from dataclasses import fields from typing import List, Optional, Tuple, Union import torch from transformers import PreTrainedModel from transformers.modeling_outputs import CausalLMOutputWithPast from transformers.models.auto import AutoModelForCausalLM from olmo.config import ModelConfig from olmo.model import OLMo from .configuration_olmo import OLMoConfig def create_model_config_from_pretrained_config(config: OLMoConfig): """ Utility function """ kwargs = {} for field in fields(ModelConfig): kwargs[field.name] = getattr(config, field.name) model_config = ModelConfig(**kwargs) return model_config class OLMoForCausalLM(PreTrainedModel): """ Extremely barebones HF model wrapper. """ config_class = OLMoConfig base_model_prefix = "model" _no_split_modules = ["OLMoBlock"] def __init__(self, config: OLMoConfig, model: Optional[OLMo] = None, init_params: bool = False): super().__init__(config) if not model: model_config = create_model_config_from_pretrained_config(config) # Initialize model (always on CPU to start with so we don't run out of GPU memory). model_config.init_device = "cpu" self.model = OLMo(model_config, init_params=init_params) else: self.model = model def forward( self, input_ids: torch.LongTensor = None, inputs_embeds: Optional[torch.FloatTensor] = None, attention_mask: Optional[torch.Tensor] = None, attention_bias: Optional[torch.Tensor] = None, past_key_values: Optional[List[torch.FloatTensor]] = None, labels: Optional[torch.LongTensor] = None, use_cache: Optional[bool] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[Tuple, CausalLMOutputWithPast]: if use_cache is None: use_cache = self.config.use_cache if output_attentions: raise ValueError("output_attentions is not yet supported in OLMo") return_dict = return_dict if return_dict is not None else self.config.use_return_dict # decoder outputs consists of (dec_features, layer_state, dec_hidden, dec_attn) outputs = self.model.forward( input_ids=input_ids, input_embeddings=inputs_embeds, attention_mask=attention_mask, attention_bias=attention_bias, past_key_values=past_key_values, use_cache=use_cache, output_hidden_states=output_hidden_states, ) logits = outputs.logits hidden_states = outputs.hidden_states loss = None if labels is not None: # Shift so that tokens < n predict n shift_logits = logits[..., :-1, :].contiguous() shift_labels = labels[..., 1:].contiguous() # Flatten the tokens loss_fct = torch.nn.CrossEntropyLoss() shift_logits = shift_logits.view(-1, self.config.embedding_size) shift_labels = shift_labels.view(-1) # Enable model parallelism shift_labels = shift_labels.to(shift_logits.device) loss = loss_fct(shift_logits, shift_labels) if not return_dict: output = (logits,) + outputs[1:] return (loss,) + output if loss is not None else output return CausalLMOutputWithPast( loss=loss, logits=logits, past_key_values=outputs.attn_key_values, hidden_states=hidden_states, ) def can_generate(self) -> bool: return True def prepare_inputs_for_generation( self, input_ids: torch.LongTensor, past_key_values: Optional[List[Tuple]] = None, **kwargs ): if past_key_values: # This is because we want the model to only process the last generated token. input_ids = input_ids[:, -1:] model_inputs = {"input_ids": input_ids, "past_key_values": past_key_values} model_inputs.update(kwargs) model_inputs["use_cache"] = kwargs.pop("use_cache", self.config.use_cache) return model_inputs # TODO: these are required to make the implementation complete. # def resize_position_embeddings(self, new_num_position_embeddings: int): # pass # # def get_position_embeddings(self) -> Union[nn.Embedding, Tuple[nn.Embedding]]: # pass # # def _reorder_cache(self, past_key_values, beam_idx): # pass def get_input_embeddings(self) -> torch.nn.Module: return self.model.transformer.wte def set_input_embeddings(self, value: torch.nn.Module): self.model.transformer.wte = value def get_output_embeddings(self): if self.config.weight_tying: return self.model.transformer.wte else: return self.model.transformer.ff_out def set_output_embeddings(self, value: torch.nn.Module): if self.config.weight_tying: self.model.transformer.wte = value else: self.model.transformer.ff_out = value def tie_weights(self): if self.config.weight_tying: self.model.transformer.ff_out = self.model.transformer.wte # Register the model so that it is available for transformer pipelines, auto-loading, etc. AutoModelForCausalLM.register(OLMoConfig, OLMoForCausalLM)