Nyxynyx commited on
Commit
4ecaa06
1 Parent(s): aafb87d

Initial commit

Browse files
.gitattributes CHANGED
@@ -32,3 +32,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
32
  *.zip filter=lfs diff=lfs merge=lfs -text
33
  *.zst filter=lfs diff=lfs merge=lfs -text
34
  *tfevents* filter=lfs diff=lfs merge=lfs -text
 
 
32
  *.zip filter=lfs diff=lfs merge=lfs -text
33
  *.zst filter=lfs diff=lfs merge=lfs -text
34
  *tfevents* filter=lfs diff=lfs merge=lfs -text
35
+ replay.mp4 filter=lfs diff=lfs merge=lfs -text
README.md ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - AntBulletEnv-v0
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: A2C
10
+ results:
11
+ - task:
12
+ type: reinforcement-learning
13
+ name: reinforcement-learning
14
+ dataset:
15
+ name: AntBulletEnv-v0
16
+ type: AntBulletEnv-v0
17
+ metrics:
18
+ - type: mean_reward
19
+ value: 2025.64 +/- 55.89
20
+ name: mean_reward
21
+ verified: false
22
+ ---
23
+
24
+ # **A2C** Agent playing **AntBulletEnv-v0**
25
+ This is a trained model of a **A2C** agent playing **AntBulletEnv-v0**
26
+ using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
27
+
28
+ ## Usage (with Stable-baselines3)
29
+ TODO: Add your code
30
+
31
+
32
+ ```python
33
+ from stable_baselines3 import ...
34
+ from huggingface_sb3 import load_from_hub
35
+
36
+ ...
37
+ ```
a2c-AntBulletEnv-v0.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:46d5fd24e04f477751c14eaab656f90b43f3d4c57fadd425b837e9cfd3971487
3
+ size 129260
a2c-AntBulletEnv-v0/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 1.7.0
a2c-AntBulletEnv-v0/data ADDED
@@ -0,0 +1,106 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
+ "__module__": "stable_baselines3.common.policies",
6
+ "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function ActorCriticPolicy.__init__ at 0x7f619ce48430>",
8
+ "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f619ce484c0>",
9
+ "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f619ce48550>",
10
+ "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f619ce485e0>",
11
+ "_build": "<function ActorCriticPolicy._build at 0x7f619ce48670>",
12
+ "forward": "<function ActorCriticPolicy.forward at 0x7f619ce48700>",
13
+ "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f619ce48790>",
14
+ "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f619ce48820>",
15
+ "_predict": "<function ActorCriticPolicy._predict at 0x7f619ce488b0>",
16
+ "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f619ce48940>",
17
+ "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f619ce489d0>",
18
+ "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f619ce48a60>",
19
+ "__abstractmethods__": "frozenset()",
20
+ "_abc_impl": "<_abc_data object at 0x7f619ce3df30>"
21
+ },
22
+ "verbose": 1,
23
+ "policy_kwargs": {
24
+ ":type:": "<class 'dict'>",
25
+ ":serialized:": "gAWVowAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRK/v///4wKb3J0aG9faW5pdJSJjA9vcHRpbWl6ZXJfY2xhc3OUjBN0b3JjaC5vcHRpbS5ybXNwcm9wlIwHUk1TcHJvcJSTlIwQb3B0aW1pemVyX2t3YXJnc5R9lCiMBWFscGhhlEc/764UeuFHrowDZXBzlEc+5Pi1iONo8YwMd2VpZ2h0X2RlY2F5lEsAdXUu",
26
+ "log_std_init": -2,
27
+ "ortho_init": false,
28
+ "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>",
29
+ "optimizer_kwargs": {
30
+ "alpha": 0.99,
31
+ "eps": 1e-05,
32
+ "weight_decay": 0
33
+ }
34
+ },
35
+ "observation_space": {
36
+ ":type:": "<class 'gym.spaces.box.Box'>",
37
+ ":serialized:": "gAWVZwIAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLHIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWcAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lGgKSxyFlIwBQ5R0lFKUjARoaWdolGgSKJZwAAAAAAAAAAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH+UaApLHIWUaBV0lFKUjA1ib3VuZGVkX2JlbG93lGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLHIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaCFLHIWUaBV0lFKUjApfbnBfcmFuZG9tlE51Yi4=",
38
+ "dtype": "float32",
39
+ "_shape": [
40
+ 28
41
+ ],
42
+ "low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf]",
43
+ "high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf]",
44
+ "bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]",
45
+ "bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]",
46
+ "_np_random": null
47
+ },
48
+ "action_space": {
49
+ ":type:": "<class 'gym.spaces.box.Box'>",
50
+ ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAIC/AACAvwAAgL8AAIC/AACAvwAAgL8AAIC/AACAv5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAP5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAQEBAQEBAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAEBAQEBAQEBlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
51
+ "dtype": "float32",
52
+ "_shape": [
53
+ 8
54
+ ],
55
+ "low": "[-1. -1. -1. -1. -1. -1. -1. -1.]",
56
+ "high": "[1. 1. 1. 1. 1. 1. 1. 1.]",
57
+ "bounded_below": "[ True True True True True True True True]",
58
+ "bounded_above": "[ True True True True True True True True]",
59
+ "_np_random": null
60
+ },
61
+ "n_envs": 4,
62
+ "num_timesteps": 2000000,
63
+ "_total_timesteps": 2000000,
64
+ "_num_timesteps_at_start": 0,
65
+ "seed": null,
66
+ "action_noise": null,
67
+ "start_time": 1674580243204042167,
68
+ "learning_rate": 0.00096,
69
+ "tensorboard_log": null,
70
+ "lr_schedule": {
71
+ ":type:": "<class 'function'>",
72
+ ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/T3UQTVUdaYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
73
+ },
74
+ "_last_obs": {
75
+ ":type:": "<class 'numpy.ndarray'>",
76
+ ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAOIMzb4anbY+s2mLPp+viT9evNi8gjtfwDIGxT7EjzI/RgFXvg1gcD6JqsQ+4fLRPrcOXL/pfQnAWeohP2IX3z7xDr4+svrzPg4QLD761YA+f5jGPzTlFED/gQ+/mowTwPZlRb+dNbi/ohCYPllyx79cUVo+9pQGP2CDuj2GB9U+UFg1P+9PTD+PLbk+gSqFvqounT0Inwc+Xs6DPuEXn77kgZQ+02PtPhNlur6iafA9WRv6PgGAT78Ir/8+sheqPpJhnT5ku1e/UcOuPrpc/zz2ZUW/beIxP6IQmD5mSyQ/dASCvuBeBz4VJO4+uzAVPwsuDr4GRnvAASwvPXaxuj79u2++nSCcv3P1Bz9Pli9AMoNQvkYJGcCbavU+ZG2WPgtzMT9DBBm/K5hxPlK5DL0R8HI/2tTdPzmzML/D6ivA9mVFv501uL+iEJg+WXLHvx1pjr6VG9o9M+v3Po60ij+MT60+OeMdv1GeWDxQJRs+kzfTvgvJlL7uviM/1/FLP0lxEr9/4Na/Xoh2PwXF4r+H1yE+FkJdP+mJSj7WNeE/+N0BPjdG0z+tqk2+4Y+Iv9n/pT+dNbi/ohCYPmZLJD+UjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"
77
+ },
78
+ "_last_episode_starts": {
79
+ ":type:": "<class 'numpy.ndarray'>",
80
+ ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="
81
+ },
82
+ "_last_original_obs": {
83
+ ":type:": "<class 'numpy.ndarray'>",
84
+ ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAAAAAADYszq2AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAzo8cvQAAAADM5dy/AAAAAD/AFL0AAAAAbl3zPwAAAADOuuq9AAAAAGNS4j8AAAAAaDddOwAAAAAjKuC/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACWJQtgAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgDRRmD0AAAAAKtLxvwAAAADRM6a9AAAAALbV7z8AAAAAko/CPQAAAAAqXdk/AAAAAG2mjD0AAAAA8NbZvwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAEGasTQAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAID/JQu+AAAAAP0W+r8AAAAATNKhPAAAAAB2d+w/AAAAACQqEr4AAAAAg6bzPwAAAAA8VBq7AAAAAGWt/L8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACe16w1AACAPwAAAAAAAAAAAAAAAAAAAAAAAACARjMEPgAAAABT7Om/AAAAAOB4sj0AAAAAmuPpPwAAAACBfAw+AAAAAEo27D8AAAAAMCYkPQAAAABEad2/AAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"
85
+ },
86
+ "_episode_num": 0,
87
+ "use_sde": true,
88
+ "sde_sample_freq": -1,
89
+ "_current_progress_remaining": 0.0,
90
+ "ep_info_buffer": {
91
+ ":type:": "<class 'collections.deque'>",
92
+ ":serialized:": "gAWVRAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQJ25mVPepGaMAWyUTegDjAF0lEdArjxlEd/8VHV9lChoBkdAoFBnoaDPGGgHTegDaAhHQK5AFgRbr1N1fZQoaAZHQJ+NhFMIu5BoB03oA2gIR0CuQGqslsxgdX2UKGgGR0CfW2Jzkp7UaAdN6ANoCEdArkMSY/mknHV9lChoBkdAoBaMAo5PuWgHTegDaAhHQK5I9b7CSA91fZQoaAZHQKBjIdbPhQ5oB03oA2gIR0CuTKO2AoXsdX2UKGgGR0CgBoROtW+5aAdN6ANoCEdArkzyxoqTbHV9lChoBkdAnuc0JKJ2uGgHTegDaAhHQK5PiukDZDl1fZQoaAZHQJ06vOIInjRoB03oA2gIR0CuVUSwwCbMdX2UKGgGR0Chg7VQQ+UyaAdN6ANoCEdArlj/Vf/m1nV9lChoBkdAmFNWyX2M9GgHTegDaAhHQK5ZUKsuFpR1fZQoaAZHQJ/Vn9ehPCVoB03oA2gIR0CuW/jrzGxVdX2UKGgGR0CaQBHrQgLaaAdN6ANoCEdArmHFVWCEpXV9lChoBkdAnb2Ia5wwTWgHTegDaAhHQK5lkAPuogp1fZQoaAZHQJ0kO9f1HvtoB03oA2gIR0CuZd+UY8+zdX2UKGgGR0CcYjZGrjo7aAdN6ANoCEdArmh/2h7E53V9lChoBkdAoGnYMx46fmgHTegDaAhHQK5uYAksz2x1fZQoaAZHQJw+D2Dg62hoB03oA2gIR0CuciFyaNModX2UKGgGR0CdfnuL74zraAdN6ANoCEdArnJwS6DoQnV9lChoBkdAnsO50wJw9GgHTegDaAhHQK51CSidrft1fZQoaAZHQKBMcFvhqCZoB03oA2gIR0CuetEGA09AdX2UKGgGR0CeBhrGR3eOaAdN6ANoCEdArn6falDWsnV9lChoBkdAn6nPZRKpUGgHTegDaAhHQK5+6MYMvyt1fZQoaAZHQKAtVk4FRpFoB03oA2gIR0CugYxPfsNUdX2UKGgGR0CeeZ9ycTakaAdN6ANoCEdArodUFwDNhXV9lChoBkdAn4ZhciW3SmgHTegDaAhHQK6LBDOTq0N1fZQoaAZHQKAdHN7BwddoB03oA2gIR0Cui1mKQ7tBdX2UKGgGR0CgLe31jAi3aAdN6ANoCEdAro3NY6nzhHV9lChoBkdAoAhC/CZWrGgHTegDaAhHQK6Te34Kx9p1fZQoaAZHQJ90i4c3l0ZoB03oA2gIR0Culyhl18sudX2UKGgGR0CfxUcZccENaAdN6ANoCEdArpd2rhisn3V9lChoBkdAn1W4duHerWgHTegDaAhHQK6aJk7wKBx1fZQoaAZHQJsPrVpbliloB03oA2gIR0Cun+/lIVdpdX2UKGgGR0Cdtd8QI2OyaAdN6ANoCEdArqOXpB5X2nV9lChoBkdAnAY/ffoA4mgHTegDaAhHQK6j5fdhy811fZQoaAZHQJ5slzHS4ONoB03oA2gIR0CupoDFQ2uQdX2UKGgGR0CgGqNLDhtMaAdN6ANoCEdArqxl+G47R3V9lChoBkdAns3ZZKWcBmgHTegDaAhHQK6wT7LMcIZ1fZQoaAZHQKAqQb9ZRsNoB03oA2gIR0CusJzXrdFfdX2UKGgGR0Cc5/AsCkoGaAdN6ANoCEdArrMh82JizHV9lChoBkdAnbrohMajvmgHTegDaAhHQK64ruKGcnV1fZQoaAZHQJxUvh3qzJJoB03oA2gIR0CuvHcW0qpcdX2UKGgGR0CdGZdSVGCqaAdN6ANoCEdArrzGNo8IRnV9lChoBkdAnFdpu63AmGgHTegDaAhHQK6/hON5t3x1fZQoaAZHQJsd1ZPl+3JoB03oA2gIR0CuxUCVKPGRdX2UKGgGR0CbGBZcLSeAaAdN6ANoCEdArskOQCCBgHV9lChoBkdAmSxABgeA/mgHTegDaAhHQK7JVoWYWtV1fZQoaAZHQJ1gV6lchTxoB03oA2gIR0Cuy9tmthd/dX2UKGgGR0CWn77WuoxYaAdN6ANoCEdArtGlWdVebHV9lChoBkdAlusiU9pyqGgHTegDaAhHQK7VcaLGaQV1fZQoaAZHQJxuoEt/WlNoB03oA2gIR0Cu1b0JOWSmdX2UKGgGR0CdRlM4tHx0aAdN6ANoCEdArthOJaaCtnV9lChoBkdAnaBBTCLuQmgHTegDaAhHQK7d8UBXCCV1fZQoaAZHQJ3PpGvwEyNoB03oA2gIR0Cu4bCbUgB+dX2UKGgGR0CS48WfseGPaAdN6ANoCEdAruH+OdXkpHV9lChoBkdAnMYlcpsoD2gHTegDaAhHQK7km7z06HV1fZQoaAZHQJsMhNrTH81oB03oA2gIR0Cu6lJfICEIdX2UKGgGR0CbK5l4keIVaAdN6ANoCEdAru3wQ6IWQHV9lChoBkdAmjAeT3Zf2WgHTegDaAhHQK7uQ5CngpB1fZQoaAZHQJnssm6XjVBoB03oA2gIR0Cu8OmX5WRzdX2UKGgGR0CbQZ+XJHRUaAdN6ANoCEdArvanrUsnRnV9lChoBkdAnzK433pOe2gHTegDaAhHQK76hEF4cFR1fZQoaAZHQKAmfhF3IMloB03oA2gIR0Cu+s8x0uDjdX2UKGgGR0Cf9h9d/rjYaAdN6ANoCEdArv2MMgEEDHV9lChoBkdAoLrRIWgvlGgHTegDaAhHQK8DPYZl4C91fZQoaAZHQKC5gZNwiq1oB03oA2gIR0CvBvbaAWi2dX2UKGgGR0Cdre0Qsf7raAdN6ANoCEdArwdJKe05VHV9lChoBkdAnv99XcQAdWgHTegDaAhHQK8KAqd6LO11fZQoaAZHQKCZEABDG99oB03oA2gIR0CvD87rcCYDdX2UKGgGR0Cg0FYODrZ8aAdN6ANoCEdArxOQlF+d9XV9lChoBkdAoBx3X5FgD2gHTegDaAhHQK8T3NoJzDJ1fZQoaAZHQKDolpjc2zhoB03oA2gIR0CvFnkOy3TedX2UKGgGR0CeptkC3gDSaAdN6ANoCEdArxwEhzNliHV9lChoBkdAn7mibYsd1mgHTegDaAhHQK8ftX/YJ3R1fZQoaAZHQJ0aQRFqi49oB03oA2gIR0CvIAtA1NxmdX2UKGgGR0Cehx1h9b5eaAdN6ANoCEdAryKzsv7FbXV9lChoBkdAoDAh2IO6NGgHTegDaAhHQK8oaYfGMn91fZQoaAZHQJ+WVLBbfP5oB03oA2gIR0CvLBVmBe5XdX2UKGgGR0Cbt0fPX05EaAdN6ANoCEdAryxiTMaCMHV9lChoBkdAlPQkTcqOLmgHTegDaAhHQK8u9DXvphZ1fZQoaAZHQJ+BoLpiZv1oB03oA2gIR0CvNJAH3UQTdX2UKGgGR0CfVnl1r6+GaAdN6ANoCEdArzg+C9RJmXV9lChoBkdAnm6lE7W/amgHTegDaAhHQK84jIoVmBh1fZQoaAZHQJ5Sk6V+qipoB03oA2gIR0CvOy+tjkMkdX2UKGgGR0CeQ74TbnHOaAdN6ANoCEdAr0D5DG96C3V9lChoBkdAn0GDBqKxcGgHTegDaAhHQK9EsQ4CIUJ1fZQoaAZHQJ3vs/X5FgFoB03oA2gIR0CvRPrQPZqVdX2UKGgGR0CbfrX7cfvGaAdN6ANoCEdAr0eX3pOernV9lChoBkdAnEfs2WIGhWgHTegDaAhHQK9NKEnLJS11fZQoaAZHQJ3k5KvmozhoB03oA2gIR0CvUOjjBEa3dX2UKGgGR0Ceu1ZTAFgVaAdN6ANoCEdAr1E5LZi/f3V9lChoBkdAn0kwGfPHDWgHTegDaAhHQK9Tz/ZM+Nd1fZQoaAZHQKBlWQOnVG1oB03oA2gIR0CvWY+RPoFFdX2UKGgGR0CgY5Mp5NXYaAdN6ANoCEdAr102nO0LMXV9lChoBkdAoDk/n4fwJGgHTegDaAhHQK9dfye7L+x1fZQoaAZHQKBzAPp6hQFoB03oA2gIR0CvYA8FyJbddX2UKGgGR0CfJGdwvQF+aAdN6ANoCEdAr2Wj5dnkDXV9lChoBkdAoBEkKArhBWgHTegDaAhHQK9pU5q/M4d1fZQoaAZHQJ5ZrMgU1yhoB03oA2gIR0CvaaAeq7yydX2UKGgGR0CdDWfHggoxaAdN6ANoCEdAr2xAkPczqXVlLg=="
93
+ },
94
+ "ep_success_buffer": {
95
+ ":type:": "<class 'collections.deque'>",
96
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
97
+ },
98
+ "_n_updates": 62500,
99
+ "n_steps": 8,
100
+ "gamma": 0.99,
101
+ "gae_lambda": 0.9,
102
+ "ent_coef": 0.0,
103
+ "vf_coef": 0.4,
104
+ "max_grad_norm": 0.5,
105
+ "normalize_advantage": false
106
+ }
a2c-AntBulletEnv-v0/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:32fbe2e5e43aeee8b8b6916179f850c866af347ca76345e9cc9f98cc4b6d9be8
3
+ size 56190
a2c-AntBulletEnv-v0/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:f47d94181fd34864a398e155e75831c5cc14886ba8ab0e6c7500ec229e0a88b1
3
+ size 56958
a2c-AntBulletEnv-v0/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
3
+ size 431
a2c-AntBulletEnv-v0/system_info.txt ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ - OS: Linux-5.10.147+-x86_64-with-glibc2.29 # 1 SMP Sat Dec 10 16:00:40 UTC 2022
2
+ - Python: 3.8.10
3
+ - Stable-Baselines3: 1.7.0
4
+ - PyTorch: 1.13.1+cu116
5
+ - GPU Enabled: True
6
+ - Numpy: 1.21.6
7
+ - Gym: 0.21.0
config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f619ce48430>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f619ce484c0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f619ce48550>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f619ce485e0>", "_build": "<function ActorCriticPolicy._build at 0x7f619ce48670>", "forward": "<function ActorCriticPolicy.forward at 0x7f619ce48700>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f619ce48790>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f619ce48820>", "_predict": "<function ActorCriticPolicy._predict at 0x7f619ce488b0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f619ce48940>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f619ce489d0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f619ce48a60>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7f619ce3df30>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVowAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRK/v///4wKb3J0aG9faW5pdJSJjA9vcHRpbWl6ZXJfY2xhc3OUjBN0b3JjaC5vcHRpbS5ybXNwcm9wlIwHUk1TcHJvcJSTlIwQb3B0aW1pemVyX2t3YXJnc5R9lCiMBWFscGhhlEc/764UeuFHrowDZXBzlEc+5Pi1iONo8YwMd2VpZ2h0X2RlY2F5lEsAdXUu", "log_std_init": -2, "ortho_init": false, "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVZwIAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLHIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWcAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lGgKSxyFlIwBQ5R0lFKUjARoaWdolGgSKJZwAAAAAAAAAAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH+UaApLHIWUaBV0lFKUjA1ib3VuZGVkX2JlbG93lGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLHIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaCFLHIWUaBV0lFKUjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "_shape": [28], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAIC/AACAvwAAgL8AAIC/AACAvwAAgL8AAIC/AACAv5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAP5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAQEBAQEBAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAEBAQEBAQEBlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-1. -1. -1. -1. -1. -1. -1. -1.]", "high": "[1. 1. 1. 1. 1. 1. 1. 1.]", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_np_random": null}, "n_envs": 4, "num_timesteps": 2000000, "_total_timesteps": 2000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1674580243204042167, "learning_rate": 0.00096, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/T3UQTVUdaYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAOIMzb4anbY+s2mLPp+viT9evNi8gjtfwDIGxT7EjzI/RgFXvg1gcD6JqsQ+4fLRPrcOXL/pfQnAWeohP2IX3z7xDr4+svrzPg4QLD761YA+f5jGPzTlFED/gQ+/mowTwPZlRb+dNbi/ohCYPllyx79cUVo+9pQGP2CDuj2GB9U+UFg1P+9PTD+PLbk+gSqFvqounT0Inwc+Xs6DPuEXn77kgZQ+02PtPhNlur6iafA9WRv6PgGAT78Ir/8+sheqPpJhnT5ku1e/UcOuPrpc/zz2ZUW/beIxP6IQmD5mSyQ/dASCvuBeBz4VJO4+uzAVPwsuDr4GRnvAASwvPXaxuj79u2++nSCcv3P1Bz9Pli9AMoNQvkYJGcCbavU+ZG2WPgtzMT9DBBm/K5hxPlK5DL0R8HI/2tTdPzmzML/D6ivA9mVFv501uL+iEJg+WXLHvx1pjr6VG9o9M+v3Po60ij+MT60+OeMdv1GeWDxQJRs+kzfTvgvJlL7uviM/1/FLP0lxEr9/4Na/Xoh2PwXF4r+H1yE+FkJdP+mJSj7WNeE/+N0BPjdG0z+tqk2+4Y+Iv9n/pT+dNbi/ohCYPmZLJD+UjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAAAAAADYszq2AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAzo8cvQAAAADM5dy/AAAAAD/AFL0AAAAAbl3zPwAAAADOuuq9AAAAAGNS4j8AAAAAaDddOwAAAAAjKuC/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACWJQtgAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgDRRmD0AAAAAKtLxvwAAAADRM6a9AAAAALbV7z8AAAAAko/CPQAAAAAqXdk/AAAAAG2mjD0AAAAA8NbZvwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAEGasTQAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAID/JQu+AAAAAP0W+r8AAAAATNKhPAAAAAB2d+w/AAAAACQqEr4AAAAAg6bzPwAAAAA8VBq7AAAAAGWt/L8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACe16w1AACAPwAAAAAAAAAAAAAAAAAAAAAAAACARjMEPgAAAABT7Om/AAAAAOB4sj0AAAAAmuPpPwAAAACBfAw+AAAAAEo27D8AAAAAMCYkPQAAAABEad2/AAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"}, "_episode_num": 0, "use_sde": true, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVRAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQJ25mVPepGaMAWyUTegDjAF0lEdArjxlEd/8VHV9lChoBkdAoFBnoaDPGGgHTegDaAhHQK5AFgRbr1N1fZQoaAZHQJ+NhFMIu5BoB03oA2gIR0CuQGqslsxgdX2UKGgGR0CfW2Jzkp7UaAdN6ANoCEdArkMSY/mknHV9lChoBkdAoBaMAo5PuWgHTegDaAhHQK5I9b7CSA91fZQoaAZHQKBjIdbPhQ5oB03oA2gIR0CuTKO2AoXsdX2UKGgGR0CgBoROtW+5aAdN6ANoCEdArkzyxoqTbHV9lChoBkdAnuc0JKJ2uGgHTegDaAhHQK5PiukDZDl1fZQoaAZHQJ06vOIInjRoB03oA2gIR0CuVUSwwCbMdX2UKGgGR0Chg7VQQ+UyaAdN6ANoCEdArlj/Vf/m1nV9lChoBkdAmFNWyX2M9GgHTegDaAhHQK5ZUKsuFpR1fZQoaAZHQJ/Vn9ehPCVoB03oA2gIR0CuW/jrzGxVdX2UKGgGR0CaQBHrQgLaaAdN6ANoCEdArmHFVWCEpXV9lChoBkdAnb2Ia5wwTWgHTegDaAhHQK5lkAPuogp1fZQoaAZHQJ0kO9f1HvtoB03oA2gIR0CuZd+UY8+zdX2UKGgGR0CcYjZGrjo7aAdN6ANoCEdArmh/2h7E53V9lChoBkdAoGnYMx46fmgHTegDaAhHQK5uYAksz2x1fZQoaAZHQJw+D2Dg62hoB03oA2gIR0CuciFyaNModX2UKGgGR0CdfnuL74zraAdN6ANoCEdArnJwS6DoQnV9lChoBkdAnsO50wJw9GgHTegDaAhHQK51CSidrft1fZQoaAZHQKBMcFvhqCZoB03oA2gIR0CuetEGA09AdX2UKGgGR0CeBhrGR3eOaAdN6ANoCEdArn6falDWsnV9lChoBkdAn6nPZRKpUGgHTegDaAhHQK5+6MYMvyt1fZQoaAZHQKAtVk4FRpFoB03oA2gIR0CugYxPfsNUdX2UKGgGR0CeeZ9ycTakaAdN6ANoCEdArodUFwDNhXV9lChoBkdAn4ZhciW3SmgHTegDaAhHQK6LBDOTq0N1fZQoaAZHQKAdHN7BwddoB03oA2gIR0Cui1mKQ7tBdX2UKGgGR0CgLe31jAi3aAdN6ANoCEdAro3NY6nzhHV9lChoBkdAoAhC/CZWrGgHTegDaAhHQK6Te34Kx9p1fZQoaAZHQJ90i4c3l0ZoB03oA2gIR0Culyhl18sudX2UKGgGR0CfxUcZccENaAdN6ANoCEdArpd2rhisn3V9lChoBkdAn1W4duHerWgHTegDaAhHQK6aJk7wKBx1fZQoaAZHQJsPrVpbliloB03oA2gIR0Cun+/lIVdpdX2UKGgGR0Cdtd8QI2OyaAdN6ANoCEdArqOXpB5X2nV9lChoBkdAnAY/ffoA4mgHTegDaAhHQK6j5fdhy811fZQoaAZHQJ5slzHS4ONoB03oA2gIR0CupoDFQ2uQdX2UKGgGR0CgGqNLDhtMaAdN6ANoCEdArqxl+G47R3V9lChoBkdAns3ZZKWcBmgHTegDaAhHQK6wT7LMcIZ1fZQoaAZHQKAqQb9ZRsNoB03oA2gIR0CusJzXrdFfdX2UKGgGR0Cc5/AsCkoGaAdN6ANoCEdArrMh82JizHV9lChoBkdAnbrohMajvmgHTegDaAhHQK64ruKGcnV1fZQoaAZHQJxUvh3qzJJoB03oA2gIR0CuvHcW0qpcdX2UKGgGR0CdGZdSVGCqaAdN6ANoCEdArrzGNo8IRnV9lChoBkdAnFdpu63AmGgHTegDaAhHQK6/hON5t3x1fZQoaAZHQJsd1ZPl+3JoB03oA2gIR0CuxUCVKPGRdX2UKGgGR0CbGBZcLSeAaAdN6ANoCEdArskOQCCBgHV9lChoBkdAmSxABgeA/mgHTegDaAhHQK7JVoWYWtV1fZQoaAZHQJ1gV6lchTxoB03oA2gIR0Cuy9tmthd/dX2UKGgGR0CWn77WuoxYaAdN6ANoCEdArtGlWdVebHV9lChoBkdAlusiU9pyqGgHTegDaAhHQK7VcaLGaQV1fZQoaAZHQJxuoEt/WlNoB03oA2gIR0Cu1b0JOWSmdX2UKGgGR0CdRlM4tHx0aAdN6ANoCEdArthOJaaCtnV9lChoBkdAnaBBTCLuQmgHTegDaAhHQK7d8UBXCCV1fZQoaAZHQJ3PpGvwEyNoB03oA2gIR0Cu4bCbUgB+dX2UKGgGR0CS48WfseGPaAdN6ANoCEdAruH+OdXkpHV9lChoBkdAnMYlcpsoD2gHTegDaAhHQK7km7z06HV1fZQoaAZHQJsMhNrTH81oB03oA2gIR0Cu6lJfICEIdX2UKGgGR0CbK5l4keIVaAdN6ANoCEdAru3wQ6IWQHV9lChoBkdAmjAeT3Zf2WgHTegDaAhHQK7uQ5CngpB1fZQoaAZHQJnssm6XjVBoB03oA2gIR0Cu8OmX5WRzdX2UKGgGR0CbQZ+XJHRUaAdN6ANoCEdArvanrUsnRnV9lChoBkdAnzK433pOe2gHTegDaAhHQK76hEF4cFR1fZQoaAZHQKAmfhF3IMloB03oA2gIR0Cu+s8x0uDjdX2UKGgGR0Cf9h9d/rjYaAdN6ANoCEdArv2MMgEEDHV9lChoBkdAoLrRIWgvlGgHTegDaAhHQK8DPYZl4C91fZQoaAZHQKC5gZNwiq1oB03oA2gIR0CvBvbaAWi2dX2UKGgGR0Cdre0Qsf7raAdN6ANoCEdArwdJKe05VHV9lChoBkdAnv99XcQAdWgHTegDaAhHQK8KAqd6LO11fZQoaAZHQKCZEABDG99oB03oA2gIR0CvD87rcCYDdX2UKGgGR0Cg0FYODrZ8aAdN6ANoCEdArxOQlF+d9XV9lChoBkdAoBx3X5FgD2gHTegDaAhHQK8T3NoJzDJ1fZQoaAZHQKDolpjc2zhoB03oA2gIR0CvFnkOy3TedX2UKGgGR0CeptkC3gDSaAdN6ANoCEdArxwEhzNliHV9lChoBkdAn7mibYsd1mgHTegDaAhHQK8ftX/YJ3R1fZQoaAZHQJ0aQRFqi49oB03oA2gIR0CvIAtA1NxmdX2UKGgGR0Cehx1h9b5eaAdN6ANoCEdAryKzsv7FbXV9lChoBkdAoDAh2IO6NGgHTegDaAhHQK8oaYfGMn91fZQoaAZHQJ+WVLBbfP5oB03oA2gIR0CvLBVmBe5XdX2UKGgGR0Cbt0fPX05EaAdN6ANoCEdAryxiTMaCMHV9lChoBkdAlPQkTcqOLmgHTegDaAhHQK8u9DXvphZ1fZQoaAZHQJ+BoLpiZv1oB03oA2gIR0CvNJAH3UQTdX2UKGgGR0CfVnl1r6+GaAdN6ANoCEdArzg+C9RJmXV9lChoBkdAnm6lE7W/amgHTegDaAhHQK84jIoVmBh1fZQoaAZHQJ5Sk6V+qipoB03oA2gIR0CvOy+tjkMkdX2UKGgGR0CeQ74TbnHOaAdN6ANoCEdAr0D5DG96C3V9lChoBkdAn0GDBqKxcGgHTegDaAhHQK9EsQ4CIUJ1fZQoaAZHQJ3vs/X5FgFoB03oA2gIR0CvRPrQPZqVdX2UKGgGR0CbfrX7cfvGaAdN6ANoCEdAr0eX3pOernV9lChoBkdAnEfs2WIGhWgHTegDaAhHQK9NKEnLJS11fZQoaAZHQJ3k5KvmozhoB03oA2gIR0CvUOjjBEa3dX2UKGgGR0Ceu1ZTAFgVaAdN6ANoCEdAr1E5LZi/f3V9lChoBkdAn0kwGfPHDWgHTegDaAhHQK9Tz/ZM+Nd1fZQoaAZHQKBlWQOnVG1oB03oA2gIR0CvWY+RPoFFdX2UKGgGR0CgY5Mp5NXYaAdN6ANoCEdAr102nO0LMXV9lChoBkdAoDk/n4fwJGgHTegDaAhHQK9dfye7L+x1fZQoaAZHQKBzAPp6hQFoB03oA2gIR0CvYA8FyJbddX2UKGgGR0CfJGdwvQF+aAdN6ANoCEdAr2Wj5dnkDXV9lChoBkdAoBEkKArhBWgHTegDaAhHQK9pU5q/M4d1fZQoaAZHQJ5ZrMgU1yhoB03oA2gIR0CvaaAeq7yydX2UKGgGR0CdDWfHggoxaAdN6ANoCEdAr2xAkPczqXVlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 62500, "n_steps": 8, "gamma": 0.99, "gae_lambda": 0.9, "ent_coef": 0.0, "vf_coef": 0.4, "max_grad_norm": 0.5, "normalize_advantage": false, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.29 # 1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.8.10", "Stable-Baselines3": "1.7.0", "PyTorch": "1.13.1+cu116", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
replay.mp4 ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:2bd2b4b307bd29d3b68daacb99d07d6f0d511834ac901007e312b560de795df6
3
+ size 1271473
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mean_reward": 2025.644408569485, "std_reward": 55.88709664609119, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-01-24T18:37:23.995248"}
vec_normalize.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:382743f4f2c97862ada2cf84a3ae6c50045dfa60ef3b1406f56f5dfa0e9f0eea
3
+ size 2136