
with self._temporary_wd(dir) as checkpoint_dir:
with FSDP.state_dict_type(
fsdp_model,
state_dict_type=StateDictType.FULL_STATE_DICT,
state_dict_config=FullStateDictConfig(rank0_only=True, offload_to_cpu=True),
optim_state_dict_config=FullOptimStateDictConfig(rank0_only=True, offload_to_cpu=True),
):
# We'll write the model and optimizer state dicts individually to reduce (CPU) memory consumption.
# First the model state.
model_state_dict = fsdp_model.state_dict()
if get_global_rank() == 0:
log.info("Saving model state...")
save_state_dict(
checkpoint_dir,
"model.pt",
model_state_dict,
upload_to=upload_to,
save_overwrite=self.cfg.save_overwrite,
synchronize=False,
)
del model_state_dict
barrier()
# Then the optimizer state.
optim_state_dict = FSDP.optim_state_dict(fsdp_model, optim)
if get_global_rank() == 0:
log.info("Saving optim state...")
save_state_dict(
checkpoint_dir,
"optim.pt",
optim_state_dict,
upload_to=upload_to,
save_overwrite=self.cfg.save_overwrite,
synchronize=False,
)
del optim_state_dict
barrier()
# Save trainer state.
if get_global_rank() == 0:
log.info("Saving trainer state...")
save_state_dict(
checkpoint_dir,
"train.pt",
trainer_state,
upload_to=upload_to,
save_overwrite=self.cfg.save_overwrite,
synchronize=False,
)
# Save config.
self._save_config(checkpoint_dir, upload_to=upload_to)
def restore_checkpoint(
self,
load_path: PathOrStr,
fsdp_model: FSDP,
optim: Optimizer,
*,
local_cache: Optional[PathOrStr] = None,
load_optimizer_state: bool = True,
) -> Dict[str, Any]:
with FSDP.state_dict_type(
fsdp_model,
state_dict_type=StateDictType.FULL_STATE_DICT,
state_dict_config=FullStateDictConfig(rank0_only=False, offload_to_cpu=True),
optim_state_dict_config=FullOptimStateDictConfig(rank0_only=False, offload_to_cpu=True),
):
with torch.no_grad():
# fill everything with NaN, so we can check afterwards that every parameter has been restored
for module_name, module in fsdp_model.named_modules():
if not isinstance(module, FSDP):
continue
for param in module.params:
param.fill_(torch.nan)
# restore params from checkpoint
state_dict_to_load = load_state_dict(
load_path, "model.pt", local_cache=local_cache, map_location="cpu"
)
(
state_dict_to_load,
og_keys_to_new,
) = fsdp_model._fsdp_wrapped_module._make_state_dict_compatible(state_dict_to_load)
for module_name, module in fsdp_model.named_modules():
if not isinstance(module, FSDP):
continue
for param in module.params:
assert param._is_flat_param
for fqn, spi in zip(param._fqns, param._shard_param_infos):
if not spi.in_shard:
continue
key = f"{module_name}.{fqn}"
key = key.replace("_fsdp_wrapped_module.", "")
key = key.lstrip(".")
t = state_dict_to_load[key]
t = t.flatten()
param[spi.offset_in_shard : spi.offset_in_shard + spi.numel_in_shard].copy_(
t[spi.intra_param_start_idx : spi.intra_param_end_idx + 1]
)
# make sure that every parameter has been restored
for module_name, module in fsdp_model.named_modules():
if not isinstance(module, FSDP):
continue
for param in module.params:
if torch.isnan(param).any():
raise ValueError(
f"Module '{module_name}' contains NaNs, this is likely a bug restoring from full checkpoints"
)
# Load optimizer state.
if load_optimizer_state:
optim_state_dict_to_load = load_state_dict(
load_path, "optim.pt", local_cache=local_cache, map_location="cpu"
)
optim_state_dict_to_load = self._make_optim_state_dict_compatible(
optim_state_dict_to_load,
og_keys_to_new,
)
load_fsdp_optim_state(fsdp_model, optim, optim_state_dict_to_load)
del optim_state_dict_to_load
# Load other state.
try:
trainer_state = load_state_dict(load_path, "train.pt", local_cache=local_cache)
except FileNotFoundError:
# for backwards compatibility
trainer_state = load_state_dict(load_path, "other.pt", local_cache=local_cache)
barrier()
return trainer_state
def _make_optim_state_dict_compatible(
self, optim_state_dict: Dict[str, Any], og_keys_to_new: Dict[str, Set[str]]
) -> Dict[str, Any]:
# This state dict comes in two forms: one where the state keys are integers and one where the
# keys are fully qualified parameter names. The latter case is easier to deal with here so we
# first transform the integer key form into the FQN key form.
if isinstance(optim_state_dict["param_groups"][0]["params"][0], int):
id_to_fqn: Dict[int, str] = {}
for group in optim_state_dict["param_groups"]:
new_param_names = []
for fqn, id in zip(group["param_names"], group["params"]):
fqn = fqn.replace("_fsdp_wrapped_module.", "")
id_to_fqn[id] = fqn
new_param_names.append(fqn)
group["param_names"] = new_param_names
group["params"] = new_param_names
for id in list(optim_state_dict["state"].keys()):
optim_state_dict["state"][id_to_fqn[id]] = optim_state_dict["state"].pop(id)
else:
# Otherwise we still want to clean up the param names to remove the "_fsdp_wrapped_module." prefix.
for group in optim_state_dict["param_groups"]:
group["param_names"] = [fqn.replace("_fsdp_wrapped_module.", "") for fqn in group["param_names"]]
group["params"] = [fqn.replace("_fsdp_wrapped_module.", "") for fqn in group["params"]]
assert group["param_names"] == group["params"]
for key in list(optim_state_dict["state"].keys()):
optim_state_dict["state"][key.replace("_fsdp_wrapped_module.", "")] = optim_state_dict[
"state"
].pop(key)
# Now we can transform the state dict by renaming parameters according to `og_keys_to_new`.
# First fix param names in the state.
for og_key, new_keys in og_keys_to_new.items():
og_state = optim_state_dict["state"].pop(og_key, None)
if og_state is None:
continue
for i, new_key in enumerate(new_keys):
if i == len(new_keys) - 1:
optim_state_dict["state"][new_key] = og_state
else:
optim_state_dict["state"][new_key] = deepcopy(og_state)
# Now fix param names in the param groups.
for group in optim_state_dict["param_groups"]:
og_names = group["params"]
new_names = []
for og_key in og_names:
for new_key in og_keys_to_new[og_key]:
new_names.append(new_key)
group["params"] = new_names
group["param_names"] = new_names
return optim_state_dict
def load_checkpoint(
self,
load_path: PathOrStr,
*,
local_cache: Optional[PathOrStr] = None,
load_optimizer_state: bool = True,
device: Optional[torch.device] = None,
) -> Tuple[Dict[str, torch.Tensor], Optional[Dict[str, Any]]]:
device = device if device is not None else torch.device("cpu")
model_state = load_state_dict(load_path, "model.pt", local_cache=local_cache, map_location=device) # type: ignore
optim_state = None
if load_optimizer_state:
optim_state = load_state_dict(load_path, "optim.pt", local_cache=local_cache, map_location=device) # type: ignore
return model_state, optim_state
class TorchNewStyleShardedCheckpointer(Checkpointer):
"""
A sharded :class:`Checkpointer` that uses PyTorch's new distributed checkpointing functionality.
"""
def save_checkpoint(
self,
dir: PathOrStr,
fsdp_model: FSDP,
optim: Optimizer,
trainer_state: Dict[str, Any],
*,
upload_to: Optional[str] = None,
) -> None:
with self._temporary_wd(dir) as checkpoint_dir:
# Save model and optim state.
save_fsdp_model_and_optim_state(
checkpoint_dir,
fsdp_model,
optim,
upload_to=upload_to,
save_overwrite=self.cfg.save_overwrite,
)
# Save trainer state.
log.info("Saving trainer state...")
save_state_dict(
checkpoint_dir,
f"train/rank{get_global_rank()}.pt",
trainer_state,
upload_to=upload_to,
save_overwrite=self.cfg.save_overwrite,
)
# Save config.
self._save_config(checkpoint_dir, upload_to=upload_to)
def restore_checkpoint(
self,
load_path: PathOrStr,
fsdp_model: FSDP,
optim: Optimizer,
*,
local_cache: Optional[PathOrStr] = None,
load_optimizer_state: bool = True,
) -> Dict[str, Any]:
# Load model and optimizer state in place.
log.info("Loading model and optimizer state...")
load_fsdp_model_and_optim_state(
load_path,
fsdp_model,
optim,
local_cache=local_cache,
load_optimizer_state=load_optimizer_state,
)
# Load trainer state dict.
log.info("Loading trainer state...")
try:
trainer_state = load_state_dict(
load_path, f"train/rank{get_global_rank()}.pt", local_cache=local_cache
)
except FileNotFoundError:
# Fall back to rank 0 train state.
# This can happen when we're restoring a checkpoint with a different world size.
trainer_state = load_state_dict(load_path, "train/rank0.pt", local_cache=local_cache)
barrier()
return trainer_state
class TorchLegacyShardedCheckpointer(Checkpointer):
"""
A sharded :class:`Checkpointer` that just uses `torch.save()` with extra logic for handling FSDP model
and optim state.
The world size must be kept consistent when using this checkpointer.
"""
def save_checkpoint(
self,
dir: PathOrStr,
fsdp_model: FSDP,
optim: Optimizer,
trainer_state: Dict[str, Any],
*,
upload_to: Optional[str] = None,
) -> None:
with self._temporary_wd(dir) as checkpoint_dir:
with FSDP.state_dict_type(
fsdp_model,
state_dict_type=StateDictType.SHARDED_STATE_DICT,
state_dict_config=ShardedStateDictConfig(offload_to_cpu=True),
optim_state_dict_config=ShardedOptimStateDictConfig(offload_to_cpu=True),
):
state_dict = {
"model": fsdp_model.state_dict(),
"optim": FSDP.optim_state_dict(fsdp_model, optim),
**trainer_state,
}
save_state_dict(
checkpoint_dir,
f"rank{get_global_rank()}.pt",
state_dict,
upload_to=upload_to,
save_overwrite=self.cfg.save_overwrite,
)
# Save config.
self._save_config(checkpoint_dir, upload_to=upload_to)
def restore_checkpoint(
self,
load_path: PathOrStr,
fsdp_model: FSDP,
optim: Optimizer,
*,
local_cache: Optional[PathOrStr] = None,
load_optimizer_state: bool = True,
) -> Dict[str, Any]:
with FSDP.state_dict_type(
fsdp_model,
state_dict_type=StateDictType.SHARDED_STATE_DICT,
state_dict_config=ShardedStateDictConfig(offload_to_cpu=True),
optim_state_dict_config=ShardedOptimStateDictConfig(offload_to_cpu=True),
):
# Deserialize state dict.
state_dict = load_state_dict(
load_path, f"rank{get_global_rank()}.pt", local_cache=local_cache, map_location="cpu"
)
# Load model and optimizer state.
log.info("Loading model state...")
fsdp_model.load_state_dict(state_dict["model"])
del state_dict["model"]
if load_optimizer_state:
log.info("Loading optimizer state...")
load_fsdp_optim_state(fsdp_model, optim, state_dict["optim"])
del state_dict["optim"]
barrier()
return state_dict
def unshard_checkpoint(
self,
load_path: PathOrStr,
*,
local_cache: Optional[PathOrStr] = None,
load_optimizer_state: bool = True,
load_trainer_state: bool = True,
device: Optional[torch.device] = None,
) -> Tuple[Dict[str, torch.Tensor], Optional[Dict[str, Any]], Optional[Dict[str, Any]]]:
assert local_cache is None, "this method currently only supports local files"
full_state_dict = self._unshard(load_path, device or torch.device("cpu"), skip_keys={"rng"})
model_state = full_state_dict.pop("model")
optim_state = full_state_dict.pop("optim")
return (
model_state,
optim_state if load_optimizer_state else None,
full_state_dict if load_trainer_state else None,
)
def _copy_sharded_tensors_to_shared_mem(self, state: Dict, world_size: int, rank: int, key: Tuple):
key = tuple() if key is None else key
if isinstance(state, (list, tuple, set)):
for i, sub_state in enumerate(state):
self._copy_sharded_tensors_to_shared_mem(sub_state, world_size, rank, key + (i,))
elif isinstance(state, dict):
for name in state.keys():
self._copy_sharded_tensors_to_shared_mem(state[name], world_size, rank, key + (name,))
elif isinstance(state, ShardedTensor):
self._copy_sharded_tensor_to_shared_mem(state, world_size, rank, key)
return
else:
return
def _get_shard_placement_and_rank_sizes(
self, shards_metadata: List[ShardMetadata], world_size: int
) -> Tuple[Dict[ShardMetadata, Tuple[int, int]], List[int]]:
def shard_size(shard_md):
return reduce((lambda x, y: x * y), shard_md.shard_sizes) # type: ignore[attr-defined]
rank_sizes = [0 for _ in range(world_size)]
shard_placement: Dict[ShardMetadata, Tuple[int, int]] = {}
for shard_md in shards_metadata:
shard_rank = cast(_remote_device, shard_md.placement).rank()
assert shard_rank is not None
if shard_rank >= world_size:
raise RuntimeError(f"Shard rank {shard_rank} exceeds world size {world_size}")
shard_placement[shard_md] = (shard_rank, rank_sizes[shard_rank])
rank_sizes[shard_rank] += shard_size(shard_md)
return shard_placement, rank_sizes
def _copy_sharded_tensor_to_shared_mem(
self, sharded_tensor: ShardedTensor, world_size: int, rank: int, key: Tuple
) -> Any:
shard0_md = sharded_tensor.metadata()
shard_placement, rank_sizes = self._get_shard_placement_and_rank_sizes(
shard0_md.shards_metadata, world_size
)
rank_size = rank_sizes[rank]
assert rank_size >= 0
if rank_size == 0:
return
assert shard0_md.tensor_properties.dtype == torch.float32, "Expected sharded tensor to be fp32"
numpy_type = np.float32
sharded_memory_name = "-".join(key + (str(rank),))
shm = shared_memory.SharedMemory(
create=True, size=rank_size * np.dtype(numpy_type).itemsize, name=sharded_memory_name
)
np_arr = np.ndarray((rank_size,), dtype=numpy_type, buffer=shm.buf)
for local_shard in sharded_tensor.local_shards():
shard_rank = cast(_remote_device, local_shard.metadata.placement).rank()
assert shard_rank == rank
src = local_shard.tensor.flatten()
shard_offset = shard_placement[local_shard.metadata][1]
np_arr[shard_offset : shard_offset + src.numel()] = src.numpy()
shm.close()
def _copy_sharded_data_to_shared_mem(self, world_size: int, shard_filepath: Path):
shard_number = int(shard_filepath.name[4:-3])
log.info("Starting unsharding shard number %d to shared memory", shard_number)
with self._patch_sharded_tensor_load():
shard = torch.load(shard_filepath, map_location="cpu")
log.debug("Done loading shard number %d", shard_number)
self._copy_sharded_tensors_to_shared_mem(
shard, world_size, shard_number, (str(shard_filepath.parent).replace("/", "_"),)
)
log.info("Done unsharding shard number %d to shared memory", shard_number)
def _unshard_using_sharded_mem(
self, state: Any, world_size: int, device: torch.device, shard_dir: PathOrStr
) -> Any:
return self._unshard_state_using_shared_mem(state, world_size, device, (str(shard_dir).replace("/", "_"),))
def _unshard_state_using_shared_mem(
self, state: Any, world_size: int, device: torch.device, key: Tuple
) -> Any:
if isinstance(state, (list, tuple, set)):
return state.__class__(
self._unshard_state_using_shared_mem(sub_state, world_size, device, key + (i,))
for i, sub_state in enumerate(state)
)
elif isinstance(state, dict):
return {
name: self._unshard_state_using_shared_mem(state[name], world_size, device, key + (name,))
for name in state.keys()
}
elif isinstance(state, ShardedTensor):
return self._unshard_tensor_using_shared_mem(state, world_size, device, key)
elif isinstance(state, torch.Tensor):
return state.to(device=device)
else:
return state
def _unshard_tensor_using_shared_mem(
self, sharded_tensor: ShardedTensor, world_size: int, device: torch.device, key: Tuple
) -> torch.Tensor:
shard0_md = sharded_tensor.metadata()
def shard_size(shard_md):
return reduce((lambda x, y: x * y), shard_md.shard_sizes) # type: ignore[attr-defined]
shard_placement, rank_sizes = self._get_shard_placement_and_rank_sizes(
shard0_md.shards_metadata, world_size
)
assert shard0_md.tensor_properties.dtype == torch.float32, "Expected sharded tensor to be fp32"
numpy_type = np.float32
out = torch.empty(
*sharded_tensor.metadata().size, dtype=sharded_tensor.metadata().tensor_properties.dtype, device=device
)
dims = len(sharded_tensor.metadata().size)
for shard_md, (rank, rank_offset) in shard_placement.items():
if rank >= world_size:
raise RuntimeError(f"Shard rank {rank} exceeds world size {world_size}")
sharded_memory_name = "-".join(key + (str(rank),))
shm = shared_memory.SharedMemory(name=sharded_memory_name)
rank_size = rank_sizes[rank]
assert rank_size >= 0
if rank_size == 0:
continue
np_arr = np.ndarray((rank_size,), dtype=numpy_type, buffer=shm.buf)
tensor = torch.from_numpy(np_arr)[rank_offset : rank_offset + shard_size(shard_md)]
tensor = tensor.view(shard_md.shard_sizes)
out_narrow_view = out
for dim in range(dims):
out_narrow_view = out_narrow_view.narrow(
dim,
shard_md.shard_offsets[dim],
shard_md.shard_sizes[dim],
)
out_narrow_view.copy_(tensor)
shm.close()
shm.unlink()
return out
@contextmanager
def _patch_sharded_tensor_load(self):
"""
Monkeypatch for torch's ShardedTensor, so we can unpickle without having torch.distributed set up.
"""
def _rebuild_from_type_v2_monkey(func, new_type, args, state):
ret = func(*args)
if type(ret) is not new_type:
ret = ret.as_subclass(new_type)
# Shortcut the construction of ShardedTensor
# This is in the top 5 of my worst hacks.
if isinstance(ret, ShardedTensor):
ret._local_shards, ret._metadata, _, ret._sharding_spec, ret._init_rrefs = state
return ret
# The rest of this function ought to be in the top 5 of somebody else's worst hacks.
# Tensor does define __setstate__ even though it doesn't define
# __getstate__. So only use __setstate__ if it is NOT the one defined
# on Tensor
if getattr(ret.__class__, "__setstate__", torch.Tensor.__setstate__) is not torch.Tensor.__setstate__:
ret.__setstate__(state)
else:
ret = torch._utils._set_obj_state(ret, state)
return ret
original_rebuild_from_type_v2 = torch._tensor._rebuild_from_type_v2
try:
torch._tensor._rebuild_from_type_v2 = _rebuild_from_type_v2_monkey
yield
finally:
torch._tensor._rebuild_from_type_v2 = original_rebuild_from_type_v2
def _unshard(self, input_dir: PathOrStr, device: torch.device, skip_keys: Optional[Set[str]] = None):
"""
The current unsharding implementation consists of:
1. Loading each shard on a separate process and copying their sharded tensors to shared memory.
2. Loading 1 shard on the main process as a base unsharded object.
3. Using the sharded tensors in shared memory to populate the base unsharded object.
This implementation replaced a prior implementation that instead loaded
all shards using threads, because that implementation turned out to
be extremely slow (e.g. 6+ hours) sometimes when the world size was 1024.
The current implementation is slower than the old one in many scenarios,
but is significantly faster in the above mentioned case (e.g. 30 minutes)
if there are enough CPUs.
"""
input_dir = Path(input_dir)
skip_keys = skip_keys or set()
shard_filepaths = list(input_dir.glob("rank*.pt"))
world_size = len(shard_filepaths)
if world_size == 0:
raise RuntimeError("No shards found for unsharding")
log.info("Number of shards: %d", world_size)
shard_size_gb = shard_filepaths[0].stat().st_size / (1024 * 1024 * 1024)
min_ram_required_estimate_gb = shard_size_gb * world_size
log.info(
"Shards are %.2fGB each, at least %.2fGB RAM is required", shard_size_gb, min_ram_required_estimate_gb
)
log.info("Copying sharded tensors to shared memory using multiple processes")
# Copy sharded data to shared memory using multiple processes, so this process can load
# from memory rather than disk. We spawn a new process instead of forking since shared memory
# appears to get deleted when forked processes end for some reason.
executor = ProcessPoolExecutor(
mp_context=mp.get_context("spawn"), initializer=util.prepare_cli_environment
)
futures = []
for shard_filepath in shard_filepaths:
shard_rank = int(shard_filepath.name[4:-3])
if shard_rank >= world_size:
raise RuntimeError(
f"Shard rank {shard_rank} of file {shard_filepath} exceeds world size {world_size}"
)
futures.append(executor.submit(self._copy_sharded_data_to_shared_mem, world_size, shard_filepath))
for f in as_completed(futures):
f.result()
executor.shutdown()
log.info("Loading a shard on the main process to be unsharded state")
with self._patch_sharded_tensor_load():
state = torch.load(shard_filepaths[0], map_location="cpu")
for key in skip_keys:
if key in state:
del state[key]
log.info("Unsharding from %d shards ...", world_size)
return self._unshard_using_sharded_mem(state, world_size, device, input_dir)
@dataclass
class _LocalShardedCheckpointerMetadata(BaseConfig):
world_size: int = field(default_factory=get_world_size)
@dataclass
class _FlatParamShard:
full_shape: torch.Size
shard_offsets: Tuple[int, int]
shard_data: Optional[torch.Tensor]
def copy_into(self, full_tensor: torch.Tensor) -> None:
assert self.shard_data is not None
full_tensor_shard_view = full_tensor.view(-1)[self.shard_offsets[0] : self.shard_offsets[1] + 1]
assert self.shard_data.shape == full_tensor_shard_view.shape
full_tensor_shard_view.copy_(self.shard_data)
class LocalShardedCheckpointer(Checkpointer):
"""
A sharded :class:`Checkpointer` that directly saves the local FSDP flat params data.
The optimizer state is saved directly with `torch.save()` without reformatting via FSDP methods.
The world size must be kept consistent when using this checkpointer. However, you can easily
reconstruct a full unsharded model and/or optimizer state dictionary from a single Python process
using :meth:`unshard_checkpoint()` (no distributed initialization required).
"""
# These correspond to metadata attributes on `torch.distributed.fsdp.flat_param.FlatParameter`.
_FLAT_PARAM_METADATA_TO_SAVE = (
"_fqns",
"_shard_param_offsets",
"_shard_indices",
"_numels",
"_numels_with_padding",
"_shapes",
"_shard_numel_padded",
"_shard_param_infos",
)
def _fsdp_modules(self, fsdp_model: FSDP) -> List[Tuple[str, FSDP]]:
"""
Returns a list of FSDP modules with their FQN.
"""
modules = []
for name, module in fsdp_model.named_modules():
if isinstance(module, FSDP):
modules.append((name, module))
return modules
def _prepare_fsdp_model(self, fsdp_model: FSDP) -> None:
from torch.distributed.fsdp._runtime_utils import _lazy_init
# TODO (epwalsh): I'm not sure if this is necessary, but this is what PyTorch does before saving/loading
# an FSDP state dict through the built-in methods.
if torch.cuda.is_available():
torch.cuda.synchronize()
_lazy_init(fsdp_model, fsdp_model)
def _fsdp_handles(self, fsdp_model: FSDP) -> List[FlatParamHandle]:
if version.parse(torch.__version__) < version.parse("2.1.0"):
return fsdp_model._handles # type: ignore
elif version.parse(torch.__version__) < version.parse("2.3.0"):
# Handle could be None if the FSDP wrapper doesn't manage any parameters.
if hasattr(fsdp_model, "_handle") and fsdp_model._handle is not None:
return [fsdp_model._handle] # type: ignore
else:
return []
else:
# Need to verify FSDP internals with newer versions.
raise NotImplementedError
@torch.no_grad()
def _get_flat_param_state_to_save(self, fsdp_model: FSDP) -> Dict[str, Any]:
self._prepare_fsdp_model(fsdp_model)
module_data = []
for module_fqn, fsdp_module in self._fsdp_modules(fsdp_model):
handle_data = []
for handle in self._fsdp_handles(fsdp_module):
data: Dict[str, Any] = {}
# This is a `FlatParameter` instance.
# See `torch.distributed.fsdp.flat_param` for the API.
flat_param = handle.flat_param
data["flat_param.data"] = flat_param.detach()
for key in self._FLAT_PARAM_METADATA_TO_SAVE:
if hasattr(flat_param, key):
data[f"flat_param.{key}"] = getattr(flat_param, key)
handle_data.append(data)
module_data.append({"handles": handle_data, "name": module_fqn})
return {"modules": module_data}
@torch.no_grad()
def _load_flat_param_state(self, fsdp_model: FSDP, model_state: Dict[str, Any]):
"""Load the state produced from `self._get_flat_param_state_to_save()`."""
self._prepare_fsdp_model(fsdp_model)
fsdp_modules = self._fsdp_modules(fsdp_model)
assert len(model_state["modules"]) == len(fsdp_modules)
for (_, fsdp_module), module_data in zip(fsdp_modules, model_state["modules"]):
handles = self._fsdp_handles(fsdp_module)
assert len(handles) == len(module_data["handles"])
for handle, data in zip(handles, module_data["handles"]):
flat_param = handle.flat_param
# Make sure metadata matches.
for key in self._FLAT_PARAM_METADATA_TO_SAVE:
if hasattr(flat_param, key):
assert getattr(flat_param, key) == data[f"flat_param.{key}"]
# Load the flat sharded data.
flat_param.copy_(data["flat_param.data"])
def _save_metadata(self, dir: PathOrStr, *, upload_to: Optional[str] = None) -> None:
if get_fs_local_rank() == 0:
log.info("Saving metadata...")
metadata = _LocalShardedCheckpointerMetadata()
metadata.save(metadata_path := Path(dir) / "metadata.yaml")
if upload_to is not None and get_global_rank() == 0:
upload_target = f"{upload_to}/metadata.yaml"
log.info(f"Uploading {metadata_path} to {upload_target}")
upload(metadata_path, upload_target, save_overwrite=self.cfg.save_overwrite)
def _load_metadata(
self, load_path: PathOrStr, *, local_cache: Optional[PathOrStr] = None
) -> _LocalShardedCheckpointerMetadata:
metadata_path = resource_path(load_path, "metadata.yaml", local_cache=local_cache)
return _LocalShardedCheckpointerMetadata.load(metadata_path)
def save_checkpoint(
self,
dir: PathOrStr,
fsdp_model: FSDP,
optim: Optimizer,
trainer_state: Dict[str, Any],
*,
upload_to: Optional[str] = None,
) -> None:
with self._temporary_wd(dir) as checkpoint_dir:
# Gather local FSDP flat params data to save.
# We also save some flat param metadata like the corresponding fully qualified names (fqns)
# of each original parameter so we can validate that the sharding is the same when loading
# one of these checkpoints.
log.info("Saving local FSDP flat params data...")
save_state_dict(
checkpoint_dir,
f"model/rank{get_global_rank()}.pt",
self._get_flat_param_state_to_save(fsdp_model),
upload_to=upload_to,
save_overwrite=self.cfg.save_overwrite,
)
# Save optimizer state.
log.info("Saving local optimizer state...")
save_state_dict(
checkpoint_dir,
f"optim/rank{get_global_rank()}.pt",
optim.state_dict(),
upload_to=upload_to,
save_overwrite=self.cfg.save_overwrite,
)
# Save trainer state.
log.info("Saving trainer state...")
save_state_dict(
checkpoint_dir,
f"train/rank{get_global_rank()}.pt",
trainer_state,
upload_to=upload_to,
save_overwrite=self.cfg.save_overwrite,
)
# Save metadata.
self._save_metadata(checkpoint_dir, upload_to=upload_to)
# Save config. We do this last b/c the presence of a config in a remote checkpoint
# "directory" indicates that the folder is valid, as a opposed to a partially
# uploaded checkpoint directory that failed before completing.
self._save_config(checkpoint_dir, upload_to=upload_to)
def restore_checkpoint(
self,
load_path: PathOrStr,
fsdp_model: FSDP,
optim: Optimizer,
*,
local_cache: Optional[PathOrStr] = None,
load_optimizer_state: bool = True,
) -> Dict[str, Any]:
# Load metadata and make sure checkpoint is compatible.
metadata = self._load_metadata(load_path, local_cache=local_cache)
assert metadata.world_size == get_world_size()
# Load local FSDP flat param data.
log.info("Loading local FSDP flat params data...")
model_state = load_state_dict(
load_path, f"model/rank{get_global_rank()}.pt", local_cache=local_cache, map_location="cpu"
)
self._load_flat_param_state(fsdp_model, model_state)
del model_state
# Load local optim state.
if load_optimizer_state:
log.info("Loading local optimizer state...")
optim_state = load_state_dict(
load_path, f"optim/rank{get_global_rank()}.pt", local_cache=local_cache, map_location="cpu"
)
# HACK/TODO (epwalsh): When we use adaptive clipping we track the 'grad_norm_exp_avg' for every param
# in every rank, and keep this in the optimizer state. But this causes issues when loading the
# state since torch sees the state is non-empty for some params which would normally be empty,
# and then assumes it should have all of the other state tensors for that param, which is doesn't.
# So for now we just remove 'grad_norm_exp_avg' everywhere from the state, which resets that metric.
# Not the end of the world but there's probably a better way around this without resetting
# the metric.
for param_id in list(optim_state["state"].keys()):
state = optim_state["state"][param_id]
if "grad_norm_exp_avg" in state:
del state["grad_norm_exp_avg"]
if len(state) == 0:
del optim_state["state"][param_id]
optim.load_state_dict(optim_state)
del optim_state
# Load local trainer state.
log.info("Loading local trainer state...")
trainer_state = load_state_dict(load_path, f"train/rank{get_global_rank()}.pt", local_cache=local_cache)
barrier()
return trainer_state
def _iter_flat_param_shards(
self, model_state: Dict[str, Any]
) -> Generator[Tuple[str, _FlatParamShard], None, None]:
for module_data in model_state["modules"]:
module_prefix = module_data["name"].replace("_fsdp_wrapped_module.", "")
for handle in module_data["handles"]:
flat_data = handle["flat_param.data"]
if (num_padding := handle["flat_param._shard_numel_padded"]) > 0:
# If there's padding in the flat param it should be on the right.
assert (flat_data[-num_padding:] == 0).all()
# NOTE: this changes depending on the torch version, but we don't do a version
# check since we might be trying to unshard an old checkpoint that was stored
# with a different torch version than we're currently running with.
if "flat_param._shard_indices" in handle:
# torch <=2.0.1
param_start = handle["flat_param._shard_indices"][0]
current_flat_index = 0
for relative_fqn, full_shape, (offset_start, offset_end) in zip(
handle["flat_param._fqns"][param_start:],
handle["flat_param._shapes"][param_start:],
handle["flat_param._shard_param_offsets"],
):
root_fqn = relative_fqn if not module_prefix else f"{module_prefix}.{relative_fqn}"
numel_shard = offset_end - offset_start + 1
flat_param_shard = _FlatParamShard(
full_shape=full_shape,
shard_offsets=(offset_start, offset_end),
shard_data=flat_data[current_flat_index : current_flat_index + numel_shard],
)
current_flat_index += numel_shard
yield root_fqn, flat_param_shard
else:
# torch >=2.1.0
for relative_fqn, full_shape, shard_param_info in zip(
handle["flat_param._fqns"],
handle["flat_param._shapes"],
handle["flat_param._shard_param_infos"],
):
if not shard_param_info.in_shard:
continue
root_fqn = relative_fqn if not module_prefix else f"{module_prefix}.{relative_fqn}"
flat_param_shard = _FlatParamShard(
full_shape=full_shape,
shard_offsets=(
shard_param_info.intra_param_start_idx,
shard_param_info.intra_param_end_idx,
),
shard_data=flat_data[
shard_param_info.offset_in_shard : shard_param_info.offset_in_shard
+ shard_param_info.numel_in_shard
],
)
yield root_fqn, flat_param_shard
def unshard_checkpoint(
self,
load_path: PathOrStr,
*,
local_cache: Optional[PathOrStr] = None,
load_optimizer_state: bool = True,
load_trainer_state: bool = True,
device: Optional[torch.device] = None,
) -> Tuple[Dict[str, torch.Tensor], Optional[Dict[str, Any]], Optional[Dict[str, Any]]]:
device = device or torch.device("cpu")
metadata = self._load_metadata(load_path, local_cache=local_cache)
# Gather paths model state, potentially downloading them.
log.info("Gathering model state dicts...")
model_state_paths = self._gather_state_dict_paths(
load_path, "model", metadata.world_size, local_cache=local_cache
)
# Load model state dicts one-by-one, materializing and populating the full parameters as we go.
log.info("Materializing full parameters...")
full_model_state: Dict[str, torch.Tensor] = {}
# We keep a copy of the flat param metadata minus the actual tensors so we can reconstruct
# the full optimizer state below without having to reload the model state dicts.
flat_params_data: Dict[int, Dict[str, _FlatParamShard]] = defaultdict(dict)
for rank, path in enumerate(model_state_paths):
log.info(f"Loading shards from rank {rank}...")
model_state = torch.load(path, map_location="cpu")
for root_fqn, flat_param_shard in self._iter_flat_param_shards(model_state):
if root_fqn not in full_model_state:
log.info(
f"Materializing full parameter '{root_fqn}' with shape {flat_param_shard.full_shape}..."
)
assert flat_param_shard.shard_data is not None
full_model_state[root_fqn] = torch.empty(
flat_param_shard.full_shape, dtype=flat_param_shard.shard_data.dtype, device=device
)
# Fill with NaNs so we can validate that the whole parameter has been populated
# afterwards.
full_model_state[root_fqn].fill_(torch.nan)
# Copy over the local shard to the relevant part of the full parameter.
full_param = full_model_state[root_fqn]
log.info(f"Loading rank {rank} shard for '{root_fqn}'...")
flat_param_shard.copy_into(full_param)
flat_params_data[rank][root_fqn] = replace(flat_param_shard, shard_data=None)
log.info("Validating full parameters...")
for key, tensor in full_model_state.items():
if torch.isnan(tensor).any():
raise ValueError(f"Parameter '{key}' contains NaNs, this is likely a bug with the unsharder")
trainer_state: Optional[Dict[str, Any]] = None
if load_trainer_state:
trainer_state = load_state_dict(load_path, "train/rank0.pt", local_cache=local_cache)
if not load_optimizer_state:
return full_model_state, None, trainer_state
log.info("Gathering optim state dicts...")
optim_state_paths = self._gather_state_dict_paths(
load_path, "optim", metadata.world_size, local_cache=local_cache
)
log.info("Materializing full optim state...")
full_optim_state: Dict[str, Any] = {"state": defaultdict(dict)}
fqn_to_id: Dict[str, int] = {}
id_to_fqn: Dict[int, str] = {}
for rank, path in enumerate(optim_state_paths):
log.info(f"Loading sharded optim state from rank {rank}...")
optim_state = torch.load(path, map_location="cpu")
# Initialize param groups.
# We assume parameter groups are the same across all ranks.
# The only thing that differs across ranks is the state for each local sharded param.
if "param_groups" not in full_optim_state:
full_optim_state["param_groups"] = optim_state["param_groups"]
else:
assert full_optim_state["param_groups"] == optim_state["param_groups"]
# Generate mapping of parameter FQNs to optimizer param IDs and vice-versa.
if not fqn_to_id or not id_to_fqn:
for group in full_optim_state["param_groups"]:
for fqn, id in zip(group["param_names"], group["params"]):
fqn = fqn.replace("_fsdp_wrapped_module.", "")
fqn_to_id[fqn] = id
id_to_fqn[id] = fqn
# Iterate over local shard state and copy into the full state.
for id, shard_state in optim_state["state"].items():
fqn = id_to_fqn[id]
flat_param_shard = flat_params_data[rank].get(fqn) # type: ignore[assignment]
full_state = full_optim_state["state"][id]
for key, shard_value in shard_state.items():
assert isinstance(shard_value, torch.Tensor)
if shard_value.shape == torch.Size([]):
# Add singleton tensors directly to full state. These should be the same across
# all ranks.
assert key in ("step", "grad_norm_exp_avg") # sanity check
if key not in full_state:
full_state[key] = shard_value.to(device)
else:
assert full_state[key] == shard_value
else:
# Otherwise we have a sharded param state.
# If the corresponding full param state hasn't been materialized yet, do so now.
assert flat_param_shard is not None, f"missing flat_params_data for {fqn} from rank {rank}"
if key not in full_state:
log.info(
f"Materializing full state '{key}' for '{fqn}' with shape {flat_param_shard.full_shape}..."
)
full_state[key] = torch.empty(
flat_param_shard.full_shape, dtype=shard_value.dtype, device=device
)
full_state_value = full_state[key]
# Copy over the local shard state to the relevant part of the full parameter state.
log.info(f"Loading rank {rank} shard state of '{key}' for '{fqn}'...")
replace(flat_param_shard, shard_data=shard_value).copy_into(full_state_value)
# Lastly, clean up the parameter names in param groups.
for group in full_optim_state["param_groups"]:
group["param_names"] = [n.replace("_fsdp_wrapped_module.", "") for n in group["param_names"]]
return full_model_state, full_optim_state, trainer_state
def _get_state_dict_path(
self,
load_path: PathOrStr,
state_dict_type: str,
rank: int,
*,
local_cache: Optional[PathOrStr] = None,
progress=None,
) -> Tuple[int, Path]:
fname = f"{state_dict_type}/rank{rank}.pt"
return rank, resource_path(str(load_path).rstrip("/"), fname, local_cache=local_cache, progress=progress)
def _gather_state_dict_paths(
self,
load_path: PathOrStr,
state_dict_type: str,
world_size: int,
*,
local_cache: Optional[PathOrStr] = None,
) -> List[Path]:
progress = get_progress_bar()
with ThreadPoolExecutor(max_workers=self.thread_count) as executor:
futures = []
for rank in range(world_size):
future = executor.submit(
self._get_state_dict_path,
load_path,
state_dict_type,
rank,
local_cache=local_cache,
progress=progress,
)
futures.append(future)
results: Dict[int, Path] = {}
for future in as_completed(futures):
rank, path = future.result()
results[rank] = path
return [results[rank] for rank in range(world_size)]
def build_sharded_checkpointer(
cfg: TrainConfig, *, name: Optional[ShardedCheckpointerType] = None
) -> Checkpointer:
name = name or cfg.sharded_checkpointer
if name == ShardedCheckpointerType.torch_new:
return TorchNewStyleShardedCheckpointer(cfg)
elif name == ShardedCheckpointerType.torch_legacy:
return TorchLegacyShardedCheckpointer(cfg)
elif name == ShardedCheckpointerType.local:
return LocalShardedCheckpointer(cfg)
else:
raise NotImplementedError(name)
|