metadata
license: apache-2.0
tags:
- generated_from_trainer
base_model: NovoCode/Novocode7b-v2
model-index:
- name: out
results: []
See axolotl config
axolotl version: 0.4.0
base_model: NovoCode/Novocode7b-v2
model_type: MistralForCausalLM
tokenizer_type: LlamaTokenizer
is_mistral_derived_model: true
load_in_8bit: false
load_in_4bit: false
strict: false
datasets:
- path: Intel/orca_dpo_pairs
type:
system_prompt: ""
field_system: system
field_instruction: question
field_output: chosen
field_output: rejected
format: "[INST] {instruction} [/INST]"
no_input_format: "[INST] {instruction} [/INST]"
dataset_prepared_path:
val_set_size: 0.05
output_dir: ./out
sequence_len: 8192
sample_packing: true
pad_to_sequence_len: true
eval_sample_packing: false
wandb_project:
wandb_entity:
wandb_watch:
wandb_name:
wandb_log_model:
gradient_accumulation_steps: 4
micro_batch_size: 2
num_epochs: 4
optimizer: adamw_bnb_8bit
lr_scheduler: cosine
learning_rate: 0.000005
train_on_inputs: false
group_by_length: false
bf16: auto
fp16:
tf32: false
gradient_checkpointing: true
early_stopping_patience:
resume_from_checkpoint:
local_rank:
logging_steps: 1
xformers_attention:
flash_attention: true
warmup_steps: 10
evals_per_epoch: 4
eval_table_size:
eval_table_max_new_tokens: 128
saves_per_epoch: 1
debug:
deepspeed:
weight_decay: 0.0
fsdp:
fsdp_config:
special_tokens:
bos_token: "<s>"
eos_token: "</s>"
unk_token: "<unk>"
out
This model is a fine-tuned version of NovoCode/Novocode7b-v2 on the Intel/orca_dpo_pairs dataset. It achieves the following results on the evaluation set:
- Loss: 0.6792
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-06
- train_batch_size: 2
- eval_batch_size: 2
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 8
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 10
- num_epochs: 4
Training results
Training Loss | Epoch | Step | Validation Loss |
---|---|---|---|
0.7565 | 0.01 | 1 | 0.8244 |
0.4845 | 0.26 | 24 | 0.4685 |
0.4594 | 0.51 | 48 | 0.4435 |
0.4399 | 0.77 | 72 | 0.4284 |
0.3115 | 1.01 | 96 | 0.4221 |
0.2008 | 1.26 | 120 | 0.4614 |
0.2212 | 1.52 | 144 | 0.4552 |
0.2101 | 1.78 | 168 | 0.4516 |
0.119 | 2.02 | 192 | 0.4547 |
0.0925 | 2.27 | 216 | 0.5502 |
0.096 | 2.53 | 240 | 0.5751 |
0.0967 | 2.78 | 264 | 0.5774 |
0.0537 | 3.02 | 288 | 0.5765 |
0.0576 | 3.28 | 312 | 0.6687 |
0.0526 | 3.54 | 336 | 0.6786 |
0.0492 | 3.79 | 360 | 0.6792 |
Framework versions
- Transformers 4.37.0
- Pytorch 2.1.2+cu121
- Datasets 2.16.1
- Tokenizers 0.15.0
Open LLM Leaderboard Evaluation Results
Detailed results can be found here
Metric | Value |
---|---|
Avg. | 59.94 |
AI2 Reasoning Challenge (25-Shot) | 57.51 |
HellaSwag (10-Shot) | 81.17 |
MMLU (5-Shot) | 61.91 |
TruthfulQA (0-shot) | 48.29 |
Winogrande (5-shot) | 74.51 |
GSM8k (5-shot) | 36.24 |