File size: 106,537 Bytes
b78139c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
{
  "nbformat": 4,
  "nbformat_minor": 0,
  "metadata": {
    "colab": {
      "provenance": []
    },
    "kernelspec": {
      "name": "python3",
      "display_name": "Python 3"
    }
  },
  "cells": [
    {
      "cell_type": "markdown",
      "metadata": {
        "id": "eBpjBBZc6IvA"
      },
      "source": [
        "# Fatima Fellowship Coding Challenge (Pick 1)\n",
        "\n",
        "Thank you for applying to the Fatima Fellowship. To help us select the Fellows and assess your ability to do machine learning research, we are asking that you complete a short coding challenge. Please pick **1 of these 5** coding challenges, whichever is most aligned with your interests. These coding challenges are not meant to take too long, do NOT spend more than 4-6 hours on them -- you can submit whatever you have.\n",
        "\n",
        "**How to submit**: Please make a copy of this colab notebook, add your code and results, and submit your colab notebook along with your application. If you have never used a colab notebook, [check out this video](https://www.youtube.com/watch?v=i-HnvsehuSw)"
      ]
    },
    {
      "cell_type": "markdown",
      "source": [
        "\n",
        "\n",
        "---\n",
        "\n",
        "\n",
        "### **Important**: Beore you get started, please make sure to make a **copy of this notebook** and set sharing permissions so that **anyone with the link can view**. Otherwise, we will NOT be able to assess your application.\n",
        "\n",
        "\n",
        "\n",
        "---\n",
        "\n"
      ],
      "metadata": {
        "id": "lQNUZjvuRt-m"
      }
    },
    {
      "cell_type": "markdown",
      "metadata": {
        "id": "braBzmRpMe7_"
      },
      "source": [
        "# 1. Deep Learning for Vision"
      ]
    },
    {
      "cell_type": "markdown",
      "metadata": {
        "id": "1IWw-NZf5WfF"
      },
      "source": [
        "**Generated by AI detector**: Train a model to detect if images are generated by AI\n",
        "\n",
        "* Find a dataset of natural images and images generated by AI (here is one such dataset on the [Hugging Face Hub](https://huggingface.co/datasets/competitions/aiornot) but you're welcome to use any dataset you've found.\n",
        "* Create a training and test set.\n",
        "* Build a neural network (using Tensorflow, PyTorch, or any framework you like)\n",
        "* Train it to classify the image as being generated by an AI or not until a reasonable accuracy is reached\n",
        "* [Upload the the model to the Hugging Face Hub](https://huggingface.co/docs/hub/adding-a-model), and add a link to your model below.\n",
        "* Look at some of the images that were classified incorrectly. Please explain what you might do to improve your model's performance on these images in the future (you do not need to impelement these suggestions)\n",
        "\n",
        "**Submission instructions**: Please write your code below and include some examples of images that were classified"
      ]
    },
    {
      "cell_type": "code",
      "source": [
        "### WRITE YOUR CODE TO TRAIN THE MODEL HERE\n",
        "print('Hi')"
      ],
      "metadata": {
        "id": "K2GJaYBpw91T",
        "outputId": "f26681e5-f682-42d2-e837-f949a159c779",
        "colab": {
          "base_uri": "https://localhost:8080/"
        }
      },
      "execution_count": null,
      "outputs": [
        {
          "output_type": "stream",
          "name": "stdout",
          "text": [
            "Hi\n"
          ]
        }
      ]
    },
    {
      "cell_type": "markdown",
      "source": [
        "**Write up**: \n",
        "* Link to the model on Hugging Face Hub: \n",
        "* Include some examples of misclassified images. Please explain what you might do to improve your model's performance on these images in the future (you do not need to impelement these suggestions)\n",
        "\n",
        "[Please put your write up here]"
      ],
      "metadata": {
        "id": "qSeLed2JxvGI"
      }
    },
    {
      "cell_type": "markdown",
      "metadata": {
        "id": "sFU9LTOyMiMj"
      },
      "source": [
        "# 2. Deep Learning for NLP\n",
        "\n",
        "**Fake news classifier**: Train a text classification model to detect fake news articles!\n",
        "\n",
        "* Download the dataset here: https://www.kaggle.com/datasets/sadikaljarif/fake-news-detection-dataset-english (if you'd like, you can also look at fake news datasets in other languages, which are available on the Huggingface Hub)\n",
        "* Develop an NLP model for classification that uses a pretrained language model and the *text* of the article. It should *NOT* use the URL\n",
        "* Finetune your model on the dataset, and generate an AUC curve of your model on the test set of your choice. \n",
        "* [Upload the the model to the Hugging Face Hub](https://huggingface.co/docs/hub/adding-a-model), and add a link to your model below.\n",
        "* *Answer the following question*: Look at some of the news articles that were classified incorrectly. Please explain what you might do to improve your model's performance on these news articles in the future (you do not need to impelement these suggestions)"
      ]
    },
    {
      "cell_type": "code",
      "source": [
        "#installing libraries\n",
        "!pip install opendatasets\n",
        "!pip install pandas\n",
        "!pip install -q kaggle\n",
        "!pip install transformers\n"
      ],
      "metadata": {
        "colab": {
          "base_uri": "https://localhost:8080/"
        },
        "id": "MvlmVtfz8LY5",
        "outputId": "14ca9f13-661c-45b7-9ed0-62c1ce5aaef4"
      },
      "execution_count": null,
      "outputs": [
        {
          "output_type": "stream",
          "name": "stdout",
          "text": [
            "Looking in indexes: https://pypi.org/simple, https://us-python.pkg.dev/colab-wheels/public/simple/\n",
            "Collecting opendatasets\n",
            "  Downloading opendatasets-0.1.22-py3-none-any.whl (15 kB)\n",
            "Requirement already satisfied: kaggle in /usr/local/lib/python3.9/dist-packages (from opendatasets) (1.5.13)\n",
            "Requirement already satisfied: tqdm in /usr/local/lib/python3.9/dist-packages (from opendatasets) (4.65.0)\n",
            "Requirement already satisfied: click in /usr/local/lib/python3.9/dist-packages (from opendatasets) (8.1.3)\n",
            "Requirement already satisfied: requests in /usr/local/lib/python3.9/dist-packages (from kaggle->opendatasets) (2.25.1)\n",
            "Requirement already satisfied: certifi in /usr/local/lib/python3.9/dist-packages (from kaggle->opendatasets) (2022.12.7)\n",
            "Requirement already satisfied: six>=1.10 in /usr/local/lib/python3.9/dist-packages (from kaggle->opendatasets) (1.15.0)\n",
            "Requirement already satisfied: python-dateutil in /usr/local/lib/python3.9/dist-packages (from kaggle->opendatasets) (2.8.2)\n",
            "Requirement already satisfied: python-slugify in /usr/local/lib/python3.9/dist-packages (from kaggle->opendatasets) (8.0.1)\n",
            "Requirement already satisfied: urllib3 in /usr/local/lib/python3.9/dist-packages (from kaggle->opendatasets) (1.26.14)\n",
            "Requirement already satisfied: text-unidecode>=1.3 in /usr/local/lib/python3.9/dist-packages (from python-slugify->kaggle->opendatasets) (1.3)\n",
            "Requirement already satisfied: chardet<5,>=3.0.2 in /usr/local/lib/python3.9/dist-packages (from requests->kaggle->opendatasets) (4.0.0)\n",
            "Requirement already satisfied: idna<3,>=2.5 in /usr/local/lib/python3.9/dist-packages (from requests->kaggle->opendatasets) (2.10)\n",
            "Installing collected packages: opendatasets\n",
            "Successfully installed opendatasets-0.1.22\n",
            "Looking in indexes: https://pypi.org/simple, https://us-python.pkg.dev/colab-wheels/public/simple/\n",
            "Requirement already satisfied: pandas in /usr/local/lib/python3.9/dist-packages (1.4.4)\n",
            "Requirement already satisfied: numpy>=1.18.5 in /usr/local/lib/python3.9/dist-packages (from pandas) (1.22.4)\n",
            "Requirement already satisfied: python-dateutil>=2.8.1 in /usr/local/lib/python3.9/dist-packages (from pandas) (2.8.2)\n",
            "Requirement already satisfied: pytz>=2020.1 in /usr/local/lib/python3.9/dist-packages (from pandas) (2022.7.1)\n",
            "Requirement already satisfied: six>=1.5 in /usr/local/lib/python3.9/dist-packages (from python-dateutil>=2.8.1->pandas) (1.15.0)\n",
            "Looking in indexes: https://pypi.org/simple, https://us-python.pkg.dev/colab-wheels/public/simple/\n",
            "Collecting transformers\n",
            "  Downloading transformers-4.26.1-py3-none-any.whl (6.3 MB)\n",
            "\u001b[2K     \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m6.3/6.3 MB\u001b[0m \u001b[31m33.6 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
            "\u001b[?25hRequirement already satisfied: filelock in /usr/local/lib/python3.9/dist-packages (from transformers) (3.9.0)\n",
            "Collecting tokenizers!=0.11.3,<0.14,>=0.11.1\n",
            "  Downloading tokenizers-0.13.2-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (7.6 MB)\n",
            "\u001b[2K     \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m7.6/7.6 MB\u001b[0m \u001b[31m81.8 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
            "\u001b[?25hRequirement already satisfied: tqdm>=4.27 in /usr/local/lib/python3.9/dist-packages (from transformers) (4.65.0)\n",
            "Requirement already satisfied: requests in /usr/local/lib/python3.9/dist-packages (from transformers) (2.25.1)\n",
            "Requirement already satisfied: pyyaml>=5.1 in /usr/local/lib/python3.9/dist-packages (from transformers) (6.0)\n",
            "Requirement already satisfied: numpy>=1.17 in /usr/local/lib/python3.9/dist-packages (from transformers) (1.22.4)\n",
            "Requirement already satisfied: packaging>=20.0 in /usr/local/lib/python3.9/dist-packages (from transformers) (23.0)\n",
            "Collecting huggingface-hub<1.0,>=0.11.0\n",
            "  Downloading huggingface_hub-0.13.2-py3-none-any.whl (199 kB)\n",
            "\u001b[2K     \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m199.2/199.2 KB\u001b[0m \u001b[31m21.8 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
            "\u001b[?25hRequirement already satisfied: regex!=2019.12.17 in /usr/local/lib/python3.9/dist-packages (from transformers) (2022.6.2)\n",
            "Requirement already satisfied: typing-extensions>=3.7.4.3 in /usr/local/lib/python3.9/dist-packages (from huggingface-hub<1.0,>=0.11.0->transformers) (4.5.0)\n",
            "Requirement already satisfied: chardet<5,>=3.0.2 in /usr/local/lib/python3.9/dist-packages (from requests->transformers) (4.0.0)\n",
            "Requirement already satisfied: idna<3,>=2.5 in /usr/local/lib/python3.9/dist-packages (from requests->transformers) (2.10)\n",
            "Requirement already satisfied: urllib3<1.27,>=1.21.1 in /usr/local/lib/python3.9/dist-packages (from requests->transformers) (1.26.14)\n",
            "Requirement already satisfied: certifi>=2017.4.17 in /usr/local/lib/python3.9/dist-packages (from requests->transformers) (2022.12.7)\n",
            "Installing collected packages: tokenizers, huggingface-hub, transformers\n",
            "Successfully installed huggingface-hub-0.13.2 tokenizers-0.13.2 transformers-4.26.1\n"
          ]
        }
      ]
    },
    {
      "cell_type": "code",
      "source": [
        "#Importing libraries\n",
        "import opendatasets as od\n",
        "from tensorflow.keras.models import Model, Sequential\n",
        "from tensorflow.keras.layers import Dense, Dropout, Flatten, Conv2D, MaxPooling2D,Input\n",
        "from tensorflow.keras.callbacks import EarlyStopping\n",
        "from tensorflow.python.ops.numpy_ops import np_utils\n",
        "from transformers import BertModel, TFBertModel \n",
        "import tensorflow as tf\n",
        "from tensorflow.keras.optimizers import Adam\n",
        "from transformers import BertTokenizer, BertForSequenceClassification, AdamW, TFBertModel\n",
        "from sklearn.metrics import roc_auc_score\n",
        "from torch.utils.data import DataLoader, RandomSampler, SequentialSampler\n",
        "\n",
        "from tensorflow.keras import regularizers\n",
        "from sklearn.metrics import classification_report\n",
        "from sklearn.metrics import confusion_matrix\n",
        "\n",
        "import pandas as pd\n",
        "from matplotlib import rcParams\n",
        "import seaborn as sns\n",
        "import numpy as np\n",
        "from PIL import Image\n",
        "from sklearn.model_selection import train_test_split\n",
        "from matplotlib import pyplot as plt\n",
        "from transformers import AutoTokenizer"
      ],
      "metadata": {
        "id": "OaxYb0_T8Wn4"
      },
      "execution_count": null,
      "outputs": []
    },
    {
      "cell_type": "code",
      "source": [
        "#loading the datasets\n",
        "fake_news=pd.read_csv(\"/Fake.csv\")\n",
        "true_news=pd.read_csv(\"/content/True.csv\")"
      ],
      "metadata": {
        "id": "bJU3ck0SIQqx"
      },
      "execution_count": null,
      "outputs": []
    },
    {
      "cell_type": "code",
      "source": [
        "#Exploring the datasets\n",
        "fake_news.head()"
      ],
      "metadata": {
        "colab": {
          "base_uri": "https://localhost:8080/",
          "height": 206
        },
        "id": "fhucg9DT1VDX",
        "outputId": "a9be23df-d443-4a0e-dd41-f5547f674810"
      },
      "execution_count": null,
      "outputs": [
        {
          "output_type": "execute_result",
          "data": {
            "text/plain": [
              "                                               title  \\\n",
              "0   Donald Trump Sends Out Embarrassing New Year’...   \n",
              "1   Drunk Bragging Trump Staffer Started Russian ...   \n",
              "2   Sheriff David Clarke Becomes An Internet Joke...   \n",
              "3   Trump Is So Obsessed He Even Has Obama’s Name...   \n",
              "4   Pope Francis Just Called Out Donald Trump Dur...   \n",
              "\n",
              "                                                text subject  \\\n",
              "0  Donald Trump just couldn t wish all Americans ...    News   \n",
              "1  House Intelligence Committee Chairman Devin Nu...    News   \n",
              "2  On Friday, it was revealed that former Milwauk...    News   \n",
              "3  On Christmas day, Donald Trump announced that ...    News   \n",
              "4  Pope Francis used his annual Christmas Day mes...    News   \n",
              "\n",
              "                date  \n",
              "0  December 31, 2017  \n",
              "1  December 31, 2017  \n",
              "2  December 30, 2017  \n",
              "3  December 29, 2017  \n",
              "4  December 25, 2017  "
            ],
            "text/html": [
              "\n",
              "  <div id=\"df-6c8846a3-3511-4f4b-a1d8-31c3a3c77f2a\">\n",
              "    <div class=\"colab-df-container\">\n",
              "      <div>\n",
              "<style scoped>\n",
              "    .dataframe tbody tr th:only-of-type {\n",
              "        vertical-align: middle;\n",
              "    }\n",
              "\n",
              "    .dataframe tbody tr th {\n",
              "        vertical-align: top;\n",
              "    }\n",
              "\n",
              "    .dataframe thead th {\n",
              "        text-align: right;\n",
              "    }\n",
              "</style>\n",
              "<table border=\"1\" class=\"dataframe\">\n",
              "  <thead>\n",
              "    <tr style=\"text-align: right;\">\n",
              "      <th></th>\n",
              "      <th>title</th>\n",
              "      <th>text</th>\n",
              "      <th>subject</th>\n",
              "      <th>date</th>\n",
              "    </tr>\n",
              "  </thead>\n",
              "  <tbody>\n",
              "    <tr>\n",
              "      <th>0</th>\n",
              "      <td>Donald Trump Sends Out Embarrassing New Year’...</td>\n",
              "      <td>Donald Trump just couldn t wish all Americans ...</td>\n",
              "      <td>News</td>\n",
              "      <td>December 31, 2017</td>\n",
              "    </tr>\n",
              "    <tr>\n",
              "      <th>1</th>\n",
              "      <td>Drunk Bragging Trump Staffer Started Russian ...</td>\n",
              "      <td>House Intelligence Committee Chairman Devin Nu...</td>\n",
              "      <td>News</td>\n",
              "      <td>December 31, 2017</td>\n",
              "    </tr>\n",
              "    <tr>\n",
              "      <th>2</th>\n",
              "      <td>Sheriff David Clarke Becomes An Internet Joke...</td>\n",
              "      <td>On Friday, it was revealed that former Milwauk...</td>\n",
              "      <td>News</td>\n",
              "      <td>December 30, 2017</td>\n",
              "    </tr>\n",
              "    <tr>\n",
              "      <th>3</th>\n",
              "      <td>Trump Is So Obsessed He Even Has Obama’s Name...</td>\n",
              "      <td>On Christmas day, Donald Trump announced that ...</td>\n",
              "      <td>News</td>\n",
              "      <td>December 29, 2017</td>\n",
              "    </tr>\n",
              "    <tr>\n",
              "      <th>4</th>\n",
              "      <td>Pope Francis Just Called Out Donald Trump Dur...</td>\n",
              "      <td>Pope Francis used his annual Christmas Day mes...</td>\n",
              "      <td>News</td>\n",
              "      <td>December 25, 2017</td>\n",
              "    </tr>\n",
              "  </tbody>\n",
              "</table>\n",
              "</div>\n",
              "      <button class=\"colab-df-convert\" onclick=\"convertToInteractive('df-6c8846a3-3511-4f4b-a1d8-31c3a3c77f2a')\"\n",
              "              title=\"Convert this dataframe to an interactive table.\"\n",
              "              style=\"display:none;\">\n",
              "        \n",
              "  <svg xmlns=\"http://www.w3.org/2000/svg\" height=\"24px\"viewBox=\"0 0 24 24\"\n",
              "       width=\"24px\">\n",
              "    <path d=\"M0 0h24v24H0V0z\" fill=\"none\"/>\n",
              "    <path d=\"M18.56 5.44l.94 2.06.94-2.06 2.06-.94-2.06-.94-.94-2.06-.94 2.06-2.06.94zm-11 1L8.5 8.5l.94-2.06 2.06-.94-2.06-.94L8.5 2.5l-.94 2.06-2.06.94zm10 10l.94 2.06.94-2.06 2.06-.94-2.06-.94-.94-2.06-.94 2.06-2.06.94z\"/><path d=\"M17.41 7.96l-1.37-1.37c-.4-.4-.92-.59-1.43-.59-.52 0-1.04.2-1.43.59L10.3 9.45l-7.72 7.72c-.78.78-.78 2.05 0 2.83L4 21.41c.39.39.9.59 1.41.59.51 0 1.02-.2 1.41-.59l7.78-7.78 2.81-2.81c.8-.78.8-2.07 0-2.86zM5.41 20L4 18.59l7.72-7.72 1.47 1.35L5.41 20z\"/>\n",
              "  </svg>\n",
              "      </button>\n",
              "      \n",
              "  <style>\n",
              "    .colab-df-container {\n",
              "      display:flex;\n",
              "      flex-wrap:wrap;\n",
              "      gap: 12px;\n",
              "    }\n",
              "\n",
              "    .colab-df-convert {\n",
              "      background-color: #E8F0FE;\n",
              "      border: none;\n",
              "      border-radius: 50%;\n",
              "      cursor: pointer;\n",
              "      display: none;\n",
              "      fill: #1967D2;\n",
              "      height: 32px;\n",
              "      padding: 0 0 0 0;\n",
              "      width: 32px;\n",
              "    }\n",
              "\n",
              "    .colab-df-convert:hover {\n",
              "      background-color: #E2EBFA;\n",
              "      box-shadow: 0px 1px 2px rgba(60, 64, 67, 0.3), 0px 1px 3px 1px rgba(60, 64, 67, 0.15);\n",
              "      fill: #174EA6;\n",
              "    }\n",
              "\n",
              "    [theme=dark] .colab-df-convert {\n",
              "      background-color: #3B4455;\n",
              "      fill: #D2E3FC;\n",
              "    }\n",
              "\n",
              "    [theme=dark] .colab-df-convert:hover {\n",
              "      background-color: #434B5C;\n",
              "      box-shadow: 0px 1px 3px 1px rgba(0, 0, 0, 0.15);\n",
              "      filter: drop-shadow(0px 1px 2px rgba(0, 0, 0, 0.3));\n",
              "      fill: #FFFFFF;\n",
              "    }\n",
              "  </style>\n",
              "\n",
              "      <script>\n",
              "        const buttonEl =\n",
              "          document.querySelector('#df-6c8846a3-3511-4f4b-a1d8-31c3a3c77f2a button.colab-df-convert');\n",
              "        buttonEl.style.display =\n",
              "          google.colab.kernel.accessAllowed ? 'block' : 'none';\n",
              "\n",
              "        async function convertToInteractive(key) {\n",
              "          const element = document.querySelector('#df-6c8846a3-3511-4f4b-a1d8-31c3a3c77f2a');\n",
              "          const dataTable =\n",
              "            await google.colab.kernel.invokeFunction('convertToInteractive',\n",
              "                                                     [key], {});\n",
              "          if (!dataTable) return;\n",
              "\n",
              "          const docLinkHtml = 'Like what you see? Visit the ' +\n",
              "            '<a target=\"_blank\" href=https://colab.research.google.com/notebooks/data_table.ipynb>data table notebook</a>'\n",
              "            + ' to learn more about interactive tables.';\n",
              "          element.innerHTML = '';\n",
              "          dataTable['output_type'] = 'display_data';\n",
              "          await google.colab.output.renderOutput(dataTable, element);\n",
              "          const docLink = document.createElement('div');\n",
              "          docLink.innerHTML = docLinkHtml;\n",
              "          element.appendChild(docLink);\n",
              "        }\n",
              "      </script>\n",
              "    </div>\n",
              "  </div>\n",
              "  "
            ]
          },
          "metadata": {},
          "execution_count": 51
        }
      ]
    },
    {
      "cell_type": "code",
      "source": [
        "#Exploring the datasets\n",
        "true_news.head()"
      ],
      "metadata": {
        "colab": {
          "base_uri": "https://localhost:8080/",
          "height": 206
        },
        "id": "KcSJxAah1gv2",
        "outputId": "0d13a388-7693-437e-933e-c153043b3037"
      },
      "execution_count": null,
      "outputs": [
        {
          "output_type": "execute_result",
          "data": {
            "text/plain": [
              "                                               title  \\\n",
              "0  As U.S. budget fight looms, Republicans flip t...   \n",
              "1  U.S. military to accept transgender recruits o...   \n",
              "2  Senior U.S. Republican senator: 'Let Mr. Muell...   \n",
              "3  FBI Russia probe helped by Australian diplomat...   \n",
              "4  Trump wants Postal Service to charge 'much mor...   \n",
              "\n",
              "                                                text       subject  \\\n",
              "0  WASHINGTON (Reuters) - The head of a conservat...  politicsNews   \n",
              "1  WASHINGTON (Reuters) - Transgender people will...  politicsNews   \n",
              "2  WASHINGTON (Reuters) - The special counsel inv...  politicsNews   \n",
              "3  WASHINGTON (Reuters) - Trump campaign adviser ...  politicsNews   \n",
              "4  SEATTLE/WASHINGTON (Reuters) - President Donal...  politicsNews   \n",
              "\n",
              "                 date  \n",
              "0  December 31, 2017   \n",
              "1  December 29, 2017   \n",
              "2  December 31, 2017   \n",
              "3  December 30, 2017   \n",
              "4  December 29, 2017   "
            ],
            "text/html": [
              "\n",
              "  <div id=\"df-a4a31862-7f5f-4e5b-b2e0-ca6969b774c0\">\n",
              "    <div class=\"colab-df-container\">\n",
              "      <div>\n",
              "<style scoped>\n",
              "    .dataframe tbody tr th:only-of-type {\n",
              "        vertical-align: middle;\n",
              "    }\n",
              "\n",
              "    .dataframe tbody tr th {\n",
              "        vertical-align: top;\n",
              "    }\n",
              "\n",
              "    .dataframe thead th {\n",
              "        text-align: right;\n",
              "    }\n",
              "</style>\n",
              "<table border=\"1\" class=\"dataframe\">\n",
              "  <thead>\n",
              "    <tr style=\"text-align: right;\">\n",
              "      <th></th>\n",
              "      <th>title</th>\n",
              "      <th>text</th>\n",
              "      <th>subject</th>\n",
              "      <th>date</th>\n",
              "    </tr>\n",
              "  </thead>\n",
              "  <tbody>\n",
              "    <tr>\n",
              "      <th>0</th>\n",
              "      <td>As U.S. budget fight looms, Republicans flip t...</td>\n",
              "      <td>WASHINGTON (Reuters) - The head of a conservat...</td>\n",
              "      <td>politicsNews</td>\n",
              "      <td>December 31, 2017</td>\n",
              "    </tr>\n",
              "    <tr>\n",
              "      <th>1</th>\n",
              "      <td>U.S. military to accept transgender recruits o...</td>\n",
              "      <td>WASHINGTON (Reuters) - Transgender people will...</td>\n",
              "      <td>politicsNews</td>\n",
              "      <td>December 29, 2017</td>\n",
              "    </tr>\n",
              "    <tr>\n",
              "      <th>2</th>\n",
              "      <td>Senior U.S. Republican senator: 'Let Mr. Muell...</td>\n",
              "      <td>WASHINGTON (Reuters) - The special counsel inv...</td>\n",
              "      <td>politicsNews</td>\n",
              "      <td>December 31, 2017</td>\n",
              "    </tr>\n",
              "    <tr>\n",
              "      <th>3</th>\n",
              "      <td>FBI Russia probe helped by Australian diplomat...</td>\n",
              "      <td>WASHINGTON (Reuters) - Trump campaign adviser ...</td>\n",
              "      <td>politicsNews</td>\n",
              "      <td>December 30, 2017</td>\n",
              "    </tr>\n",
              "    <tr>\n",
              "      <th>4</th>\n",
              "      <td>Trump wants Postal Service to charge 'much mor...</td>\n",
              "      <td>SEATTLE/WASHINGTON (Reuters) - President Donal...</td>\n",
              "      <td>politicsNews</td>\n",
              "      <td>December 29, 2017</td>\n",
              "    </tr>\n",
              "  </tbody>\n",
              "</table>\n",
              "</div>\n",
              "      <button class=\"colab-df-convert\" onclick=\"convertToInteractive('df-a4a31862-7f5f-4e5b-b2e0-ca6969b774c0')\"\n",
              "              title=\"Convert this dataframe to an interactive table.\"\n",
              "              style=\"display:none;\">\n",
              "        \n",
              "  <svg xmlns=\"http://www.w3.org/2000/svg\" height=\"24px\"viewBox=\"0 0 24 24\"\n",
              "       width=\"24px\">\n",
              "    <path d=\"M0 0h24v24H0V0z\" fill=\"none\"/>\n",
              "    <path d=\"M18.56 5.44l.94 2.06.94-2.06 2.06-.94-2.06-.94-.94-2.06-.94 2.06-2.06.94zm-11 1L8.5 8.5l.94-2.06 2.06-.94-2.06-.94L8.5 2.5l-.94 2.06-2.06.94zm10 10l.94 2.06.94-2.06 2.06-.94-2.06-.94-.94-2.06-.94 2.06-2.06.94z\"/><path d=\"M17.41 7.96l-1.37-1.37c-.4-.4-.92-.59-1.43-.59-.52 0-1.04.2-1.43.59L10.3 9.45l-7.72 7.72c-.78.78-.78 2.05 0 2.83L4 21.41c.39.39.9.59 1.41.59.51 0 1.02-.2 1.41-.59l7.78-7.78 2.81-2.81c.8-.78.8-2.07 0-2.86zM5.41 20L4 18.59l7.72-7.72 1.47 1.35L5.41 20z\"/>\n",
              "  </svg>\n",
              "      </button>\n",
              "      \n",
              "  <style>\n",
              "    .colab-df-container {\n",
              "      display:flex;\n",
              "      flex-wrap:wrap;\n",
              "      gap: 12px;\n",
              "    }\n",
              "\n",
              "    .colab-df-convert {\n",
              "      background-color: #E8F0FE;\n",
              "      border: none;\n",
              "      border-radius: 50%;\n",
              "      cursor: pointer;\n",
              "      display: none;\n",
              "      fill: #1967D2;\n",
              "      height: 32px;\n",
              "      padding: 0 0 0 0;\n",
              "      width: 32px;\n",
              "    }\n",
              "\n",
              "    .colab-df-convert:hover {\n",
              "      background-color: #E2EBFA;\n",
              "      box-shadow: 0px 1px 2px rgba(60, 64, 67, 0.3), 0px 1px 3px 1px rgba(60, 64, 67, 0.15);\n",
              "      fill: #174EA6;\n",
              "    }\n",
              "\n",
              "    [theme=dark] .colab-df-convert {\n",
              "      background-color: #3B4455;\n",
              "      fill: #D2E3FC;\n",
              "    }\n",
              "\n",
              "    [theme=dark] .colab-df-convert:hover {\n",
              "      background-color: #434B5C;\n",
              "      box-shadow: 0px 1px 3px 1px rgba(0, 0, 0, 0.15);\n",
              "      filter: drop-shadow(0px 1px 2px rgba(0, 0, 0, 0.3));\n",
              "      fill: #FFFFFF;\n",
              "    }\n",
              "  </style>\n",
              "\n",
              "      <script>\n",
              "        const buttonEl =\n",
              "          document.querySelector('#df-a4a31862-7f5f-4e5b-b2e0-ca6969b774c0 button.colab-df-convert');\n",
              "        buttonEl.style.display =\n",
              "          google.colab.kernel.accessAllowed ? 'block' : 'none';\n",
              "\n",
              "        async function convertToInteractive(key) {\n",
              "          const element = document.querySelector('#df-a4a31862-7f5f-4e5b-b2e0-ca6969b774c0');\n",
              "          const dataTable =\n",
              "            await google.colab.kernel.invokeFunction('convertToInteractive',\n",
              "                                                     [key], {});\n",
              "          if (!dataTable) return;\n",
              "\n",
              "          const docLinkHtml = 'Like what you see? Visit the ' +\n",
              "            '<a target=\"_blank\" href=https://colab.research.google.com/notebooks/data_table.ipynb>data table notebook</a>'\n",
              "            + ' to learn more about interactive tables.';\n",
              "          element.innerHTML = '';\n",
              "          dataTable['output_type'] = 'display_data';\n",
              "          await google.colab.output.renderOutput(dataTable, element);\n",
              "          const docLink = document.createElement('div');\n",
              "          docLink.innerHTML = docLinkHtml;\n",
              "          element.appendChild(docLink);\n",
              "        }\n",
              "      </script>\n",
              "    </div>\n",
              "  </div>\n",
              "  "
            ]
          },
          "metadata": {},
          "execution_count": 52
        }
      ]
    },
    {
      "cell_type": "code",
      "source": [
        "#Subject Vs frequency bar graph\n",
        "true_news['subject'].value_counts().plot(kind='barh')\n",
        "rcParams['figure.figsize'] = 7,10"
      ],
      "metadata": {
        "colab": {
          "base_uri": "https://localhost:8080/",
          "height": 594
        },
        "id": "0eLZrf9F1qi2",
        "outputId": "b68de132-4fc1-4a2e-8317-a81d1cbf0b7c"
      },
      "execution_count": null,
      "outputs": [
        {
          "output_type": "display_data",
          "data": {
            "text/plain": [
              "<Figure size 720x720 with 1 Axes>"
            ],
            "image/png": "iVBORw0KGgoAAAANSUhEUgAAAosAAAJBCAYAAAAumf/FAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/NK7nSAAAACXBIWXMAAAsTAAALEwEAmpwYAAAbS0lEQVR4nO3de5CdBX3/8c9mk00kwsCqQACFQYYEGiEYxmzEC0QNDORGRbyMgBXNVIsCmmFS0AlXa8Aol6QgsTM6MhRLBWOotzqk09aQNAal7AihBsQ4guhCNEllN9l9fn/wY2kKX0jjLoeE1+sv9jw553z3e2Ye3vOcc5K2pmmaAADAcxjR6gEAAHjpEosAAJTEIgAAJbEIAEBJLAIAUBrZ6gF2RwMDA9myZUtGjRqVtra2Vo8DAFBqmiZbt27N2LFjM2LEs68jisVhsGXLljzwwAOtHgMAYIcdfvjh2XPPPZ91u1gcBqNGjUry1NI7OjpaPM3LS3d3dyZOnNjqMV6W7L417L017L017H149PX15YEHHhjsl/9NLA6Dp9967ujoyOjRo1s8zcuPnbeO3beGvbeGvbeGvQ+f6qNzvuACAEBJLAIAUBKLAACUxCIAACWxCABASSwCAFASiwAAlMQiAAAlsQgAQEksAgBQEosAAJTEIgAAJbEIAEBJLAIAUBKLAACUxCIAACWxCABASSwCAFASiwAAlMQiAAAlsQgAQEksAgBQEosAAJTEIgAAJbEIAEBJLAIAUBKLAACUxCIAACWxCABASSwCAFASiwAAlMQiAAAlsQgAQEksAgBQEosAAJTEIgAAJbEIAEBJLAIAUBKLAACUxCIAACWxCABASSwCAFASiwAAlMQiAAAlsQgAQEksAgBQEosAAJTEIgAAJbEIAEBJLAIAUBKLAACUxCIAACWxCABASSwCAFASiwAAlMQiAAAlsQgAQEksAgBQEosAAJTEIgAAJbEIAEBJLAIAUBKLAACUxCIAACWxCABAqa1pmqbVQ+xuent7093dnYkTJ2b06NGtHgcAdnt9W/vTMaq91WPskl6oW0a2YKaXjY9c8c/ZuKW/1WMAwG5v+aLZrR5ht+VtaAAASmIRAICSWAQAoCQWAQAoiUUAAEpiEQCAklgEAKAkFgEAKIlFAABKYhEAgJJYBACgJBYBACiJRQAASmIRAICSWAQAoCQWAQAoiUUAAEpiEQCAklgEAKAkFgEAKIlFAABKYhEAgJJYBACgJBYBACiJRQAASmIRAICSWAQAoCQWAQAoiUUAAEpiEQCAklgEAKAkFgEAKIlFAABKYhEAgJJYBACgJBYBACiJRQAASmIRAICSWAQAoCQWAQAoiUUAAEpiEQCAklgEAKAkFgEAKIlFAABKYhEAgJJYBACgJBYBACiJRQAASmIRAICSWAQAoCQWAQAoiUUAAEpiEQCAklgEAKAkFgEAKIlFAABKYhEAgJJYBACgJBYBACiJRQAASmIRAIDSSzYW58+fn5tuuuk5j1133XVZuHDhizwRAMDLz0syFvv7+1s9AgAASUYO1QPdcsstWbduXRYsWJD//M//zHve857ceuutOeqoo3LxxRfniCOOyLhx4/LFL34x/f396ezszKWXXpqDDz44q1evzuWXX56JEyfmZz/7Wc4777ztHnvTpk256KKL8sADD+Q1r3lN9t9//7z61a9O8tRVxoceeiibNm3Khg0b8rrXvS7XXHNNXvGKV6Svry9f+tKXsmbNmvT19WX8+PG5+OKLkyTTpk3LypUr097enpNPPjlTpkwZnP1zn/tcbrnllnzjG9/IV7/61XR0dGRgYCBXX311Xv/61w/VygAAXvKG7Mri1KlTc9dddyVJ7rrrrhxzzDFZtWrV4M8TJkzIBRdckC984QtZvnx5ZsyYkXnz5g3e/+c//3lOP/30LFu2LCeccMJ2j71kyZKMHTs23/ve93LNNddkzZo12x3v7u7OokWL8t3vfjfbtm3L8uXLkyRf+cpXsueee+Yf//Ef8+1vfzv77rtvbrzxxowdOzaHHnpo7r333jz22GMZM2ZM1q5dOzhrV1dXkuTKK6/M1772tSxbtizf/OY3c8ABBwzVugAAdglDdmXx4IMPTm9vbx599NHcddddOf/883PDDTdk5syZ2bp1a3p6ejJhwoQcdthhSZJ3v/vdueSSS7J58+bB+x9zzDHP+dirV6/OZz7zmSRJZ2dn3vWud213/C1veUv22muvJMlRRx2VX/7yl0mSO++8M5s3b873v//9JElfX18mTJiQ5Km4XblyZQ444IBMmzYtq1evzqOPPpqVK1fmYx/7WJKkq6sr8+fPzwknnJDjjz8+r33ta4dqXQDAEHv6wg9Da8hiMXkqrlasWJGenp5MmTIll112Wf7lX/4lU6ZMecH77rHHHjv9vKNHjx787/b29vT29iZJmqbJggULMnXq1Oec9brrrsuBBx6Y0047LW1tbVmxYkXuu+++vPGNb0ySLF68OPfee29WrVqVM888MxdffHHe/va37/ScAMDwmTx5cqtH2CX19vamu7u7PD6kX3Dp6urK0qVLB68QvvGNb8zSpUszderUTJo0Kffff3/Wr1+fJLn99ttz5JFH5pWvfOUOPe5tt92WJHniiSfywx/+cIfmmTZtWr761a/mySefTJJs3rx58PknTZqUdevW5Sc/+UmOPvrovPnNb87SpUvzZ3/2Z+no6Mi2bduyYcOGHHXUUZk7d26OO+643Hffff/nnQAA7MqG/MriBRdcMHglr6urK9/4xjfS1dWVzs7OXHnllZk3b162bduWzs7OXHXVVTv0uB//+Mdz4YUX5qSTTsprXvOaHHvssTt0v7lz52bx4sWDVw7b2tpyzjnn5PWvf306Ojryhje8Ie3t7Rk1alTe8IY35Pe///3g5xUHBgYyf/78bNq0KW1tbRk3blw+/elP79xiAAB2UW1N0zStHmJ38/Tl3KuXPZKNW/w1QAAw3JYvmt3qEXZZT3fLxIkTt/to39Nekn/PIgAALw1iEQCAklgEAKAkFgEAKIlFAABKYhEAgJJYBACgJBYBACiJRQAASmIRAICSWAQAoCQWAQAoiUUAAEpiEQCAklgEAKAkFgEAKIlFAABKYhEAgJJYBACgJBYBACiJRQAASmIRAICSWAQAoCQWAQAoiUUAAEpiEQCAklgEAKAkFgEAKIlFAABKYhEAgJJYBACgJBYBACiJRQAASmIRAICSWAQAoCQWAQAoiUUAAEpiEQCAklgEAKAkFgEAKIlFAABKYhEAgJJYBACgJBYBACiJRQAASmIRAICSWAQAoCQWAQAoiUUAAEpiEQCAklgEAKAkFgEAKIlFAABKYhEAgJJYBACgJBYBACiJRQAASmIRAICSWAQAoCQWAQAoiUUAAEpiEQCAklgEAKA0stUD7M6+ctG7Mnr06FaPAQC7vb6t/ekY1d7qMXZLriyyW1m7dm2rR3jZsvvWsPfWsPfWeL69C8XhIxYBACiJRQAASmIRAICSWAQAoCQWAQAoiUUAAEpiEQCAklgEAKAkFgEAKIlFAABKYhEAgJJYBACgJBYBACiJRQAASmIRAICSWAQAoCQWAQAoiUUAAEpiEQCAklgEAKAkFgEAKIlFAABKYhEAgJJYBACgJBYBACiJRQAASmIRAICSWAQAoCQWAQAoiUUAAEpiEQCAklgEAKAkFgEAKIlFAABKYhEAgJJYBACgJBYBACiJRQAASmIRAICSWAQAoCQWAQAoiUUAAEpiEQCAklgEAKAkFgEAKIlFAABKYhEAgJJYBACgJBYBACiJRQAASmIRAICSWAQAoCQWAQAoiUUAAEpiEQCAklgEAKAkFgEAKIlFAABKYhEAgJJYBACgJBYBACiJRQAASmIRAICSWAQAoCQWAQAoiUUAAEpiEQCAklgEAKAkFgEAKIlFAABKYhEAgJJYBACgJBYBACiJRQAASmIRAICSWAQAoCQWAQAoiUUAAEpiEQCAklgEAKAkFgEAKIlFAABKYhEAgJJYBACgJBYBACiJRQAASmIRAICSWAQAoCQWAQAoiUUAAEpiEQCAklgEAKAkFgEAKIlFAABKYhEAgJJYBACgJBYBACiJRQAASmIRAICSWAQAoCQWAQAoiUUAAEpiEQCAklgEAKAkFgEAKIlFAABKYhEAgJJYBACgJBYBACiJRQAASmIRAICSWAQAoCQWAQAoiUUAAEpiEQCAklgEAKAkFgEAKIlFAABKYhEAgJJYBACgJBYBACiJRQAASmIRAICSWAQAoCQWAQAoiUUAAEpiEQCAklgEAKAkFgEAKIlFAABKYhEAgJJYBACgJBYBACi1NU3TtHqI3U1vb2+6u7szceLEjB49utXjAAC7oL6t/ekY1T7sz/NC3TJy2Cd4GfvIFf+cjVv6Wz0GALALWr5odqtHSOJtaAAAnodYBACgJBYBACiJRQAASmIRAICSWAQAoCQWAQAoiUUAAEpiEQCAklgEAKAkFgEAKIlFAABKYhEAgJJYBACgJBYBACiJRQAASmIRAICSWAQAoCQWAQAoiUUAAEpiEQCAklgEAKAkFgEAKIlFAABKYhEAgJJYBACgJBYBACiJRQAASmIRAICSWAQAoCQWAQAoiUUAAEpiEQCAklgEAKAkFgEAKIlFAABKYhEAgJJYBACgJBYBACiJRQAASmIRAICSWAQAoCQWAQAoiUUAAEpiEQCAklgEAKAkFgEAKIlFAABKYhEAgJJYBACgJBYBACiJRQAASmIRAICSWAQAoCQWAQAoiUUAAEpiEQCAklgEAKAkFgEAKIlFAABKYhEAgJJYBACgJBYBACgNSyyuXr06f/7nf54k+c1vfpMzzjhj8Nh1112Xvr6+wZ+vueaafOc739mp57nuuusyfvz43HPPPdvdtnDhwp2cHACA/2nYryzut99++frXvz748+LFi7N169bBn88999ycfPLJO/34Bx54YBYtWvQnzQgAwHN7wVgcP358rr322syePTsnnnhivv/97w8e+9d//dfMmTMnM2fOzFlnnZWHH374Wff/1a9+lSlTpiRJLrnkkiTJ+973vsyePTt/+MMfMn/+/Nx0001Jkr6+vixcuDAzZszIrFmz8ld/9VdJkrvvvjunnnpqZs+enVNOOSV33HHH4ONPnz49GzduzL/927895/w33nhjTjvttJx66qn5y7/8y/z2t79Nkrz1rW9NT09PkuSjH/1o5s6dmyTp6enJ2972tiTJD3/4w8ycOTOzZ8/OjBkzsnr16hdaFwDAbmXkjvyhESNGZNmyZXnwwQfz/ve/P8cee2yS5IILLshNN92Uww47LLfeemvmzZuXW2+9tXycBQsW5Oabb84tt9ySsWPHPuv4jTfemA0bNuS2225LR0dHHn/88STJ0qVLc/bZZ2fGjBlpmiabNm0avE9bW1s+9alP5Utf+lLe8pa3bPd4y5Yty4YNG/IP//APGTFiRG6++eZ8/vOfz6JFizJlypSsWrUq06dPz69+9au0tbVl69atueuuuwbj9tprr82ll16aY445Jv39/fnjH/+4I+sCABgSa9eubfUIOxaL73nPe5Ikhx56aI488sj89Kc/TVtbWyZMmJDDDjssSfLud787l1xySTZv3rzTw6xYsSLz589PR0dHkqSzszNJMmXKlFx//fX55S9/meOOOy5HH330dvc7/vjj8+Uvfznf/e53t7v9zjvvTHd3d0499dQkSX9/f175ylcmSaZOnZqVK1dmv/32y6RJk9I0Te65556sXLkyXV1dSZKurq78zd/8TaZPn563ve1tOfzww3f6dwMA+L+aPHnysD9Hb29vuru7y+M7FIut9qEPfSjTpk3LypUrc9lll+W4447L+eefv92f+fSnP52LLrooJ5100uBtTdPkYx/7WE477bRnPWZXV1eWLFmS/fffP11dXWmaJqtWrcqqVatyzjnnJEkuvPDCrFu3LqtWrcq5556bv/iLv8jpp58+vL8sAMBLyA59weWb3/xmkuQXv/hFfvazn2XSpEmZNGlS7r///qxfvz5Jcvvtt+fII48cvHJXGTt2bHn18YQTTsjXvva1wW9LP/029EMPPZTXve51ed/73pczzzwz995777Pue+yxx+aQQw7J8uXLB2+bNm1abr755vz+979P8tRnIu+///4kT30xpr29PbfffnumTp2aqVOn5rbbbsvIkSNzwAEHJEkefPDBjB8/PmeddVZmzZr1nM8LALA726Eri/39/ZkzZ07++Mc/5tJLL82rXvWqJMmVV16ZefPmZdu2bens7MxVV131go/14Q9/OGeeeWbGjBmz3bekk2Tu3LlZtGhR5syZk1GjRuXggw/Otddem69//etZvXp1Ro0alY6OjnzmM595zsc+//zzB99yTpI5c+Zk48aN+eAHP5jkqSuN73//+zNhwoQkT70VvXbt2uy7775JkjFjxgx+HjNJFi1alIcffjjt7e3Za6+9csUVV+zIugAAdhttTdM0z/cHxo8fn7vvvvs5v5DCc3v6vf+rlz2SjVv6Wz0OALALWr5o9ovyPE93y8SJEzN69OhnHfcvuAAAUHrBt6HXrVv3YswBAMBLkCuLAACUxCIAACWxCABASSwCAFASiwAAlMQiAAAlsQgAQEksAgBQEosAAJTEIgAAJbEIAEBJLAIAUBKLAACUxCIAACWxCABASSwCAFASiwAAlMQiAAAlsQgAQEksAgBQEosAAJTEIgAAJbEIAEBJLAIAUBKLAACUxCIAACWxCABASSwCAFASiwAAlMQiAAAlsQgAQEksAgBQEosAAJTEIgAAJbEIAEBJLAIAUBKLAACUxCIAACWxCABASSwCAFASiwAAlMQiAAAlsQgAQEksAgBQEosAAJTEIgAAJbEIAEBJLAIAUBKLAACUxCIAACWxCABASSwCAFASiwAAlMQiAAAlsQgAQEksAgBQEosAAJTEIgAAJbEIAEBJLAIAUBrZ6gF2Z1+56F0ZPXp0q8cAAHZBfVv70zGqvdVjuLLI7mXt2rWtHuFly+5bw95bw95b4+W295dCKCZiEQCA5yEWAQAoiUUAAEpiEQCAklgEAKAkFgEAKIlFAABKYhEAgJJYBACgJBYBACiJRQAASmIRAICSWAQAoCQWAQAoiUUAAEpiEQCAklgEAKAkFgEAKIlFAABKYhEAgJJYBACgJBYBACiJRQAASmIRAICSWAQAoCQWAQAoiUUAAEpiEQCAklgEAKAkFgEAKIlFAABKYhEAgJJYBACgJBYBACiJRQAASmIRAICSWAQAoCQWAQAoiUUAAEpiEQCAklgEAKAkFgEAKIlFAABKYhEAgJJYBACgJBYBACiJRQAASmIRAICSWAQAoCQWAQAoiUUAAEpiEQCAklgEAKAkFgEAKIlFAABKYhEAgJJYBACgJBYBACiJRQAASmIRAICSWAQAoCQWAQAoiUUAAEpiEQCAklgEAKA0stUD7I6apkmS9PX1tXiSl6fe3t5Wj/CyZfetYe+tYe+tYe9D7+leebpf/re2pjrCTtu0aVMeeOCBVo8BALDDDj/88Oy5557Pul0sDoOBgYFs2bIlo0aNSltbW6vHAQAoNU2TrVu3ZuzYsRkx4tmfUBSLAACUfMEFAICSWAQAoCQWAQAoiUUAAEpiEQCAklgEAKAkFgEAKInFIfbQQw/lve99b0488cS8973vzS9+8YtWj7TLeuKJJ/LRj340J554YmbOnJlzzjknjz/+eJLkpz/9aWbNmpUTTzwxH/7wh9PT0zN4v509xrMtXrw448ePH/wXiex9+PX29mbBggWZPn16Zs6cmc9+9rNJnv/csrPHeMaKFSsyZ86czJ49O7NmzcoPfvCDJPY+1BYuXJhp06Ztd15JhmfPXoMh1DCkzjjjjOZb3/pW0zRN861vfas544wzWjzRruuJJ55oVq1aNfjz5z//+eav//qvm/7+/uad73xns2bNmqZpmmbJkiXN/Pnzm6ZpdvoYz9bd3d2cffbZzQknnNCsW7fO3l8kl112WXPFFVc0AwMDTdM0zW9/+9umaZ7/3LKzx3jKwMBAc+yxxzbr1q1rmqZp7rvvvmbSpElNf3+/vQ+xNWvWNL/+9a8HzytPG449ew2GjlgcQr/73e+ayZMnN9u2bWuapmm2bdvWTJ48uenp6WnxZLuH733ve81ZZ53V3HPPPc0pp5wyeHtPT08zadKkpmmanT7G9np7e5vTTz+92bBhw+BJ3d6H3+bNm5vJkyc3mzdv3u725zu37OwxnjEwMNC86U1van784x83TdM0//Ef/9FMnz7d3ofR/4zF4diz12BojWz1lc3dySOPPJL99tsv7e3tSZL29vbsu+++eeSRR9LZ2dni6XZtAwMD+fu///tMmzYtjzzySA444IDBY52dnRkYGMjGjRt3+tjee+/9Yv46L3nXXHNNZs2alYMOOmjwNnsffhs2bMjee++dxYsXZ/Xq1Rk7dmzOPffcjBkzpjy3NE2zU8eck57R1taWq6++Oh//+Mezxx57ZMuWLbnxxhuf95xu70NnOPbsNRhaPrPILuGyyy7LHnvskQ9+8IOtHmW395Of/CTd3d35wAc+0OpRXnb6+/uzYcOGHHnkkbntttsyb968fOITn8h///d/t3q03dq2bdvy5S9/OX/7t3+bFStW5Prrr895551n7/D/ubI4hMaNG5ff/OY36e/vT3t7e/r7+/PYY49l3LhxrR5tl7Zw4cI8/PDDueGGGzJixIiMGzcuv/71rwePP/744xkxYkT23nvvnT7GM9asWZP169fnHe94R5Lk0Ucfzdlnn50zzjjD3ofZuHHjMnLkyMyYMSNJcvTRR2efffbJmDFjynNL0zQ7dYxn3HfffXnssccyefLkJMnkyZPzile8IqNHj7b3F8Hz/b9zZ/fsNRhariwOoVe96lU54ogjcscddyRJ7rjjjhxxxBEuef8JvvjFL6a7uztLlixJR0dHkmTixIl58skn8+Mf/zhJcsstt+Skk076k47xjLlz5+bf//3fc+edd+bOO+/M/vvvn7/7u7/LRz7yEXsfZp2dnZkyZUp+9KMfJXnq25w9PT055JBDynPL8513nJN2zP77759HH300Dz74YJJk/fr16enpycEHH2zvL4Kd3aXX4MXT1jRN0+ohdifr16/P/Pnz84c//CF77bVXFi5cmEMPPbTVY+2S/uu//iszZszIIYcckjFjxiRJDjrooCxZsiR33313FixYkN7e3hx44IG56qqr8upXvzpJdvoYz23atGm54YYbcvjhh9v7i2DDhg258MILs3HjxowcOTLnnXde3v72tz/vuWVnj/GMb3/721m6dGna2tqSJJ/85Cfzzne+096H2OWXX54f/OAH+d3vfpd99tkne++9d/7pn/5pWPbsNRg6YhEAgJK3oQEAKIlFAABKYhEAgJJYBACgJBYBACiJRQAASmIRAICSWAQAoPT/AFGw15VeE1eUAAAAAElFTkSuQmCC\n"
          },
          "metadata": {}
        }
      ]
    },
    {
      "cell_type": "code",
      "source": [
        "#Subject Vs frequency bar graph\n",
        "fake_news['subject'].value_counts().plot(kind='barh')\n",
        "rcParams['figure.figsize'] = 10,7"
      ],
      "metadata": {
        "colab": {
          "base_uri": "https://localhost:8080/",
          "height": 594
        },
        "id": "POwJJJTV14r0",
        "outputId": "c8818dd5-cf98-4fa1-d37c-9c7b40dcdb6a"
      },
      "execution_count": null,
      "outputs": [
        {
          "output_type": "display_data",
          "data": {
            "text/plain": [
              "<Figure size 504x720 with 1 Axes>"
            ],
            "image/png": "iVBORw0KGgoAAAANSUhEUgAAAgQAAAJBCAYAAAA5l61JAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/NK7nSAAAACXBIWXMAAAsTAAALEwEAmpwYAAAnhUlEQVR4nO3de5zWdZ3//+dwGgokxTzgWTNBRCEnTpqZlCLCAKIIbYqK5K5YiOXNFN2vGtpmSnmGpHYrlTADnEDdDjcPaRzKYTNYFQ1QoZU0EJEhmGG4fn/4YzZWBMQZL5m53//J+Xyu6/q8Pm+7vB7z+VxiSaFQKAQAaNKaFXsAAKD4BAEAIAgAAEEAAEQQAABJWhR7ABrGpk2bUlVVlZYtW6akpKTY4wDwIVAoFFJTU5M2bdqkWbMtrwkIgkaqqqoqL7zwQrHHAOBD6Igjjshuu+22xTZB0Ei1bNkyydt/01u1alXkaXZtCxcuTJcuXYo9xi7POtYfa1k/muI6VldX54UXXqj7jPhHgqCR2nyboFWrViktLS3yNLs+a1g/rGP9sZb1o6mu49ZuJftSIQAgCAAAQQAARBAAABEEAEAEAQAQQQAARBAAABEEAEAEAQAQQQAARBAAABEEAEAEAQAQQQAARBAAABEEAEAEAQAQQQAARBDQgKpraos9AgA7qEWxB6Bhjbrh11ldVZwP5pkTBhXluAC8d64QAACCAAAQBABABAEAEEEAAEQQAAARBABABAEAEEEAAEQQAAARBABABAEAEEEAAEQQAAARBABABAEAEEEAAGQXDoI+ffrkM5/5TGpra+u2TZ8+PR07dsy9996bn/70p/nRj3601edOnz49Y8aM2e6+bT3ug3T77benurq62GMA0IjtskGQJHvvvXeeeuqpup9nzJiRo446KknyxS9+Meedd16RJqtfd9xxR2pqaoo9BgCNWItiD/B+nH766Zk+fXpOPPHELFu2LOvWrcsRRxyR5O3fqtetW5dvfOMbqa6uzvXXX5+5c+dmjz32yJFHHln3Gtva93/NmDEjU6ZMSW1tbdq2bZtrr702hx122FYfe/fdd+dXv/pVamtrs88++2T8+PHZa6+9MmfOnNxyyy3ZsGFDamtr8y//8i/p379/krc/+GfNmpXS0tKUlJTkJz/5Sb73ve8lSYYPH55mzZrlnnvuSbt27eprCQEgyS4eBD169MiUKVPy5ptvZsaMGRk8eHD++7//+x2Pu//++7N8+fI89NBD2bhxY770pS/lgAMO2O6+f/T000/nkUceyX333ZdWrVrliSeeyLhx4zJ16tR3PLaioiLLli3Lz372szRr1ixTpkzJt7/97UyYMCGdO3fOlClT0rx58/ztb3/LkCFD8pnPfCaFQiE/+tGP8tRTT6V169ZZu3ZtWrdunWuuuSZTpkzJ1KlT06ZNm/pfRADILh4EJSUl6devXx566KE89NBDmTp16laDYN68eRk8eHBatmyZli1bZuDAgZk/f/529/2jRx99NM8//3yGDh2aJCkUClmzZs1W53r00UezcOHCnH766UlSd0UhSVatWpVx48bl5ZdfTvPmzfPmm29m6dKlOfroo3PQQQfl8ssvz2c+85l87nOfq3vOrqyysrLYI9SLxnIexWYd64+1rB/W8X/t0kGQvH3bYOjQoenevXv22GOPBjtOoVDIGWeckUsuueQd+y6++OIsX748SXLfffelUCjkoosuyplnnvmOx1577bXp06dP7rjjjpSUlKRv377ZsGFDmjdvnp/97GeZP39+5s6dmyFDhuQHP/hBOnXq1GDn9EEoKysr9gjvW2VlZaM4j2KzjvXHWtaPpriOGzZsyMKFC7e6b5f+UmGSHHjggbn00kszevTod31Mr169UlFRkY0bN2b9+vWZNWvWDu37R3369ElFRUVWrFiR5O3f+jcv6p133pmKiopUVFSkbdu26dOnT92tjOTt7yk8//zzSZK33nor+++/f0pKSvK73/0uL7/8cpJk7dq1WbVqVXr06JExY8bkiCOOyIsvvpgkadOmTdauXfs+VwoA3t0uf4UgSYYNG7bN/WeddVYWLVqU0047LXvssUeOPvrorFy5crv7/lH37t0zduzYXHTRRamtrU1NTU1OPfXUdOnS5R2PHTx4cFavXp2zzz47ydtXF774xS+mU6dO+frXv57rrrsut99+e44++uh07NgxydtB8NWvfjXr169PoVBI586dc8oppyRJRo4cmREjRqR169a+VAhAgygpFAqFYg9B/dt8WeiWilezuqp2+09oADMnDCrKcetbU7ys2BCsY/2xlvWjKa7j5s+GLl26pLS0dIt9u/wtAwDg/RMEAIAgAAAEAQAQQQAARBAAABEEAEAEAQAQQQAARBAAABEEAEAEAQAQQQAARBAAABEEAEAEAQAQQQAARBAAAElaFHsAGtYPrjo5paWlRTl2dU1tWrVsXpRjA/DeuEJAgxEDALsOQQAACAIAQBAAABEEAEAEAQAQQQAARBAAABEEAEAEAQAQQQAARBAAABEEAEAEAQAQQQAARBAAABEEAEAEAQAQQQAARBAAABEEAEAEAQAQQQAARBAAABEEAEAEAQAQQQAARBAAABEEAEAEAQAQQQAARBAAABEEAEAEAQAQQQAARBAAABEEAEAEAQAQQQAARBAAABEEAEAEAQAQQQAARBAAABEENKDqmtpijwDADmpR7AFoWKNu+HVWVxXng3nmhEFFOS4A750rBACAIAAABAEAEEEAAEQQAAARBABABAEAEEEAAEQQAAARBABABAEAEEEAAEQQAAARBABABAEAEEEAAEQQAAARBABAmmAQdOzYMVVVVVts69mzZ5YvX54kmTt3boYOHZpBgwalX79+GTFiRDZt2vSurzdv3rx07Ngxd9999xbbhgwZ0jAnAAANoEWxB/gw2bhxY8aMGZOf/OQn6dSpU5Lk2WefTUlJyTaft9dee+XHP/5xhg8fnnbt2n0QowJAvWpyVwi2paqqKuvWrcvHP/7xum2dO3febhDsvffeOfXUUzN58uSt7n/iiScyfPjwDBkyJMOGDcsf//jHJMnXvva1PPLII0mSyZMnp6ysLLW1tUmS0047LUuXLs2SJUsybNiwDBw4MAMGDMgPf/jDejhTANiSKwT/4GMf+1jOOuusnHLKKenRo0eOPfbYlJeXp0OHDtt97kUXXZTy8vKcc845W2x/5ZVXctddd+WHP/xh2rZtmxdffDFf/vKX8/jjj6d3796ZM2dO+vXrl7lz5+aTn/xkFixYkP322y/r1q3LoYcemuuvvz59+vTJP//zPydJ3nzzzQY594ZSWVlZ7BHqRWM5j2KzjvXHWtYP6/i/BMH/b/NVgP/3//5fzj///MydOze//e1v8/3vfz/Tpk3LIYccss3nf/zjH89ZZ52Vu+66K/369avb/uSTT+aVV17Jl770pbptGzduzN/+9rf06tUrd999d6qrq7NixYpccMEFmT17dvbbb7/07NkzSdK9e/fcdNNN+fvf/56ePXumV69e9X/yDaisrKzYI7xvlZWVjeI8is061h9rWT+a4jpu2LAhCxcu3Oq+JhcE7du3z+rVq9OmTZskb384r127Nu3bt697zIEHHpgDDzwwQ4cOzahRo/LYY4/l/PPP3+5rjxo1Kv369ctRRx21xfYTTjgh3/nOd7b6nE2bNuWhhx5Kt27d0rt371x++eXZf//907t37yRJ3759061bt/zud7/L5MmTM23atNx88807e/oAsFVN7jsExx13XO6///66n++///507do1H/nIR1JVVZWnnnoqhUIhSbJmzZosX748BxxwwA699m677Zbzzz8/EydOrNt2/PHH58knn8yLL75Yt+1Pf/pT3V/36tUrt99+e4477rh06NAhq1evzlNPPVUXBC+//HL22muvDBkyJBdffHEWLFjwvs4fALamyV0huOqqq3LDDTekvLw8zZo1S4cOHep+ey8UCrnvvvsyfvz4lJaWpra2NuXl5Tn55JN3+PXPPvvs/OQnP6n7+ZBDDslNN92Uq666KuvXr09NTU2OPfbYHHPMMUmS3r17Z9q0aXW3AsrKyjJnzpzss88+SZJHHnkkM2fOTMuWLVNSUpJx48bV11IAQJ2SwuZfh2lUNt8nuqXi1ayuqi3KDDMnDCrKcetbU7zP2BCsY/2xlvWjKa7j5s+GLl26pLS0dIt9Te6WAQDwTk3ulsHOGjJkSN2fEbBZ165d881vfrNIEwFA/REEO2j69OnFHgEAGoxbBgCAIAAABAEAEEEAAEQQAAARBABABAEAEEEAAEQQAAARBABABAEAEEEAAEQQAADxXzts9H5w1ckpLS0tyrGra2rTqmXzohwbgPfGFQIajBgA2HUIAgBAEAAAggAAiCAAACIIAIAIAgAgggAAiCAAACIIAIAIAgAgggAAiCAAACIIAIAIAgAgggAAiCAAACIIAIAIAgAgggAAiCAAACIIAIAIAgAgggAAiCAAACIIAIAIAgAgggAAiCAAACIIAIAIAgAgggAAiCAAACIIAIAIAgAgggAAiCAAACIIAIAIAgAgggAAiCAAACIIAIAIAgAgggAAiCAAACIIaOSqa2qLPQLALqFFsQegYY264ddZXdV0PxRnThhU7BEAdgmuEAAAggAAEAQAQAQBABBBAABEEAAAEQQAQAQBABBBAABEEAAAEQQAQAQBABBBAABEEAAAEQQAQAQBABBBAABkB4KgpqYmt99+e/r27Zv+/ftn4MCBGTNmTP785z9/EPMV3XPPPZeHH374XfdPnz49HTt23OIx06dPz5gxYz6I8QCgXrTY3gOuvPLKrF+/Pg888EDatWuXQqGQJ554IkuXLs3hhx/e4APW1tamefPmDX6cd/Pcc8/l8ccfz2mnnfauj9l///1z66235pRTTkmLFttdUgD40NnmFYKXXnopv/nNb3LDDTekXbt2SZKSkpJ87nOfy8knn5wkqaqqypVXXpkBAwZkwIABmTx5cpLk6aefzuDBg7d4vSFDhuT3v/99kmTGjBkZOnRohgwZkhEjRmTJkiVJ3v7t+rzzzsvFF1+cAQMG5IUXXkjHjh0zadKknHHGGfn85z+fX/7yl3Wv2bFjx0ycOLFu35w5czJhwoQMHjw4AwYMyOLFi+seu61jjhw5MmPHjk3//v0zfPjwvP7663njjTdy2223Zfbs2Rk0aFCuv/76ra5Tly5dcuihh+bnP//5Vve/23GHDRuWP/3pT0mSa6+9Nv3790+SbNy4MT179sy6desyf/78nH766Rk0aFD69++fWbNmbetvGQDslG3+Ovvss8/m4IMPzsc+9rF3fcxdd92VTZs2ZebMmamqqsqwYcNyxBFH5MQTT8y6devy/PPPp1OnTlm0aFHWrFmT7t275+mnn84jjzyS++67L61atcoTTzyRcePGZerUqUmSZ555JhUVFTnooIPqjtO2bdtMmzYtlZWVGTt2bPr27Vu3r127dpk2bVoeeeSRjB49Ot/97nfz9a9/PZMnT87EiRNz8803b/eYCxYsyC9+8Yt06NAhV199de69995ceumlGTNmTB5//PHcdttt21zISy+9NBdeeOE7Imhbx+3Vq1fmzp2bY445JpWVlSktLc1rr72Wv/zlL/nEJz6Rj370o5k8eXIuuOCCDBgwIIVCIW+99dY25+CdKisrPxSvgXWsT9ayfljH//Werm//+c9/zte//vWsX78+J5xwQq6++urMmTMn48aNS0lJSdq2bZv+/ftnzpw5OfHEEzN48ODMmDEjV155ZWbMmJHBgwenpKQkjz76aJ5//vkMHTo0SVIoFLJmzZq64xx77LFbxECSukv23bp1y2uvvZYNGzaktLQ0SdKvX78kyVFHHZUkOemkk5K8/Zv7r3/96yTZoWN26NAhSdK1a9fMnj37vSxNOnbsmO7du+eee+7JnnvuWbd9W8ft3bt3Jk2alPLy8uy+++7p0aNH5syZk+XLl6dXr15Jkp49e2bixIl55ZVXcvzxx6dr167vaS6SsrKy9/X8ysrK9/0aWMf6ZC3rR1Ncxw0bNmThwoVb3bfNIOjcuXNefvnlrFmzJu3atcvhhx+eioqK3Hvvve/6gv9o8ODBOeuss/K1r30ts2bNyv3335/k7Q/FM844I5dccslWn9emTZt3bNv84b/5+wQbN26s27b5f5s1a5ZWrVrVPadZs2bZuHHjDh1z82tsPkZtbe12z+//uuSSSzJ8+PBceOGFddu2ddxjjz02zz77bB5//PH07t07PXr0yLRp07J8+fK6LyWed9556dOnT2bPnp3x48fn+OOPz6WXXvqeZwOAbdnmdwgOOeSQfP7zn8/VV1+9xaXqdevW1f117969M23atBQKhaxduzYPP/xwjjvuuCTJfvvtl8MPPzzXX399Dj/88Oy///5Jkj59+qSioiIrVqxI8vYXB3ckMN6PnT1m27Ztd/gy/YEHHpi+ffvmxz/+8Q4dt1WrVuncuXMmT56c4447Ll27ds38+fOzaNGiuisBS5cuzUEHHZThw4dnxIgRWbBgwXs6bwDYEdu9ZfBv//Zvueuuu3LmmWemRYsWadeuXfbee++634JHjx6d8ePHp7y8PEkycODAfPazn617/umnn57LL7883/nOd+q2de/ePWPHjs1FF12U2tra1NTU5NRTT02XLl3q+/ze9zF79+6df//3f8/AgQPTo0ePXH311dt8/OjRozNjxowdPm7v3r2zYMGCHH300WnevHkOOuigHHDAAXVXOu65557MmzcvLVu2TKtWrbZ7fADYGSWFQqFQ7CGof5vvE91S8WpWV7332x+NxcwJg973azTF+4wNwTrWH2tZP5riOm7+bOjSpcsWt8oTf1IhABBBAABEEAAAEQQAQAQBABBBAABEEAAAEQQAQAQBABBBAABEEAAAEQQAQAQBABBBAABEEAAAEQQAQAQBAJCkRbEHoGH94KqTU1paWuwxiqa6pjatWjYv9hgAH3quENCoiQGAHSMIAABBAAAIAgAgggAAiCAAACIIAIAIAgAgggAAiCAAACIIAIAIAgAgggAAiCAAACIIAIAIAgAgggAAiCAAACIIAIAIAgAgggAAiCAAACIIAIAIAgAgggAAiCAAACIIAIAIAgAgggAAiCAAACIIAIAIAgAgggAAiCAAACIIAIAIAgAgggAAiCAAACIIAIAIAgAgggAAiCAAACIIAIAIAgAgggC2q6ysrNgjNAr1uY7VNbX19lrA21oUewAa1qgbfp3VVf7hSeMyc8KgYo8AjY4rBACAIAAABAEAEEEAAEQQAAARBABABAEAEEEAAEQQAAARBABABAEAEEEAAEQQAAARBABABAEAEEEAAEQQAABpgkHQsWPHVFVVbfdxv/nNb9KvX78MHjw4S5Ysyf333/8BTAcAxdHkgmBHTZ06NWPGjMmDDz6Y119/XRAA0Ki1KPYAxbRkyZJ861vfyhtvvJGampqce+65OeOMM/Ktb30rlZWVWbp0aaZMmZJVq1Zl+fLlGTRoUA4++ODcdttt73itPn36ZNCgQZk9e3Zef/31jBw5MmefffY2jzN16tQsWrQo11xzTf70pz9l6NCheeCBB3LMMcfk2muvzZFHHpmBAwfmG9/4Rv785z+nRYsWOfTQQ3Prrbd+0EsFQCPXZINg48aNueyyy3LTTTflE5/4RNauXZszzjgj3bp1y7hx4/Lcc89l5MiROemkkzJv3rzceOONmT59+jZfc/369bn//vuzfPnylJeX5/TTT09paem7Hqd379750Y9+lCSZM2dOPvWpT2Xu3Lk55phjMmfOnIwcOTJPPfVUqqqq8vDDDydJ3nzzzYZeGgCaoCYbBC+99FIWL16cr33ta3XbampqsmTJknziE5/Yqdc87bTTkiQHHHBA2rVrlxUrVqRQKLzrcU4++eRs2LAhK1asyJw5c3LppZdm0qRJKS8vT01NTQ466KCUlJRk8eLFue6669KjR4987nOfe1/nDY1FZWVlsUcoqqZ+/vXFOv6vJhsEhUIhe+yxRyoqKt7zc5988sncfPPNSZLy8vKMGjUqSVJaWlr3mObNm6e2tjYlJSXbPE6vXr3y2GOPZeXKlenZs2fGjx+fxx9/PD179kySHHjggZk1a1bmzp2b3/72t/ne976XmTNnbnEsaIrKysqKPULRVFZWNunzry9NcR03bNiQhQsXbnVfk/1S4aGHHprWrVvnwQcfrNu2ePHirF279h2Pbdu27RbbTzjhhFRUVKSioqIuBnb2OL169crkyZPzqU99Kkly7LHHZvLkyendu3eSZMWKFWnevHm+8IUv5Morr8yqVauyevXqnTxrANi6JhsELVq0yKRJk/Lwww+nvLw8/fv3z3XXXZfq6up3PLZjx4459NBDM2DAgIwZM6Zej9OrV6/85S9/qQuAzT/36tUrSbJo0aIMGzYsAwcOzNChQ3PhhRdmn332eZ9nDwBbKikUCoViD0H923xZ6JaKV7O6qrbY40C9mjlhULFHKKqmeKm7ITTFddz82dClS5d33HpuslcIAID/JQgAAEEAAAgCACCCAACIIAAAIggAgAgCACCCAACIIAAAIggAgAgCACCCAACIIAAAIggAgAgCACCCAABI0qLYA9CwfnDVySktLS32GFCvqmtq06pl82KPAY2KKwSwHZWVlcUeoVGoz3UUA1D/BAEAIAgAAEEAAEQQAAARBABABAEAEEEAAEQQAAARBABABAEAEEEAAEQQAAARBABABAEAEEEAAEQQAAARBABABAEAEEEAAEQQAAARBABABAEAEEEAAEQQAAARBABABAEAEEEAAEQQAAARBABABAEAEEEAAEQQAAARBABABAEAEEEAAEQQAAARBABABAEAEEEAAEQQAAARBABABAEAEEEAAEQQAAARBLBdZWVlxR6hUbCO9efDspbVNbXFHoF61KLYA9CwRt3w66yu8qYF6t/MCYOKPQL1yBUCAEAQAACCAACIIAAAIggAgAgCACCCAACIIAAAIggAgAgCACCCAACIIAAAIggAgAgCACCCAACIIAAAIggAgAiCejdv3rwMGTIkSfLXv/4155xzTt2+22+/PdXV1XU/33rrrXn44Yc/8BkB4P8SBA1on332yT333FP38x133JGampq6ny+55JKcdtppxRgNALYgCLahY8eOue222zJo0KD07ds3v/zlL+v2/fa3v83gwYNTXl6ec889Ny+//PI7nr98+fL07NkzSXLdddclSYYPH55BgwZlzZo1ueKKK3LvvfcmSaqrq3PjjTdmwIABGThwYC6++OIkyfz583P66adn0KBB6d+/f2bNmtXQpw1AE9Si2AN82DVr1iwVFRVZsmRJvvjFL+bTn/50kuTyyy/Pvffem8MPPzwPPPBALrvssjzwwAPv+jrXXHNNpkyZkqlTp6ZNmzbv2H/33Xdn2bJlmT59elq1apVVq1YlSSZPnpwLLrggAwYMSKFQyFtvvdUwJwqwEyorK4s9wvuyq89fnwTBdgwdOjRJcthhh6Vz58754x//mJKSknTq1CmHH354kuSMM87Iddddl7Vr1+70cR577LFcccUVadWqVZKkffv2SZKePXtm4sSJeeWVV3L88cena9eu7/OMAOpPWVlZsUfYaZWVlbv0/Dtjw4YNWbhw4Vb3uWXwIXfeeedl4sSJad++fcaPH5/vfe97xR4JgEZIEGzHtGnTkiQvvfRSnn322XTr1i3dunXL888/n8WLFydJZsyYkc6dO6dt27bbfK02bdq861WEk046KT/+8Y/r/i2EzbcMli5dmoMOOijDhw/PiBEjsmDBgvo6NQCo45bBdtTW1mbw4MH5+9//nm9+85vZc889kyTf+c53ctlll2Xjxo1p3759brrppu2+1siRIzNixIi0bt16i3/7IEkuvPDCTJgwIYMHD07Lli1z8MEH57bbbss999yTefPmpWXLlmnVqlWuvvrqBjlPAJq2kkKhUCj2EB9WHTt2zPz587f6JcAPu833iW6peDWrq2qLPQ7QCM2cMKjYI7wvTfk7BF26dElpaekW+9wyAADcMtiWRYsWFXsEAPhAuEIAAAgCAEAQAAARBABABAEAEEEAAEQQAAARBABABAEAEEEAAEQQAAARBABABAEAEEEAAEQQAABJWhR7ABrWD646OaWlpcUeA2iEqmtq06pl82KPQT1xhQC2o7KystgjNArWsf58WNZSDDQuggAAEAQAgCAAACIIAIAIAgAgggAAiCAAACIIAIAIAgAgggAAiCAAACIIAIAIAgAgggAAiCAAACIIAIAIAgAgggAAiCAAACIIAIAIAgAgggAAiCAAACIIAIAIAgAgggAAiCAAACIIAIAIAgAgggAAiCAAACIIAIAIAgAgggAAiCAAACIIAIAIAgAgggAAiCAAACIIAIAIAgAgggAAiCAAACIIYLvKysqKPUKjYB3rj7WsH7vSOlbX1Db4MVo0+BEoqlE3/Dqrqxr+/0gANJyZEwY1+DFcIQAABAEAIAgAgAgCACCCAACIIAAAIggAgAgCACCCAACIIAAAIggAgAgCACCCAACIIAAAIggAgAgCACCCAACIIAAAIgjqRZ8+fTJgwIBs2rRpi20vvPBCEacCgB0nCOrJunXrUlFRUewxAGCnCIJ68pWvfCV33HFHqqurt9j+2muvZcyYMTnzzDNTXl6eSZMmJUmefPLJXHjhhUmSlStXplOnTnnkkUeSJJMnT853v/vdbNq0Kddee21OPfXUDBw4MMOHD/9gTwqAJqNFsQdoLLp06ZKjjjoqP/3pT3PuuefWbf/GN76R0aNHp3v37qmurs55552Xo48+Op/+9Kdz2WWXpaamJnPmzEm3bt0yZ86c9OvXL3Pnzs2oUaPy/PPPZ968eXn44YfTrFmzvPnmm0U8QwCKqbKyskFfXxDUo7Fjx2bEiBE588wzkySbNm3K73//+6xataruMVVVVVm8eHGOP/74fPKTn8wzzzyT2bNnZ/To0bnppptSXV2dBQsW5Nhjj011dXU2btyYq666Kj179sxJJ51UrFMDoMjKysre92ts2LAhCxcu3Oo+QVCPDjvssJx44on5j//4jyRJSUlJSkpK8vOf/zwtW7Z8x+N79eqVuXPn5plnnsm1116bPffcMw899FA6deqU0tLSlJaW5qGHHsq8efMye/bs3HzzzZkxY0b22muvD/rUAGjkfIegnn31q1/NlClTUlVVlZKSkpSVleXuu++u2//qq6/m9ddfT/J2EEyfPj377rtvWrVqld69e+f2229P7969kySrVq3K3//+95xwwgm57LLLsttuu2XZsmVFOS8AGjdBUM/23XffDBo0KKtXr06S3HzzzVm8eHHKy8tTXl6eSy+9NGvWrEmSdO3aNW+88UZdAPTu3Tt/+ctf0qtXryRvx8P555+fgQMHZuDAgfnsZz+bbt26FeO0AGjkSgqFQqHYQ1D/Nt8nuqXi1ayuqi32OAC8DzMnDKqX19n82dClS5eUlpZusc8VAgBAEAAAggAAiCAAACIIAIAIAgAgggAAiCAAACIIAIAIAgAgggAAiCAAACIIAIAIAgAgggAAiCAAACIIAIAkLYo9AA3rB1ednNLS0mKPAcD7UF1Tm1YtmzfoMVwhgO2orKws9giNgnWsP9ayfuxK69jQMZAIAgAgggAAiCAAACIIAIAIAgAgggAAiCAAACIIAIAIAgAgggAAiCAAACIIAIAIAgAgggAAiCAAACIIAIAIAgAgggAAiCAAAJK0KPYANIxCoZAkqa6uLvIkjcOGDRuKPUKjYB3rj7WsH01tHTd/Jmz+jPhHJYWtbWWX99Zbb+WFF14o9hgAfAgdccQR2W233bbYJggaqU2bNqWqqiotW7ZMSUlJsccB4EOgUCikpqYmbdq0SbNmW35rQBAAAL5UCAAIAgAgggAAiCAAACIIAIAIAgAgggAAiCBolJYuXZphw4alb9++GTZsWF566aVij/Sh8cYbb+TLX/5y+vbtm/Ly8nzlK1/JqlWrkiR//OMfM3DgwPTt2zcjR47MypUr6563s/uagjvuuCMdO3as+5MxreN7s2HDhlxzzTU55ZRTUl5enn/9139Nsu338c7ua+wee+yxDB48OIMGDcrAgQPzq1/9Kom13GEFGp1zzjmn8OCDDxYKhULhwQcfLJxzzjlFnujD44033ijMnTu37udvf/vbhSuvvLJQW1tb+MIXvlD4wx/+UCgUCoU777yzcMUVVxQKhcJO72sKFi5cWLjgggsKJ510UmHRokXWcSeMHz++cMMNNxQ2bdpUKBQKhddff71QKGz7fbyz+xqzTZs2FT796U8XFi1aVCgUCoXnnnuu0K1bt0Jtba213EGCoJH529/+VigrKyts3LixUCgUChs3biyUlZUVVq5cWeTJPpz+8z//s3DuuecWnnnmmUL//v3rtq9cubLQrVu3QqFQ2Ol9jd2GDRsKZ511VmHZsmV1QWAd35u1a9cWysrKCmvXrt1i+7bexzu7r7HbtGlToUePHoWnn366UCgUCr///e8Lp5xyirV8D/zXDhuZV199Nfvss0+aN2+eJGnevHn23nvvvPrqq2nfvn2Rp/tw2bRpU37605+mT58+efXVV7PffvvV7Wvfvn02bdqU1atX7/S+3Xff/YM8nQ/crbfemoEDB+aAAw6o22Yd35tly5Zl9913zx133JF58+alTZs2ueSSS9K6det3fR8XCoWd2tfY3/8lJSW55ZZbMnr06Hz0ox9NVVVV7r777m3+M9Fabsl3CGiyxo8fn49+9KM5++yziz3KLue//uu/snDhwvzTP/1TsUfZpdXW1mbZsmXp3Llzpk+fnssuuyxf/epXs27dumKPtsvZuHFjvv/97+euu+7KY489lokTJ2bs2LHW8j1whaCR6dChQ/7617+mtrY2zZs3T21tbV577bV06NCh2KN9qNx44415+eWXM2nSpDRr1iwdOnTI//zP/9TtX7VqVZo1a5bdd999p/c1Zn/4wx+yePHifP7zn0+SrFixIhdccEHOOecc6/gedOjQIS1atMiAAQOSJF27ds0ee+yR1q1bv+v7uFAo7NS+xu65557La6+9lrKysiRJWVlZPvKRj6S0tNRa7iBXCBqZPffcM0ceeWRmzZqVJJk1a1aOPPLIRnuJa2d897vfzcKFC3PnnXemVatWSZIuXbpk/fr1efrpp5MkU6dOzamnnvq+9jVmF154YZ566qk8+uijefTRR7Pvvvvmhz/8YUaNGmUd34P27dunZ8+e+d3vfpfk7W+1r1y5Mocccsi7vo+39R5vyu//fffdNytWrMiSJUuSJIsXL87KlStz8MEHW8sd5D9/3AgtXrw4V1xxRdasWZN27drlxhtvzGGHHVbssT4UXnzxxQwYMCCHHHJIWrdunSQ54IADcuedd2b+/Pm55pprsmHDhuy///656aab8vGPfzxJdnpfU9GnT59MmjQpRxxxhHV8j5YtW5Zx48Zl9erVadGiRcaOHZsTTzxxm+/jnd3X2P3iF7/I5MmTU1JSkiQZM2ZMvvCFL1jLHSQIAAC3DAAAQQAARBAAABEEAEAEAQAQQQAARBAAABEEAECS/w+U1D3TLQV3rwAAAABJRU5ErkJggg==\n"
          },
          "metadata": {}
        }
      ]
    },
    {
      "cell_type": "code",
      "source": [
        "# Assigning label to the datasets\n",
        "fake_news[\"label\"]=\"fake\"\n",
        "true_news[\"label\"]=\"true\"\n",
        "\n",
        "# Merging the real and true news datasets to create the final one\n",
        "final_news_dataset= pd.concat([fake_news,true_news])\n",
        "\n",
        "#Shuffling\n",
        "final_news_dataset = final_news_dataset.sample(frac=1).reset_index(drop=True)\n",
        "\n",
        "# Exploring the final dataset\n",
        "final_news_dataset.head(10)\n",
        "\n"
      ],
      "metadata": {
        "colab": {
          "base_uri": "https://localhost:8080/",
          "height": 363
        },
        "id": "noYYMxvF2Ag8",
        "outputId": "ce5142c8-631f-4420-e201-63d769ec11d6"
      },
      "execution_count": null,
      "outputs": [
        {
          "output_type": "execute_result",
          "data": {
            "text/plain": [
              "                                               title  \\\n",
              "0  U.S. responds in court fight over illegal Indo...   \n",
              "1   Numbskull Republican Ignores History, Says Re...   \n",
              "2  US-UK DIRTY WAR: ‘Latin American-style’ Death ...   \n",
              "3  SUPREME COURT JUSTICE Goes All Creepy Predicti...   \n",
              "4  Hillary Clinton: ‘Israel First’ (and no peace ...   \n",
              "5  Boiler Room EP #119 – Zombie Disneyland & The ...   \n",
              "6  EU Parliament calls on Myanmar to free Reuters...   \n",
              "7   Donald Trump Releases Statement On Cruz Sex S...   \n",
              "8   McConnell Just ADMITTED The NRA Must Approve ...   \n",
              "9  Putin says question of who hacked Democratic p...   \n",
              "\n",
              "                                                text       subject  \\\n",
              "0  BOSTON (Reuters) - U.S. immigration officials ...  politicsNews   \n",
              "1  Republican Rep. Ted Poe (R-Texas) spoke with F...          News   \n",
              "2   Patrick Henningsen 21st Century WireThis week...   Middle-east   \n",
              "3  What the heck is wrong with these loony libera...      politics   \n",
              "4  Robert Fantina CounterpunchAlthough the United...       US_News   \n",
              "5  Tune in to the Alternate Current Radio Network...       US_News   \n",
              "6  BRUSSELS (Reuters) - The president of the Euro...     worldnews   \n",
              "7  With the sex scandal allegations piling up aga...          News   \n",
              "8  We could already make the assumption that Sena...          News   \n",
              "9  MOSCOW (Reuters) - Russian President Vladimir ...  politicsNews   \n",
              "\n",
              "                 date label  \n",
              "0  December 21, 2017   true  \n",
              "1    January 20, 2016  fake  \n",
              "2       July 14, 2016  fake  \n",
              "3        Jul 10, 2016  fake  \n",
              "4    January 18, 2016  fake  \n",
              "5       July 29, 2017  fake  \n",
              "6  December 14, 2017   true  \n",
              "7      March 25, 2016  fake  \n",
              "8        July 6, 2016  fake  \n",
              "9  December 23, 2016   true  "
            ],
            "text/html": [
              "\n",
              "  <div id=\"df-ebc1c057-44ea-4d5f-a5a8-aaecd2c4d9a0\">\n",
              "    <div class=\"colab-df-container\">\n",
              "      <div>\n",
              "<style scoped>\n",
              "    .dataframe tbody tr th:only-of-type {\n",
              "        vertical-align: middle;\n",
              "    }\n",
              "\n",
              "    .dataframe tbody tr th {\n",
              "        vertical-align: top;\n",
              "    }\n",
              "\n",
              "    .dataframe thead th {\n",
              "        text-align: right;\n",
              "    }\n",
              "</style>\n",
              "<table border=\"1\" class=\"dataframe\">\n",
              "  <thead>\n",
              "    <tr style=\"text-align: right;\">\n",
              "      <th></th>\n",
              "      <th>title</th>\n",
              "      <th>text</th>\n",
              "      <th>subject</th>\n",
              "      <th>date</th>\n",
              "      <th>label</th>\n",
              "    </tr>\n",
              "  </thead>\n",
              "  <tbody>\n",
              "    <tr>\n",
              "      <th>0</th>\n",
              "      <td>U.S. responds in court fight over illegal Indo...</td>\n",
              "      <td>BOSTON (Reuters) - U.S. immigration officials ...</td>\n",
              "      <td>politicsNews</td>\n",
              "      <td>December 21, 2017</td>\n",
              "      <td>true</td>\n",
              "    </tr>\n",
              "    <tr>\n",
              "      <th>1</th>\n",
              "      <td>Numbskull Republican Ignores History, Says Re...</td>\n",
              "      <td>Republican Rep. Ted Poe (R-Texas) spoke with F...</td>\n",
              "      <td>News</td>\n",
              "      <td>January 20, 2016</td>\n",
              "      <td>fake</td>\n",
              "    </tr>\n",
              "    <tr>\n",
              "      <th>2</th>\n",
              "      <td>US-UK DIRTY WAR: ‘Latin American-style’ Death ...</td>\n",
              "      <td>Patrick Henningsen 21st Century WireThis week...</td>\n",
              "      <td>Middle-east</td>\n",
              "      <td>July 14, 2016</td>\n",
              "      <td>fake</td>\n",
              "    </tr>\n",
              "    <tr>\n",
              "      <th>3</th>\n",
              "      <td>SUPREME COURT JUSTICE Goes All Creepy Predicti...</td>\n",
              "      <td>What the heck is wrong with these loony libera...</td>\n",
              "      <td>politics</td>\n",
              "      <td>Jul 10, 2016</td>\n",
              "      <td>fake</td>\n",
              "    </tr>\n",
              "    <tr>\n",
              "      <th>4</th>\n",
              "      <td>Hillary Clinton: ‘Israel First’ (and no peace ...</td>\n",
              "      <td>Robert Fantina CounterpunchAlthough the United...</td>\n",
              "      <td>US_News</td>\n",
              "      <td>January 18, 2016</td>\n",
              "      <td>fake</td>\n",
              "    </tr>\n",
              "    <tr>\n",
              "      <th>5</th>\n",
              "      <td>Boiler Room EP #119 – Zombie Disneyland &amp; The ...</td>\n",
              "      <td>Tune in to the Alternate Current Radio Network...</td>\n",
              "      <td>US_News</td>\n",
              "      <td>July 29, 2017</td>\n",
              "      <td>fake</td>\n",
              "    </tr>\n",
              "    <tr>\n",
              "      <th>6</th>\n",
              "      <td>EU Parliament calls on Myanmar to free Reuters...</td>\n",
              "      <td>BRUSSELS (Reuters) - The president of the Euro...</td>\n",
              "      <td>worldnews</td>\n",
              "      <td>December 14, 2017</td>\n",
              "      <td>true</td>\n",
              "    </tr>\n",
              "    <tr>\n",
              "      <th>7</th>\n",
              "      <td>Donald Trump Releases Statement On Cruz Sex S...</td>\n",
              "      <td>With the sex scandal allegations piling up aga...</td>\n",
              "      <td>News</td>\n",
              "      <td>March 25, 2016</td>\n",
              "      <td>fake</td>\n",
              "    </tr>\n",
              "    <tr>\n",
              "      <th>8</th>\n",
              "      <td>McConnell Just ADMITTED The NRA Must Approve ...</td>\n",
              "      <td>We could already make the assumption that Sena...</td>\n",
              "      <td>News</td>\n",
              "      <td>July 6, 2016</td>\n",
              "      <td>fake</td>\n",
              "    </tr>\n",
              "    <tr>\n",
              "      <th>9</th>\n",
              "      <td>Putin says question of who hacked Democratic p...</td>\n",
              "      <td>MOSCOW (Reuters) - Russian President Vladimir ...</td>\n",
              "      <td>politicsNews</td>\n",
              "      <td>December 23, 2016</td>\n",
              "      <td>true</td>\n",
              "    </tr>\n",
              "  </tbody>\n",
              "</table>\n",
              "</div>\n",
              "      <button class=\"colab-df-convert\" onclick=\"convertToInteractive('df-ebc1c057-44ea-4d5f-a5a8-aaecd2c4d9a0')\"\n",
              "              title=\"Convert this dataframe to an interactive table.\"\n",
              "              style=\"display:none;\">\n",
              "        \n",
              "  <svg xmlns=\"http://www.w3.org/2000/svg\" height=\"24px\"viewBox=\"0 0 24 24\"\n",
              "       width=\"24px\">\n",
              "    <path d=\"M0 0h24v24H0V0z\" fill=\"none\"/>\n",
              "    <path d=\"M18.56 5.44l.94 2.06.94-2.06 2.06-.94-2.06-.94-.94-2.06-.94 2.06-2.06.94zm-11 1L8.5 8.5l.94-2.06 2.06-.94-2.06-.94L8.5 2.5l-.94 2.06-2.06.94zm10 10l.94 2.06.94-2.06 2.06-.94-2.06-.94-.94-2.06-.94 2.06-2.06.94z\"/><path d=\"M17.41 7.96l-1.37-1.37c-.4-.4-.92-.59-1.43-.59-.52 0-1.04.2-1.43.59L10.3 9.45l-7.72 7.72c-.78.78-.78 2.05 0 2.83L4 21.41c.39.39.9.59 1.41.59.51 0 1.02-.2 1.41-.59l7.78-7.78 2.81-2.81c.8-.78.8-2.07 0-2.86zM5.41 20L4 18.59l7.72-7.72 1.47 1.35L5.41 20z\"/>\n",
              "  </svg>\n",
              "      </button>\n",
              "      \n",
              "  <style>\n",
              "    .colab-df-container {\n",
              "      display:flex;\n",
              "      flex-wrap:wrap;\n",
              "      gap: 12px;\n",
              "    }\n",
              "\n",
              "    .colab-df-convert {\n",
              "      background-color: #E8F0FE;\n",
              "      border: none;\n",
              "      border-radius: 50%;\n",
              "      cursor: pointer;\n",
              "      display: none;\n",
              "      fill: #1967D2;\n",
              "      height: 32px;\n",
              "      padding: 0 0 0 0;\n",
              "      width: 32px;\n",
              "    }\n",
              "\n",
              "    .colab-df-convert:hover {\n",
              "      background-color: #E2EBFA;\n",
              "      box-shadow: 0px 1px 2px rgba(60, 64, 67, 0.3), 0px 1px 3px 1px rgba(60, 64, 67, 0.15);\n",
              "      fill: #174EA6;\n",
              "    }\n",
              "\n",
              "    [theme=dark] .colab-df-convert {\n",
              "      background-color: #3B4455;\n",
              "      fill: #D2E3FC;\n",
              "    }\n",
              "\n",
              "    [theme=dark] .colab-df-convert:hover {\n",
              "      background-color: #434B5C;\n",
              "      box-shadow: 0px 1px 3px 1px rgba(0, 0, 0, 0.15);\n",
              "      filter: drop-shadow(0px 1px 2px rgba(0, 0, 0, 0.3));\n",
              "      fill: #FFFFFF;\n",
              "    }\n",
              "  </style>\n",
              "\n",
              "      <script>\n",
              "        const buttonEl =\n",
              "          document.querySelector('#df-ebc1c057-44ea-4d5f-a5a8-aaecd2c4d9a0 button.colab-df-convert');\n",
              "        buttonEl.style.display =\n",
              "          google.colab.kernel.accessAllowed ? 'block' : 'none';\n",
              "\n",
              "        async function convertToInteractive(key) {\n",
              "          const element = document.querySelector('#df-ebc1c057-44ea-4d5f-a5a8-aaecd2c4d9a0');\n",
              "          const dataTable =\n",
              "            await google.colab.kernel.invokeFunction('convertToInteractive',\n",
              "                                                     [key], {});\n",
              "          if (!dataTable) return;\n",
              "\n",
              "          const docLinkHtml = 'Like what you see? Visit the ' +\n",
              "            '<a target=\"_blank\" href=https://colab.research.google.com/notebooks/data_table.ipynb>data table notebook</a>'\n",
              "            + ' to learn more about interactive tables.';\n",
              "          element.innerHTML = '';\n",
              "          dataTable['output_type'] = 'display_data';\n",
              "          await google.colab.output.renderOutput(dataTable, element);\n",
              "          const docLink = document.createElement('div');\n",
              "          docLink.innerHTML = docLinkHtml;\n",
              "          element.appendChild(docLink);\n",
              "        }\n",
              "      </script>\n",
              "    </div>\n",
              "  </div>\n",
              "  "
            ]
          },
          "metadata": {},
          "execution_count": 55
        }
      ]
    },
    {
      "cell_type": "code",
      "source": [
        "final_news_dataset.isnull().sum()"
      ],
      "metadata": {
        "colab": {
          "base_uri": "https://localhost:8080/"
        },
        "id": "p6QU5NZQ4Mbz",
        "outputId": "579159ab-f47d-4cb9-fa66-d728a4a42107"
      },
      "execution_count": null,
      "outputs": [
        {
          "output_type": "execute_result",
          "data": {
            "text/plain": [
              "title      0\n",
              "text       0\n",
              "subject    0\n",
              "date       0\n",
              "label      0\n",
              "dtype: int64"
            ]
          },
          "metadata": {},
          "execution_count": 56
        }
      ]
    },
    {
      "cell_type": "code",
      "source": [
        "# Reducing additional features\n",
        "final_news_dataset.drop([\"subject\",\"date\"], axis=1)\n",
        "\n",
        "# Exploring labelwise value counts\n",
        "final_news_dataset.label.value_counts()\n",
        "\n",
        "#viewing the processed data\n",
        "sns.set_theme(style=\"whitegrid\")\n",
        "sns.countplot(x=final_news_dataset[\"label\"])"
      ],
      "metadata": {
        "colab": {
          "base_uri": "https://localhost:8080/"
        },
        "id": "zXrtchOF4R6T",
        "outputId": "d0e6aac8-922a-4715-d7ec-5680cc1e3de5"
      },
      "execution_count": null,
      "outputs": [
        {
          "output_type": "execute_result",
          "data": {
            "text/plain": [
              "fake    23481\n",
              "true    21417\n",
              "Name: label, dtype: int64"
            ]
          },
          "metadata": {},
          "execution_count": 57
        }
      ]
    },
    {
      "cell_type": "code",
      "source": [],
      "metadata": {
        "colab": {
          "base_uri": "https://localhost:8080/",
          "height": 629
        },
        "id": "6HCRcYsl5Bgf",
        "outputId": "62e0a242-d791-43e3-8a04-3c66e88c3b58"
      },
      "execution_count": null,
      "outputs": [
        {
          "output_type": "execute_result",
          "data": {
            "text/plain": [
              "<AxesSubplot:xlabel='label', ylabel='count'>"
            ]
          },
          "metadata": {},
          "execution_count": 58
        },
        {
          "output_type": "display_data",
          "data": {
            "text/plain": [
              "<Figure size 720x720 with 1 Axes>"
            ],
            "image/png": "iVBORw0KGgoAAAANSUhEUgAAAnkAAAJSCAYAAAC/YtNUAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/NK7nSAAAACXBIWXMAAAsTAAALEwEAmpwYAAAc2UlEQVR4nO3df6xX9X3H8de9wL1W1F7RYi+0i9ZOw0YM6b1rs7WsG8aAjbW1PwZBY1qnmyZ2P1xFO1foKLoBtslsnXbR1CxBSbPGMpiV1pl1btOmshh3Zzeco27KnU7QgaiX671nfxhuvK3WW+B7v/i+j8df3vM5N+d9TDh55pz7/Z6OpmmaAABQSme7BwAA4PATeQAABYk8AICCRB4AQEEiDwCgoOntHuBIMzo6mn379mXGjBnp6Oho9zgAAK+raZoMDw9n5syZ6ewcf+9O5P2Yffv2Zfv27e0eAwBgwk477bQce+yx47aJvB8zY8aMJK/8z+rq6mrzNAAAr2///v3Zvn37WL+8msj7MQce0XZ1daW7u7vN0wAAvLHX+hMzH7wAAChI5AEAFCTyAAAKEnkAAAWJPACAgkQeAEBBIg8AoCCRBwBQkMgDAChI5AEAFCTyAAAKEnkAAAWJPACAgkQeAEBBIg8AoCCRBwBQkMgDAChI5AEAFCTyAAAKEnkAAAWJPACAgkQeAEBBIg8AoCCRB1DU6MvD7R4BpqQj5d/e9HYPAEBrdE6fkW3rLm73GDDl9K24pd0jJHEnDwCgJJEHAFCQyAMAKEjkAQAUJPIAAAoSeQAABYk8AICCRB4AQEEiDwCgIJEHAFCQyAMAKEjkAQAUJPIAAAoSeQAABYk8AICCRB4AQEEiDwCgIJEHAFCQyAMAKEjkAQAUJPIAAAoSeQAABYk8AICCRB4AQEEiDwCgIJEHAFCQyAMAKEjkAQAUJPIAAAoSeQAABYk8AICCRB4AQEEiDwCgIJEHAFCQyAMAKEjkAQAUJPIAAAoSeQAABYk8AICCRB4AQEEiDwCgIJEHAFCQyAMAKEjkHQH2D4+0ewSYkvzbAyqb3u4BSLpmTMvyFRvaPQZMObevO7/dIwC0jDt5AAAFiTwAgIJEHgBAQSIPAKAgkQcAUJDIAwAoSOQBABQk8gAAChJ5AAAFiTwAgIJEHgBAQSIPAKAgkQcAUJDIAwAoSOQBABQk8gAAChJ5AAAFiTwAgIJEHgBAQSIPAKAgkQcAUJDIAwAoSOQBABQk8gAAChJ5AAAFiTwAgIImJfKeffbZXHLJJVm8eHE+/OEP5/LLL8/u3buTJA899FDOPffcLF68OBdddFF27do19nutWAMAmAomJfI6Ojpy8cUXZ+vWrdm8eXPe+c535vrrr8/o6GiuvPLKrFy5Mlu3bk1/f3+uv/76JGnJGgDAVDEpkdfT05P3ve99Yz8vWLAgO3fuzMDAQLq7u9Pf358kWbZsWe6+++4kackaAMBUMX2yDzg6Opo77rgjixYtyuDgYObMmTO2NmvWrIyOjua5555ryVpPT8+E5xwYGDi0E/0Z9PX1TdqxgPG2bdvW7hFaxrUF2udIuLZMeuR98YtfzNFHH50LLrgg3/3udyf78BM2f/78dHd3t3sMoMWEENAKk3VtGRoaet0bU5MaeWvXrs3jjz+em2++OZ2dnent7c3OnTvH1nfv3p3Ozs709PS0ZA0AYKqYtK9Q+fKXv5yBgYHceOON6erqSvLK3bKXXnopDz74YJJk48aNWbJkScvWAACmikm5k/foo4/ma1/7Wk4++eQsW7YsSfKOd7wjN954Y9atW5dVq1ZlaGgoc+fOzfr165MknZ2dh30NAGCq6Giapmn3EEeSA8+2J/tv8pav2DBpxwJecfu689s9QsttW3dxu0eAKadvxS2Tdqyf1i3eeAEAUJDIAwAoSOQBABQk8gAAChJ5AAAFiTwAgIJEHgBAQSIPAKAgkQcAUJDIAwAoSOQBABQk8gAAChJ5AAAFiTwAgIJEHgBAQSIPAKAgkQcAUJDIAwAoSOQBABQk8gAAChJ5AAAFiTwAgIJEHgBAQSIPAKAgkQcAUJDIAwAoSOQBABQk8gAAChJ5AAAFiTwAgIJEHgBAQSIPAKAgkQcAUJDIAwAoSOQBABQk8gAAChJ5AAAFiTwAgIJEHgBAQSIPAKAgkQcAUJDIAwAoSOQBABQk8gAAChJ5AAAFiTwAgIJEHgBAQSIPAKAgkQcAUJDIAwAoSOQBABQk8gAAChJ5AAAFiTwAgIJEHgBAQSIPAKAgkQcAUJDIAwAoSOQBABQk8gAAChJ5AAAFiTwAgIJEHgBAQSIPAKAgkQcAUJDIAwAoSOQBABQk8gAAChJ5AAAFiTwAgIJEHgBAQSIPAKAgkQcAUJDIAwAoSOQBABQk8gAAChJ5AAAFiTwAgIJEHgBAQSIPAKAgkQcAUJDIAwAoSOQBABQk8gAAChJ5AAAFiTwAgIJEHgBAQSIPAKAgkQcAUJDIAwAoSOQBABQk8gAAChJ5AAAFiTwAgIJEHgBAQSIPAKAgkQcAUJDIAwAoSOQBABQk8gAAChJ5AAAFTVrkrV27NosWLcrpp5+e7du3j21ftGhRlixZko985CP5yEc+kvvuu29s7aGHHsq5556bxYsX56KLLsquXbsOeQ0AYCqYtMg788wzs2HDhsydO/cn1m644YZs2rQpmzZtysKFC5Mko6OjufLKK7Ny5cps3bo1/f39uf766w9pDQBgqpi0yOvv709vb++E9x8YGEh3d3f6+/uTJMuWLcvdd999SGsAAFPF9HYPkCSf/exn0zRN+vr6csUVV+S4447L4OBg5syZM7bPrFmzMjo6mueee+6g13p6eibztAAA2qbtkbdhw4b09vZm//79ufbaa7N69eoj4vHqwMDApB2rr69v0o4FjLdt27Z2j9Ayri3QPkfCtaXtkXfgEW5XV1eWL1+eyy67bGz7zp07x/bbvXt3Ojs709PTc9BrP4v58+enu7v7EM4MeDMQQkArTNa1ZWho6HVvTLX1K1ReeOGF7N27N0nSNE3uuuuuzJs3L8krkfXSSy/lwQcfTJJs3LgxS5YsOaQ1AICpYtLu5K1Zsybf+c538swzz+TTn/50enp6cvPNN+czn/lMRkZGMjo6mlNPPTWrVq1KknR2dmbdunVZtWpVhoaGMnfu3Kxfv/6Q1gAApoqOpmmadg9xJDlw23OyH9cuX7Fh0o4FvOL2dee3e4SW27bu4naPAFNO34pbJu1YP61bvPECAKAgkQcAUJDIAwAoSOQBABQk8gAAChJ5AAAFiTwAgIJEHgBAQSIPAKAgkQcAUJDIAwAoSOQBABQk8gAAChJ5AAAFiTwAgIJEHgBAQSIPAKAgkQcAUJDIAwAoSOQBABQk8gAAChJ5AAAFiTwAgIJEHgBAQSIPAKAgkQcAUJDIAwAoSOQBABQk8gAAChJ5AAAFiTwAgIJEHgBAQSIPAKAgkQcAUJDIAwAoSOQBABQk8gAAChJ5AAAFiTwAgIImHHm33nrra27/+te/ftiGAQDg8Jhw5N14442vuf2mm246bMMAAHB4TH+jHe6///4kyejoaB544IE0TTO29sQTT2TmzJmtmw4AgIPyhpF3zTXXJEmGhobyh3/4h2PbOzo68ra3vS1/9Ed/1LrpAAA4KG8Yeffee2+SZMWKFVm3bl3LBwIA4NC9YeQd8OrAGx0dHbfW2elDugAAR5IJR96//uu/ZvXq1fn3f//3DA0NJUmapklHR0d++MMftmxAAAB+dhOOvKuvvjq//uu/nuuuuy5HHXVUK2cCAOAQTTjynnzyyfz+7/9+Ojo6WjkPAACHwYT/mO6ss87KP/zDP7RyFgAADpMJ38kbGhrK5Zdfnr6+vpx44onj1nzqFgDgyDLhyHv3u9+dd7/73a2cBQCAw2TCkXf55Ze3cg4AAA6jCUfegdebvZZf/uVfPizDAABweEw48g683uyAZ599NsPDwznppJPyt3/7t4d9MAAADt6EI+/A680OGBkZyU033ZSZM2ce9qEAADg0B/0+smnTpuXSSy/NLbfccjjnAQDgMDikl87+4z/+oy9HBgA4Ak34ce0HP/jBcUH34osvZv/+/Vm1alVLBgMA4OBNOPLWr18/7ue3vOUtOeWUU3LMMccc9qEAADg0E4689773vUmS0dHRPPPMMznxxBPT2XlIT3sBAGiRCVfa888/nxUrVuSMM87Ir/7qr+aMM87IVVddlb1797ZyPgAADsKEI2/NmjV58cUXs3nz5jz88MPZvHlzXnzxxaxZs6aV8wEAcBAm/Lj2vvvuyz333JO3vOUtSZJTTjklf/Inf5KzzjqrZcMBAHBwJnwnr7u7O7t37x637dlnn01XV9dhHwoAgEMz4Tt5n/jEJ3LRRRflU5/6VObMmZOdO3fmtttuyyc/+clWzgcAwEGYcORddtllOemkk7J58+Y8/fTTmT17di6++GKRBwBwBJrw49prr702p5xySm677bbcddddue2223Lqqafm2muvbeV8AAAchAlH3pYtWzJ//vxx2+bPn58tW7Yc9qEAADg0E468jo6OjI6Ojts2MjLyE9sAAGi/CUdef39//uzP/mws6kZHR/OVr3wl/f39LRsOAICDM+EPXlxzzTX57d/+7XzgAx/InDlzMjg4mLe97W25+eabWzkfAAAHYcKR9/a3vz133nlnHn744QwODqa3tzdnnHGG99cCAByBJhx5SdLZ2ZkFCxZkwYIFLRoHAIDDwW04AICCRB4AQEEiDwCgIJEHAFCQyAMAKEjkAQAUJPIAAAoSeQAABYk8AICCRB4AQEEiDwCgIJEHAFCQyAMAKEjkAQAUJPIAAAoSeQAABYk8AICCRB4AQEEiDwCgIJEHAFCQyAMAKEjkAQAUJPIAAAoSeQAABYk8AICCRB4AQEEiDwCgIJEHAFDQpETe2rVrs2jRopx++unZvn372PYdO3Zk6dKlWbx4cZYuXZof/ehHLV0DAJgqJiXyzjzzzGzYsCFz584dt33VqlVZvnx5tm7dmuXLl2flypUtXQMAmComJfL6+/vT29s7btuuXbvyyCOP5JxzzkmSnHPOOXnkkUeye/fulqwBAEwl09t14MHBwZx00kmZNm1akmTatGmZPXt2BgcH0zTNYV+bNWtWe04UAKAN2hZ5R7qBgYFJO1ZfX9+kHQsYb9u2be0eoWVcW6B9joRrS9sir7e3N0899VRGRkYybdq0jIyM5Omnn05vb2+apjnsaz+r+fPnp7u7uwVnDhxJhBDQCpN1bRkaGnrdG1Nt+wqVE044IfPmzcuWLVuSJFu2bMm8efMya9aslqwBAEwlHU3TNK0+yJo1a/Kd73wnzzzzTI4//vj09PTkb/7mb/LYY4/l6quvzp49e3Lcccdl7dq1ede73pUkLVmbiANFPNl38pav2DBpxwJecfu689s9QsttW3dxu0eAKadvxS2Tdqyf1i2TEnlvJiIPpg6RB7TCkRJ53ngBAFCQyAMAKEjkAQAUJPIAAAoSeQAABYk8AICCRB4AQEEiDwCgIJEHAFCQyAMAKEjkAQAUJPIAAAoSeQAABYk8AICCRB4AQEEiDwCgIJEHAFCQyAMAKEjkAQAUJPIAAAoSeQAABYk8AICCRB4AQEEiDwCgIJEHAFCQyAMAKEjkAQAUJPIAAAoSeQAABYk8AICCRB4AQEEiDwCgIJEHAFCQyAMAKEjkAQAUJPIAAAoSeQAABYk8AICCRB4AQEEiDwCgIJEHAFCQyAMAKEjkAQAUJPIAAAoSeQAABYk8AICCRB4AQEEiDwCgIJEHAFCQyAMAKEjkAQAUJPIAAAoSeQAABYk8AICCRB4AQEEiDwCgIJEHAFCQyAMAKEjkAQAUJPIAAAoSeQAABYk8AICCRB4AQEEiDwCgIJEHAFCQyAMAKEjkAQAUJPIAAAoSeQAABYk8AICCRB4AQEEiDwCgIJEHAFCQyAMAKEjkAQAUJPIAAAoSeQAABYk8AICCRB4AQEEiDwCgIJEHAFCQyAMAKEjkAQAUJPIAAAoSeQAABYk8AICCRB4AQEEiDwCgIJEHAFCQyAMAKEjkAQAUJPIAAAoSeQAABYk8AICCRB4AQEEiDwCgIJEHAFCQyAMAKEjkAQAUJPIAAAoSeQAABYk8AICCprd7gCRZtGhRurq60t3dnST57Gc/m4ULF+ahhx7KypUrMzQ0lLlz52b9+vU54YQTkuSg1wAApoIj5k7eDTfckE2bNmXTpk1ZuHBhRkdHc+WVV2blypXZunVr+vv7c/311yfJQa8BAEwVR0zk/biBgYF0d3env78/SbJs2bLcfffdh7QGADBVHBGPa5NXHtE2TZO+vr5cccUVGRwczJw5c8bWZ82aldHR0Tz33HMHvdbT0zPheQYGBg7LeU1EX1/fpB0LGG/btm3tHqFlXFugfY6Ea8sREXkbNmxIb29v9u/fn2uvvTarV6/OWWed1daZ5s+fP/Y3gkBdQghohcm6tgwNDb3ujakj4nFtb29vkqSrqyvLly/PP//zP6e3tzc7d+4c22f37t3p7OxMT0/PQa8BAEwVbY+8F154IXv37k2SNE2Tu+66K/Pmzcv8+fPz0ksv5cEHH0ySbNy4MUuWLEmSg14DAJgq2v64dteuXfnMZz6TkZGRjI6O5tRTT82qVavS2dmZdevWZdWqVeO+CiXJQa8BAEwVbY+8d77znfnWt771mmvvec97snnz5sO6BgAwFbT9cS0AAIefyAMAKEjkAQAUJPIAAAoSeQAABYk8AICCRB4AQEEiDwCgIJEHAFCQyAMAKEjkAQAUJPIAAAoSeQAABYk8AICCRB4AQEEiDwCgIJEHAFCQyAMAKEjkAQAUJPIAAAoSeQAABYk8AICCRB4AQEEiDwCgIJEHAFCQyAMAKEjkAQAUJPIAAAoSeQAABYk8AICCRB4AQEEiDwCgIJEHAFCQyAMAKEjkAQAUJPIAAAoSeQAABYk8AICCRB4AQEEiDwCgIJEHAFCQyAMAKEjkAQAUJPIAAAoSeQAABYk8AICCRB4AQEEiDwCgIJEHAFCQyAMAKEjkAQAUJPIAAAoSeQAABYk8AICCRB4AQEEiDwCgIJEHAFCQyAMAKEjkAQAUJPIAAAoSeQAABYk8AICCRB4AQEEiDwCgIJEHAFCQyAMAKEjkAQAUJPIAAAoSeQAABYk8AICCRB4AQEEiDwCgIJEHAFCQyAMAKEjkAQAUJPIAAAoSeQAABYk8AICCRB4AQEEiDwCgIJEHAFCQyAMAKEjkAQAUJPIAAAoSeQAABYk8AICCRB4AQEEiDwCgIJEHAFCQyAMAKEjkAQAUJPIAAAoSeQAABYk8AICCRB4AQEEiDwCgIJEHAFCQyAMAKEjkAQAUJPIAAAoSeQAABZWNvB07dmTp0qVZvHhxli5dmh/96EftHgkAYNKUjbxVq1Zl+fLl2bp1a5YvX56VK1e2eyQAgEkzvd0DtMKuXbvyyCOP5Otf/3qS5JxzzskXv/jF7N69O7Nmzfqpv9s0TZJk//79LZ/z1Y47esakHg9IhoaG2j1C6x11bLsngClnMq8tB3rlQL+8WsnIGxwczEknnZRp06YlSaZNm5bZs2dncHDwDSNveHg4SbJ9+/aWz/lql3z41Ek9HpAMDAy0e4TWe/8F7Z4Appx2XFuGh4dz1FFHjdtWMvIOxcyZM3PaaadlxowZ6ejoaPc4AACvq2maDA8PZ+bMmT+xVjLyent789RTT2VkZCTTpk3LyMhInn766fT29r7h73Z2dubYYz3eAADeHH78Dt4BJT94ccIJJ2TevHnZsmVLkmTLli2ZN2/eGz6qBQCooqN5rb/UK+Cxxx7L1VdfnT179uS4447L2rVr8653vavdYwEATIqykQcAMJWVfFwLADDViTwAgIJEHgBAQSIPAKAgkQev4Stf+cqkv9oOqO+ee+7J2WefnY9+9KP5z//8z9fc5/vf/34+9rGPTfJkVCTy4DV89atfHXvF3au9/PLLbZgGqGLjxo35nd/5nXzrW9/ytV60XMk3XsCh+OM//uMkybJly9LZ2Zm5c+fm+OOPz44dO7Jv377ceOON+fjHP57vf//7SZInnnhi3M/f+973ctNNN2X//v2ZMWNGPve5z2XBggXtOh3gCHHddddl27Zt2bFjR26//fbMnj07O3bsyPDwcH7u534u1113Xd761reO+509e/bk8ssvz6JFi/KpT30qd955Z26//faMjIzkmGOOyRe+8AWxyOtrgJ9w2mmnNc8//3zTNE1z1VVXNeedd16zb9++pmma5r//+7+b9773vWP7vvrnxx9/vPmN3/iNZu/evU3TNM327dubD37wg5M7PHDEuuCCC5p77723aZqm2bVr19j2L3/5y8369eubpmmaBx54oDnvvPOaJ554ojnvvPOab3/7203TNM0PfvCD5pJLLmmGhoaapmmav/u7v2uWLl06yWfAm4k7eTABS5YsydFHH/2G+9133335r//6r5x//vlj215++eU888wzOfHEE1s5IvAms2nTpmzevDnDw8N54YUXcvLJJ4+t/e///m8uvPDCrF27Nv39/UmSe++9N//2b/+WT37yk0leeTH9nj172jE6bxIiDybg1YE3ffr0NK96UczQ0NC4fRcuXJh169ZN2mzAm8+DDz6YO+64Ixs3bsysWbOyefPmfOMb3xhbf+tb35q3v/3t+fu///uxyGuaJh//+Mfzu7/7u+0amzcZH7yA1zBz5sw8//zzr7l24oknZnh4OI8//niSZMuWLWNr73//+3Pffffl0UcfHdv28MMPt3ZY4E1nz549OeaYY9LT05P9+/fnm9/85rj1rq6u/Pmf/3n+4z/+I2vWrEnTNFm0aFE2bdqU//mf/0mSjIyMZGBgoB3j8ybhTh68hosuuigXXnhhjjrqqMydO3fc2vTp03PNNdfk05/+dGbNmpVf+7VfG1s7+eSTs379+lxzzTV56aWXMjw8nPe85z0544wzJvkMgCPZwoUL89d//ddZvHhxjj/++PT39+df/uVfxu3T1dWVG264IVdeeWU+//nPZ/Xq1fm93/u9XHbZZRkZGcnw8HCWLFmS+fPnt+ksONJ1NK9+7gQAQAke1wIAFCTyAAAKEnkAAAWJPACAgkQeAEBBIg/gZ7Ro0aL80z/90xvud/rpp499n+LP6lB+FyAReQAAJYk8AICCRB7AQXr44YezdOnS9Pf35wMf+EBWr16d/fv3j9vne9/7Xs4888y8733vy9q1azM6Ojq29ld/9Vc5++yz80u/9Ev5zd/8zTz55JOTfQpAYSIP4CB1dnbmc5/7XB544IFs3Lgx999/f26//fZx+3z3u9/NN7/5zdx555259957x95Res899+RrX/tavvrVr+b+++9PX19f/uAP/qAdpwEUJfIADtL8+fOzYMGCTJ8+Pe94xzuydOnS/OAHPxi3zyWXXJKenp7MmTMnF154YbZs2ZIk2bhxY37rt34rp556aqZPn55LL700P/zhD93NAw6b6e0eAODNaseOHfnTP/3TDAwM5MUXX8zIyEh+8Rd/cdw+vb29Y/89d+7cPP3000mSnTt35rrrrsvatWvH1pumyVNPPZW5c+dOzgkApYk8gIP0hS98Ib/wC7+QL33pSznmmGNy2223ZevWreP2GRwczM///M8neSXsZs+eneSV+Lv00ktz7rnnTvrcwNTgcS3AQdq3b19mzpyZmTNn5rHHHssdd9zxE/vceuut+b//+78MDg7mL//yL/OhD30oSbJs2bL8xV/8RR599NEkyd69e/Ptb397UucHanMnD+AgXXXVVfn85z+fW2+9NfPmzcuHPvShPPDAA+P2OfPMM/Oxj30szz//fM4777x84hOfSJKcddZZ2bdvX6644oo8+eSTOfbYY/Mrv/IrOfvss9txKkBBHU3TNO0eAgCAw8vjWgCAgkQeAEBBIg8AoCCRBwBQkMgDAChI5AEAFCTyAAAKEnkAAAWJPACAgv4fdbB9EaexJy4AAAAASUVORK5CYII=\n"
          },
          "metadata": {}
        }
      ]
    },
    {
      "cell_type": "code",
      "source": [
        "# Minimizing the features\n",
        "final_news_dataset[\"text\"]=final_news_dataset[\"title\"]+final_news_dataset[\"text\"]\n",
        "dataset=final_news_dataset[[\"text\",\"label\"]]\n",
        "\n",
        "# Maping the labels into 0s and 1s\n",
        "dataset['label'] = final_news_dataset['label'].map({'true':1, 'fake':0})"
      ],
      "metadata": {
        "colab": {
          "base_uri": "https://localhost:8080/"
        },
        "id": "KhsDEe-I5OiT",
        "outputId": "fefc48c1-6839-433f-c79a-881344b898f8"
      },
      "execution_count": null,
      "outputs": [
        {
          "output_type": "stream",
          "name": "stderr",
          "text": [
            "<ipython-input-59-72ed2ab62922>:6: SettingWithCopyWarning: \n",
            "A value is trying to be set on a copy of a slice from a DataFrame.\n",
            "Try using .loc[row_indexer,col_indexer] = value instead\n",
            "\n",
            "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n",
            "  dataset['label'] = final_news_dataset['label'].map({'true':1, 'fake':0})\n"
          ]
        }
      ]
    },
    {
      "cell_type": "code",
      "source": [
        "# storing the features \n",
        "max_len=100\n",
        "text=dataset[\"text\"]\n",
        "label=dataset[\"label\"]"
      ],
      "metadata": {
        "id": "icH5EXWj6l-9"
      },
      "execution_count": null,
      "outputs": []
    },
    {
      "cell_type": "code",
      "source": [
        "\n",
        "# Load the tokenizer and model\n",
        "tokenizer = BertTokenizer.from_pretrained('bert-base-uncased')\n",
        "model = BertForSequenceClassification.from_pretrained('bert-base-uncased', num_labels=2)\n"
      ],
      "metadata": {
        "colab": {
          "base_uri": "https://localhost:8080/"
        },
        "id": "WqdRXa1XEvPr",
        "outputId": "14ac8ce1-4fbb-4fd2-a7f2-0fb9fa5cba8f"
      },
      "execution_count": null,
      "outputs": [
        {
          "output_type": "stream",
          "name": "stderr",
          "text": [
            "Some weights of the model checkpoint at bert-base-uncased were not used when initializing BertForSequenceClassification: ['cls.predictions.bias', 'cls.predictions.transform.dense.weight', 'cls.predictions.transform.dense.bias', 'cls.predictions.transform.LayerNorm.weight', 'cls.seq_relationship.bias', 'cls.seq_relationship.weight', 'cls.predictions.transform.LayerNorm.bias', 'cls.predictions.decoder.weight']\n",
            "- This IS expected if you are initializing BertForSequenceClassification from the checkpoint of a model trained on another task or with another architecture (e.g. initializing a BertForSequenceClassification model from a BertForPreTraining model).\n",
            "- This IS NOT expected if you are initializing BertForSequenceClassification from the checkpoint of a model that you expect to be exactly identical (initializing a BertForSequenceClassification model from a BertForSequenceClassification model).\n",
            "Some weights of BertForSequenceClassification were not initialized from the model checkpoint at bert-base-uncased and are newly initialized: ['classifier.bias', 'classifier.weight']\n",
            "You should probably TRAIN this model on a down-stream task to be able to use it for predictions and inference.\n"
          ]
        }
      ]
    },
    {
      "cell_type": "code",
      "source": [
        "text_train, text_test, label_train, label_test = train_test_split(text, label, stratify = label, test_size = 0.2, random_state = 50)"
      ],
      "metadata": {
        "id": "B580Edzq7OKu"
      },
      "execution_count": null,
      "outputs": []
    },
    {
      "cell_type": "code",
      "source": [
        "import transformers\n",
        "\n",
        "def tokenize_text(input_text):\n",
        "    # Initialize a BERT tokenizer with the pretrained model\n",
        "    tokenizer = transformers.BertTokenizer.from_pretrained('bert-base-uncased')\n",
        "    \n",
        "    # Tokenize the input text\n",
        "    tokenized_text = tokenizer.batch_encode_plus(\n",
        "        input_text,\n",
        "        max_length=100,\n",
        "        add_special_tokens=True,\n",
        "        padding='max_length',\n",
        "        truncation=True,\n",
        "        return_attention_mask=True,\n",
        "        return_token_type_ids=False,\n",
        "        verbose=True\n",
        "    )\n",
        "    \n",
        "    # Return the tokenized text\n",
        "    return tokenized_text"
      ],
      "metadata": {
        "id": "_VmBjJZs9BXu"
      },
      "execution_count": null,
      "outputs": []
    },
    {
      "cell_type": "code",
      "source": [
        "data_train_token = tokenize_text(text_train)\n",
        "data_test_token = tokenize_text(text_test)"
      ],
      "metadata": {
        "id": "YbrRMAyG9EYN"
      },
      "execution_count": null,
      "outputs": []
    },
    {
      "cell_type": "code",
      "source": [
        "import tensorflow as tf\n",
        "from tensorflow.keras.layers import Input, Dense, Dropout\n",
        "from tensorflow.keras.models import Model\n",
        "import transformers\n",
        "\n",
        "def create_model(maxlen):\n",
        "    # Load the BERT model and tokenizer\n",
        "    bert_model = transformers.TFBertModel.from_pretrained('bert-base-uncased')\n",
        "    bert_tokenizer = transformers.BertTokenizer.from_pretrained('bert-base-uncased')\n",
        "    \n",
        "    # Define input layers for BERT inputs\n",
        "    input_ids = Input(shape=(maxlen,), dtype=tf.int32)\n",
        "    input_mask = Input(shape=(maxlen,), dtype=tf.int32)\n",
        "    \n",
        "    # Use the BERT model to encode the input text\n",
        "    bert_layer = bert_model([input_ids, input_mask])[1]\n",
        "    \n",
        "    # Apply dropout regularization\n",
        "    x = Dropout(0.5)(bert_layer)\n",
        "    \n",
        "    # Add a fully connected layer with activation function tanh\n",
        "    x = Dense(64, activation='tanh')(x)\n",
        "    \n",
        "    # Apply dropout regularization again\n",
        "    x = Dropout(0.2)(x)\n",
        "    \n",
        "    # Add a final output layer with sigmoid activation function\n",
        "    x = Dense(1, activation='sigmoid')(x)\n",
        "    \n",
        "    # Define the model with inputs and outputs\n",
        "    model = Model(inputs=[input_ids, input_mask], outputs=x)\n",
        "    \n",
        "    # Return the model\n",
        "    return model"
      ],
      "metadata": {
        "id": "R_ypyyBA-_oh"
      },
      "execution_count": null,
      "outputs": []
    },
    {
      "cell_type": "code",
      "source": [
        "# Checking out the model\n",
        "\n",
        "model=create_model(100)\n",
        "model.summary()"
      ],
      "metadata": {
        "colab": {
          "base_uri": "https://localhost:8080/"
        },
        "id": "1R3mS0IK_G9l",
        "outputId": "0e1eb00c-bfd5-4680-f033-c791f3fa2f42"
      },
      "execution_count": null,
      "outputs": [
        {
          "output_type": "stream",
          "name": "stderr",
          "text": [
            "Some layers from the model checkpoint at bert-base-uncased were not used when initializing TFBertModel: ['mlm___cls', 'nsp___cls']\n",
            "- This IS expected if you are initializing TFBertModel from the checkpoint of a model trained on another task or with another architecture (e.g. initializing a BertForSequenceClassification model from a BertForPreTraining model).\n",
            "- This IS NOT expected if you are initializing TFBertModel from the checkpoint of a model that you expect to be exactly identical (initializing a BertForSequenceClassification model from a BertForSequenceClassification model).\n",
            "All the layers of TFBertModel were initialized from the model checkpoint at bert-base-uncased.\n",
            "If your task is similar to the task the model of the checkpoint was trained on, you can already use TFBertModel for predictions without further training.\n"
          ]
        },
        {
          "output_type": "stream",
          "name": "stdout",
          "text": [
            "Model: \"model_1\"\n",
            "__________________________________________________________________________________________________\n",
            " Layer (type)                   Output Shape         Param #     Connected to                     \n",
            "==================================================================================================\n",
            " input_3 (InputLayer)           [(None, 100)]        0           []                               \n",
            "                                                                                                  \n",
            " input_4 (InputLayer)           [(None, 100)]        0           []                               \n",
            "                                                                                                  \n",
            " tf_bert_model_1 (TFBertModel)  TFBaseModelOutputWi  109482240   ['input_3[0][0]',                \n",
            "                                thPoolingAndCrossAt               'input_4[0][0]']                \n",
            "                                tentions(last_hidde                                               \n",
            "                                n_state=(None, 100,                                               \n",
            "                                 768),                                                            \n",
            "                                 pooler_output=(Non                                               \n",
            "                                e, 768),                                                          \n",
            "                                 past_key_values=No                                               \n",
            "                                ne, hidden_states=N                                               \n",
            "                                one, attentions=Non                                               \n",
            "                                e, cross_attentions                                               \n",
            "                                =None)                                                            \n",
            "                                                                                                  \n",
            " dropout_76 (Dropout)           (None, 768)          0           ['tf_bert_model_1[0][1]']        \n",
            "                                                                                                  \n",
            " dense_2 (Dense)                (None, 64)           49216       ['dropout_76[0][0]']             \n",
            "                                                                                                  \n",
            " dropout_77 (Dropout)           (None, 64)           0           ['dense_2[0][0]']                \n",
            "                                                                                                  \n",
            " dense_3 (Dense)                (None, 1)            65          ['dropout_77[0][0]']             \n",
            "                                                                                                  \n",
            "==================================================================================================\n",
            "Total params: 109,531,521\n",
            "Trainable params: 109,531,521\n",
            "Non-trainable params: 0\n",
            "__________________________________________________________________________________________________\n"
          ]
        }
      ]
    },
    {
      "cell_type": "code",
      "source": [
        "import tensorflow as tf\n",
        "import matplotlib.pyplot as plt\n",
        "\n",
        "# Set up the optimizer with specific parameters\n",
        "optimizer = tf.keras.optimizers.legacy.Adam(\n",
        "    learning_rate=1e-05,\n",
        "    epsilon=1e-08,\n",
        "    decay=0.01,\n",
        "    clipnorm=1.0\n",
        ")\n",
        "\n",
        "\n",
        "# Compile the model with binary cross-entropy loss and accuracy metric\n",
        "model.compile(\n",
        "    optimizer=optimizer,\n",
        "    loss='binary_crossentropy',\n",
        "    metrics=['accuracy']\n",
        ")\n",
        "\n",
        "# Set up an early stopping callback with specific parameters\n",
        "callback = tf.keras.callbacks.EarlyStopping(\n",
        "    monitor='val_loss',\n",
        "    mode='max',\n",
        "    verbose=1,\n",
        "    patience=50,\n",
        "    baseline=0.4,\n",
        "    min_delta=0.0001,\n",
        "    restore_best_weights=False\n",
        ")\n"
      ],
      "metadata": {
        "id": "GPVqHrW2BBBe"
      },
      "execution_count": null,
      "outputs": []
    },
    {
      "cell_type": "code",
      "source": [
        "history = model.fit(x = {'input_1':data_train_token['input_ids'],'input_2':data_train_token['attention_mask']}, y = label_train, epochs=10, validation_split = 0.2, batch_size = 30, callbacks=[callback])"
      ],
      "metadata": {
        "id": "m8etkxDDUfnc"
      },
      "execution_count": null,
      "outputs": []
    },
    {
      "cell_type": "code",
      "source": [
        "# make predictions on the test data\n",
        "test_pred = model.predict(text_test)\n",
        "\n",
        "# calculate AUC score on the test data\n",
        "auc_score = roc_auc_score(label_test, test_pred)\n",
        "\n",
        "# plot ROC curve\n",
        "fpr, tpr, _ = roc_curve(label_test, test_pred)\n",
        "plt.plot(fpr, tpr)\n",
        "plt.title('ROC Curve (AUC = {:.2f})'.format(auc_score))\n",
        "plt.xlabel('False Positive Rate')\n",
        "plt.ylabel('True Positive Rate')\n",
        "plt.show()"
      ],
      "metadata": {
        "id": "aLSwrYrYZN_D"
      },
      "execution_count": null,
      "outputs": []
    },
    {
      "cell_type": "code",
      "source": [
        "import numpy as np\n",
        "from sklearn.metrics import confusion_matrix\n",
        "from mlxtend.plotting import plot_confusion_matrix\n",
        "import matplotlib.pyplot as plt\n",
        "\n",
        "\n",
        "conf_matrix = confusion_matrix(Y_test,y_pred)\n",
        "fig, ax = plot_confusion_matrix(conf_mat=conf_matrix, figsize=(6, 6), cmap=plt.cm.Greens)\n",
        "plt.xlabel('Predictions', fontsize=18)\n",
        "plt.ylabel('Actuals', fontsize=18)\n",
        "plt.title('Confusion Matrix', fontsize=18)\n",
        "plt.show()\n"
      ],
      "metadata": {
        "id": "LIE2zuvMPDfN"
      },
      "execution_count": null,
      "outputs": []
    },
    {
      "cell_type": "code",
      "source": [
        "\n",
        "# # Evaluate the model and generate an AUC curve\n",
        "# # model.eval()\n",
        "# y_true = []\n",
        "# y_pred = []\n",
        "# with torch.no_grad():\n",
        "#     for batch in test_dataloader:\n",
        "#         input_ids, attention_mask, labels = batch\n",
        "#         outputs = model(input_ids, attention_mask=attention_mask)\n",
        "#         logits = outputs.logits\n",
        "#         probs = torch.softmax(logits, dim=1)[:, 1]\n",
        "#         y_true.extend(labels.numpy())\n",
        "#         y_pred.extend(probs.numpy())\n",
        "# auc = roc_auc_score(y_true, y_pred)\n",
        "# print(f'AUC: {auc}')\n"
      ],
      "metadata": {
        "id": "nOoRwd7tFFO_"
      },
      "execution_count": null,
      "outputs": []
    },
    {
      "cell_type": "code",
      "source": [
        "testcase = \"New York City is set to reopen its public schools for in-person learning in the fall with no remote option for students, Mayor Bill de Blasio announced on Monday, making it the largest school district in the country to offer no virtual learning. The announcement came as the city has achieved its goal of vaccinating at least one million residents against Covid-19 and as public health officials have said that it is safe for schools to fully reopen.\""
      ],
      "metadata": {
        "id": "T8o_10CHa9qW"
      },
      "execution_count": null,
      "outputs": []
    },
    {
      "cell_type": "code",
      "source": [
        "test_token = tokenize_text(testcase)"
      ],
      "metadata": {
        "id": "xmzHCwfZbqV7"
      },
      "execution_count": null,
      "outputs": []
    },
    {
      "cell_type": "code",
      "source": [
        "test_text_pred = np.where(model.predict({ 'input_1' : test_token['input_ids'] , 'input_2' : test_token['attention_mask']}) >=0.5,1,0)"
      ],
      "metadata": {
        "id": "4ysgjuEYb1eS"
      },
      "execution_count": null,
      "outputs": []
    },
    {
      "cell_type": "code",
      "source": [
        "if(test_text_pred[0]==0): print(\"Fake news\")\n",
        "else: print(\"True News\")"
      ],
      "metadata": {
        "colab": {
          "base_uri": "https://localhost:8080/"
        },
        "id": "cM8-uH_Kb8Ok",
        "outputId": "94931573-ddb5-4516-8a52-b60bfc405186"
      },
      "execution_count": null,
      "outputs": [
        {
          "output_type": "stream",
          "name": "stdout",
          "text": [
            "Fake news\n"
          ]
        }
      ]
    },
    {
      "cell_type": "markdown",
      "source": [
        "**Write up**: \n",
        "* Link to the model on Hugging Face Hub: \n",
        "* Include some examples of misclassified news articles. Please explain what you might do to improve your model's performance on these news articles in the future (you do not need to impelement these suggestions)\n",
        "\n",
        "[Please put your write up here]"
      ],
      "metadata": {
        "id": "kpInVUMLyJ24"
      }
    },
    {
      "cell_type": "markdown",
      "source": [],
      "metadata": {
        "id": "ZTSnl1RBoCCy"
      }
    },
    {
      "cell_type": "markdown",
      "metadata": {
        "id": "jTfHpo6BOmE8"
      },
      "source": [
        "# 3. Deep RL / Robotics"
      ]
    },
    {
      "cell_type": "markdown",
      "metadata": {
        "id": "saB64bbTXWgZ"
      },
      "source": [
        "**RL for Classical Control:** Using any of the [classical control](https://github.com/openai/gym/blob/master/docs/environments.md#classic-control) environments from OpenAI's `gym`, implement a deep NN that learns an optimal policy which maximizes the reward of the environment.\n",
        "\n",
        "* Describe the NN you implemented and the behavior you observe from the agent as the model converges (or diverges).\n",
        "* Plot the reward as a function of steps (or Epochs).\n",
        "Compare your results to a random agent.\n",
        "* Discuss whether you think your model has learned the optimal policy and potential methods for improving it and/or where it might fail.\n",
        "* (Optional) [Upload the the model to the Hugging Face Hub](https://huggingface.co/docs/hub/adding-a-model), and add a link to your model below.\n",
        "\n",
        "\n",
        "You may use any frameworks you like, but you must implement your NN on your own (no pre-defined/trained models like [`stable_baselines`](https://stable-baselines.readthedocs.io/en/master/)).\n",
        "\n",
        "You may use any simulator other than `gym` _however_:\n",
        "* The environment has to be similar to the classical control environments (or more complex like [`robosuite`](https://github.com/ARISE-Initiative/robosuite)).\n",
        "* You cannot choose a game/Atari/text based environment. The purpose of this challenge is to demonstrate an understanding of basic kinematic/dynamic systems."
      ]
    },
    {
      "cell_type": "code",
      "source": [
        "### WRITE YOUR CODE TO TRAIN THE MODEL HERE"
      ],
      "metadata": {
        "id": "CUhkTcoeynVv"
      },
      "execution_count": null,
      "outputs": []
    },
    {
      "cell_type": "markdown",
      "source": [
        "**Write up**: \n",
        "* (Optional) link to the model on Hugging Face Hub: \n",
        "* Discuss whether you think your model has learned the optimal policy and potential methods for improving it and/or where it might fail.\n",
        "\n",
        "[Please put your write up here]"
      ],
      "metadata": {
        "id": "bWllPZhJyotg"
      }
    },
    {
      "cell_type": "markdown",
      "metadata": {
        "id": "rbrRbrISa5J_"
      },
      "source": [
        "# 4. Theory / Linear Algebra "
      ]
    },
    {
      "cell_type": "markdown",
      "metadata": {
        "id": "KFkLRCzTXTzL"
      },
      "source": [
        "**Implement Contrastive PCA** Read [this paper](https://www.nature.com/articles/s41467-018-04608-8) and implement contrastive PCA in Python.\n",
        "\n",
        "* First, please discuss what kind of dataset this would make sense to use this method on\n",
        "* Implement the method in Python (do not use previous implementations of the method if they already exist)\n",
        "* Then create a synthetic dataset and apply the method to the synthetic data. Compare with standard PCA.\n"
      ]
    },
    {
      "cell_type": "markdown",
      "source": [
        "**Write up**: Discuss what kind of dataset it would make sense to use Contrastive PCA\n",
        "\n",
        "[Please put your write up here]"
      ],
      "metadata": {
        "id": "TpyqWl-ly0wy"
      }
    },
    {
      "cell_type": "code",
      "source": [
        "### WRITE YOUR CODE HERE"
      ],
      "metadata": {
        "id": "1CQzUSfQywRk"
      },
      "execution_count": null,
      "outputs": []
    },
    {
      "cell_type": "markdown",
      "source": [
        "# 5. Systems"
      ],
      "metadata": {
        "id": "dlqmZS5Hy6q-"
      }
    },
    {
      "cell_type": "markdown",
      "source": [
        "**Inference on the edge**: Measure the inference times in various computationally-constrained settings\n",
        "\n",
        "* Pick a few different speech detection models (we suggest looking at models  on the [Hugging Face Hub](https://huggingface.co/models?pipeline_tag=automatic-speech-recognition&sort=downloads))\n",
        "* Simulate different memory constraints and CPU allocations that are realistic for edge devices that might run such models, such as smart speakers or microcontrollers, and measure what is the average inference time of the models under these conditions \n",
        "* How does the inference time vary with (1) choice of model (2) available system memory (3) available CPU (4) size of input?\n",
        "\n",
        "Are there any surprising discoveries? (Note that this coding challenge is fairly open-ended, so we will be considering the amount of effort invested in discovering something interesting here)."
      ],
      "metadata": {
        "id": "QW_eiDFw1QKm"
      }
    },
    {
      "cell_type": "code",
      "source": [
        "### WRITE YOUR CODE HERE"
      ],
      "metadata": {
        "id": "OYp94wLP1kWJ"
      },
      "execution_count": null,
      "outputs": []
    },
    {
      "cell_type": "markdown",
      "source": [
        "**Write up**: What surprising discoveries do you see?\n",
        "\n",
        "[Please put your write up here]"
      ],
      "metadata": {
        "id": "yoHmutWx2jer"
      }
    }
  ]
}