Nyxynyx commited on
Commit
ad8ea47
1 Parent(s): f717e79

Initial commit

Browse files
README.md ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - PandaReachDense-v2
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: A2C
10
+ results:
11
+ - task:
12
+ type: reinforcement-learning
13
+ name: reinforcement-learning
14
+ dataset:
15
+ name: PandaReachDense-v2
16
+ type: PandaReachDense-v2
17
+ metrics:
18
+ - type: mean_reward
19
+ value: -2.33 +/- 0.61
20
+ name: mean_reward
21
+ verified: false
22
+ ---
23
+
24
+ # **A2C** Agent playing **PandaReachDense-v2**
25
+ This is a trained model of a **A2C** agent playing **PandaReachDense-v2**
26
+ using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
27
+
28
+ ## Usage (with Stable-baselines3)
29
+ TODO: Add your code
30
+
31
+
32
+ ```python
33
+ from stable_baselines3 import ...
34
+ from huggingface_sb3 import load_from_hub
35
+
36
+ ...
37
+ ```
a2c-PandaReachDense-v2.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:3e0447e929d365e42fa6a8dcde7bf129da2c092a222535cddc22c71d2dbdd9f9
3
+ size 108095
a2c-PandaReachDense-v2/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 1.7.0
a2c-PandaReachDense-v2/data ADDED
@@ -0,0 +1,94 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=",
5
+ "__module__": "stable_baselines3.common.policies",
6
+ "__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7f619ce48b80>",
8
+ "__abstractmethods__": "frozenset()",
9
+ "_abc_impl": "<_abc_data object at 0x7f619ce4a210>"
10
+ },
11
+ "verbose": 1,
12
+ "policy_kwargs": {
13
+ ":type:": "<class 'dict'>",
14
+ ":serialized:": "gAWVgQAAAAAAAAB9lCiMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=",
15
+ "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>",
16
+ "optimizer_kwargs": {
17
+ "alpha": 0.99,
18
+ "eps": 1e-05,
19
+ "weight_decay": 0
20
+ }
21
+ },
22
+ "observation_space": {
23
+ ":type:": "<class 'gym.spaces.dict.Dict'>",
24
+ ":serialized:": "gAWVUgMAAAAAAACMD2d5bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwOZ3ltLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUaBCTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowGX3NoYXBllEsDhZSMA2xvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZSMAUOUdJRSlIwEaGlnaJRoHSiWDAAAAAAAAAAAACBBAAAgQQAAIEGUaBVLA4WUaCB0lFKUjA1ib3VuZGVkX2JlbG93lGgdKJYDAAAAAAAAAAEBAZRoEowCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZRoIHSUUpSMDWJvdW5kZWRfYWJvdmWUaB0olgMAAAAAAAAAAQEBlGgsSwOFlGggdJRSlIwKX25wX3JhbmRvbZROdWKMDGRlc2lyZWRfZ29hbJRoDSmBlH2UKGgQaBVoGEsDhZRoGmgdKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZRoIHSUUpRoI2gdKJYMAAAAAAAAAAAAIEEAACBBAAAgQZRoFUsDhZRoIHSUUpRoKGgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoMmgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoN051YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgVaBhLBoWUaBpoHSiWGAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBVLBoWUaCB0lFKUaCNoHSiWGAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBVLBoWUaCB0lFKUaChoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDJoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDdOdWJ1aBhOaBBOaDdOdWIu",
25
+ "spaces": "OrderedDict([('achieved_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('desired_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('observation', Box([-10. -10. -10. -10. -10. -10.], [10. 10. 10. 10. 10. 10.], (6,), float32))])",
26
+ "_shape": null,
27
+ "dtype": null,
28
+ "_np_random": null
29
+ },
30
+ "action_space": {
31
+ ":type:": "<class 'gym.spaces.box.Box'>",
32
+ ":serialized:": "gAWVbQEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLA4WUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaApLA4WUjAFDlHSUUpSMBGhpZ2iUaBIolgwAAAAAAAAAAACAPwAAgD8AAIA/lGgKSwOFlGgVdJRSlIwNYm91bmRlZF9iZWxvd5RoEiiWAwAAAAAAAAABAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYDAAAAAAAAAAEBAZRoIUsDhZRoFXSUUpSMCl9ucF9yYW5kb22UTnViLg==",
33
+ "dtype": "float32",
34
+ "_shape": [
35
+ 3
36
+ ],
37
+ "low": "[-1. -1. -1.]",
38
+ "high": "[1. 1. 1.]",
39
+ "bounded_below": "[ True True True]",
40
+ "bounded_above": "[ True True True]",
41
+ "_np_random": null
42
+ },
43
+ "n_envs": 4,
44
+ "num_timesteps": 1000000,
45
+ "_total_timesteps": 1000000,
46
+ "_num_timesteps_at_start": 0,
47
+ "seed": null,
48
+ "action_noise": null,
49
+ "start_time": 1674586559342492520,
50
+ "learning_rate": 0.0007,
51
+ "tensorboard_log": null,
52
+ "lr_schedule": {
53
+ ":type:": "<class 'function'>",
54
+ ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/RvAGjbi6x4WUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
55
+ },
56
+ "_last_obs": {
57
+ ":type:": "<class 'collections.OrderedDict'>",
58
+ ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAAyGXIPofeSjvvixA/yGXIPofeSjvvixA/yGXIPofeSjvvixA/yGXIPofeSjvvixA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAUB6jvzYQZT8x76o/gfkAvyes3D/cS8a/PvmuP1VSjD/fVxu+2+GAv860fD4QQn6/lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADIZcg+h95KO++LED9pu287tsknuiKfObnIZcg+h95KO++LED9pu287tsknuiKfObnIZcg+h95KO++LED9pu287tsknuiKfObnIZcg+h95KO++LED9pu287tsknuiKfObmUaA5LBEsGhpRoEnSUUpR1Lg==",
59
+ "achieved_goal": "[[0.39140153 0.00309554 0.5646352 ]\n [0.39140153 0.00309554 0.5646352 ]\n [0.39140153 0.00309554 0.5646352 ]\n [0.39140153 0.00309554 0.5646352 ]]",
60
+ "desired_goal": "[[-1.2743626 0.8947786 1.3354245 ]\n [-0.5038071 1.7240037 -1.54919 ]\n [ 1.3669813 1.0962626 -0.15170239]\n [-1.0068926 0.24678347 -0.99319553]]",
61
+ "observation": "[[ 3.9140153e-01 3.0955391e-03 5.6463522e-01 3.6580211e-03\n -6.4006017e-04 -1.7702256e-04]\n [ 3.9140153e-01 3.0955391e-03 5.6463522e-01 3.6580211e-03\n -6.4006017e-04 -1.7702256e-04]\n [ 3.9140153e-01 3.0955391e-03 5.6463522e-01 3.6580211e-03\n -6.4006017e-04 -1.7702256e-04]\n [ 3.9140153e-01 3.0955391e-03 5.6463522e-01 3.6580211e-03\n -6.4006017e-04 -1.7702256e-04]]"
62
+ },
63
+ "_last_episode_starts": {
64
+ ":type:": "<class 'numpy.ndarray'>",
65
+ ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAEBAQGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="
66
+ },
67
+ "_last_original_obs": {
68
+ ":type:": "<class 'collections.OrderedDict'>",
69
+ ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAADlsBPoS8BL12io0+wtENPjAlJTwbYyE+ep32PZPA7rskjv49wYOGPQdpFL6eOzg+lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==",
70
+ "achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]",
71
+ "desired_goal": "[[ 0.12632391 -0.03240635 0.276447 ]\n [ 0.13849548 0.01007967 0.15760462]\n [ 0.12041755 -0.00728614 0.12429455]\n [ 0.06568099 -0.1449319 0.17991492]]",
72
+ "observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"
73
+ },
74
+ "_episode_num": 0,
75
+ "use_sde": false,
76
+ "sde_sample_freq": -1,
77
+ "_current_progress_remaining": 0.0,
78
+ "ep_info_buffer": {
79
+ ":type:": "<class 'collections.deque'>",
80
+ ":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMI5xvRPevaB8CUhpRSlIwBbJRLMowBdJRHQKTrcvOhTOx1fZQoaAZoCWgPQwhzgGCOHv8FwJSGlFKUaBVLMmgWR0Ck6zlF2FFldX2UKGgGaAloD0MIZVWEm4xq+7+UhpRSlGgVSzJoFkdApOr8Ouq3mXV9lChoBmgJaA9DCNVeRNsxdQTAlIaUUpRoFUsyaBZHQKTqvTOPeYV1fZQoaAZoCWgPQwhH41C/C5sJwJSGlFKUaBVLMmgWR0Ck7Gs2eg+RdX2UKGgGaAloD0MIezGUE+1KBMCUhpRSlGgVSzJoFkdApOwxmXgLqnV9lChoBmgJaA9DCJm4VRAD/QPAlIaUUpRoFUsyaBZHQKTr9JZGKAJ1fZQoaAZoCWgPQwi63ct9cnQDwJSGlFKUaBVLMmgWR0Ck67UyP+4tdX2UKGgGaAloD0MIy/Yhb7n6/7+UhpRSlGgVSzJoFkdApO1kDhcZ+HV9lChoBmgJaA9DCMCTFi6rkArAlIaUUpRoFUsyaBZHQKTtKl/H5rR1fZQoaAZoCWgPQwi4kEdwI/UQwJSGlFKUaBVLMmgWR0Ck7O1CHARDdX2UKGgGaAloD0MI3q0s0VlGC8CUhpRSlGgVSzJoFkdApOyt6/qPfnV9lChoBmgJaA9DCKJ9rOC3AQXAlIaUUpRoFUsyaBZHQKTuXD6WPcV1fZQoaAZoCWgPQwj2QgHbwbgRwJSGlFKUaBVLMmgWR0Ck7iLSVnmJdX2UKGgGaAloD0MIO/w1WaNeA8CUhpRSlGgVSzJoFkdApO3mgam4zHV9lChoBmgJaA9DCLLYJhWNNQXAlIaUUpRoFUsyaBZHQKTtp2JSBLB1fZQoaAZoCWgPQwjLgok/iloJwJSGlFKUaBVLMmgWR0Ck702Jiy6ddX2UKGgGaAloD0MIAfbRqSt/BMCUhpRSlGgVSzJoFkdApO8T4Hoou3V9lChoBmgJaA9DCHEBaJQu3Q/AlIaUUpRoFUsyaBZHQKTu1sMy8Bd1fZQoaAZoCWgPQwghy4KJPwoFwJSGlFKUaBVLMmgWR0Ck7pe5Fw1jdX2UKGgGaAloD0MId6BOeXQjBcCUhpRSlGgVSzJoFkdApPA+kLx7RnV9lChoBmgJaA9DCAkzbf/KKgLAlIaUUpRoFUsyaBZHQKTwBPYWcjJ1fZQoaAZoCWgPQwgNpfYi2m4BwJSGlFKUaBVLMmgWR0Ck78fpD/lydX2UKGgGaAloD0MIOdGuQspvB8CUhpRSlGgVSzJoFkdApO+IizLOiXV9lChoBmgJaA9DCDv8NVmjHg7AlIaUUpRoFUsyaBZHQKTxM5H3Del1fZQoaAZoCWgPQwhW73A7NIwHwJSGlFKUaBVLMmgWR0Ck8PoSlFc6dX2UKGgGaAloD0MII74Ts14sB8CUhpRSlGgVSzJoFkdApPC9RDTjN3V9lChoBmgJaA9DCN/i4T0H1ve/lIaUUpRoFUsyaBZHQKTwffmcOLB1fZQoaAZoCWgPQwhHPUSjO7gQwJSGlFKUaBVLMmgWR0Ck8io42jwhdX2UKGgGaAloD0MIAgzLn2/rCcCUhpRSlGgVSzJoFkdApPHwkHD77HV9lChoBmgJaA9DCL9jeOxnsQTAlIaUUpRoFUsyaBZHQKTxs4x1xKh1fZQoaAZoCWgPQwihKxGo/oEEwJSGlFKUaBVLMmgWR0Ck8XSS/0uldX2UKGgGaAloD0MIQswlVdvtB8CUhpRSlGgVSzJoFkdApPMePkq+anV9lChoBmgJaA9DCHOdRloqrwTAlIaUUpRoFUsyaBZHQKTy5Jz1bq11fZQoaAZoCWgPQwi/Khcq/7oEwJSGlFKUaBVLMmgWR0Ck8qfiHZbqdX2UKGgGaAloD0MIQYF38ukRAMCUhpRSlGgVSzJoFkdApPJoow22onV9lChoBmgJaA9DCEllijkIOgHAlIaUUpRoFUsyaBZHQKT0FrRBu4x1fZQoaAZoCWgPQwia7+AnDmAHwJSGlFKUaBVLMmgWR0Ck893ocJdCdX2UKGgGaAloD0MIgxd9BWkGCcCUhpRSlGgVSzJoFkdApPOhBw++unV9lChoBmgJaA9DCDE/NzRlJwPAlIaUUpRoFUsyaBZHQKTzYdKdxyZ1fZQoaAZoCWgPQwhGQfD49m4GwJSGlFKUaBVLMmgWR0Ck9QvTw2ETdX2UKGgGaAloD0MI5neazHj7A8CUhpRSlGgVSzJoFkdApPTSJqIrOXV9lChoBmgJaA9DCNY2xeOiGgbAlIaUUpRoFUsyaBZHQKT0lVZs9B91fZQoaAZoCWgPQwjj4T0HlgMIwJSGlFKUaBVLMmgWR0Ck9FYDTz/ZdX2UKGgGaAloD0MIgH106sonCcCUhpRSlGgVSzJoFkdApPYIESuhbnV9lChoBmgJaA9DCAgGED6UiAjAlIaUUpRoFUsyaBZHQKT1znwG4Zx1fZQoaAZoCWgPQwjRzmkWaDcHwJSGlFKUaBVLMmgWR0Ck9ZGdZq20dX2UKGgGaAloD0MIVryReeTP/r+UhpRSlGgVSzJoFkdApPVSURnOB3V9lChoBmgJaA9DCHKG4o43eQHAlIaUUpRoFUsyaBZHQKT3A/yGzrx1fZQoaAZoCWgPQwg8FtukopECwJSGlFKUaBVLMmgWR0Ck9spaaCtjdX2UKGgGaAloD0MIbR6HwfwV/r+UhpRSlGgVSzJoFkdApPaNedCmdnV9lChoBmgJaA9DCMWqQZjb/QLAlIaUUpRoFUsyaBZHQKT2TlcQiA51fZQoaAZoCWgPQwglBoGVQ0v9v5SGlFKUaBVLMmgWR0Ck9/wzLwF1dX2UKGgGaAloD0MIjnkdccimCMCUhpRSlGgVSzJoFkdApPfCofjjrHV9lChoBmgJaA9DCB9lxAWg0QHAlIaUUpRoFUsyaBZHQKT3hbRF7Up1fZQoaAZoCWgPQwhaLEXylaAIwJSGlFKUaBVLMmgWR0Ck90axxDLKdX2UKGgGaAloD0MIm1Wfq63YAsCUhpRSlGgVSzJoFkdApPkCMJhOQHV9lChoBmgJaA9DCJYFE38UNQ3AlIaUUpRoFUsyaBZHQKT4yH31zyV1fZQoaAZoCWgPQwhIUtLD0KoEwJSGlFKUaBVLMmgWR0Ck+IuSOinHdX2UKGgGaAloD0MIlzldFhPbC8CUhpRSlGgVSzJoFkdApPhMMG5c1XV9lChoBmgJaA9DCHZvRWKCWgfAlIaUUpRoFUsyaBZHQKT5/srNGEx1fZQoaAZoCWgPQwjZJhWNtT//v5SGlFKUaBVLMmgWR0Ck+cUgr6LwdX2UKGgGaAloD0MIjxg9t9AVA8CUhpRSlGgVSzJoFkdApPmIFqzqr3V9lChoBmgJaA9DCMmwijcyrwPAlIaUUpRoFUsyaBZHQKT5SMwUQCl1fZQoaAZoCWgPQwhZFkz8URT7v5SGlFKUaBVLMmgWR0Ck+vmIsRQKdX2UKGgGaAloD0MIJezbSUS4BMCUhpRSlGgVSzJoFkdApPq/4/NZ/3V9lChoBmgJaA9DCHBh3Xh3tBDAlIaUUpRoFUsyaBZHQKT6gudPLxJ1fZQoaAZoCWgPQwjCwd7EkLwLwJSGlFKUaBVLMmgWR0Ck+kPw3HaOdX2UKGgGaAloD0MIK4arAyAOCcCUhpRSlGgVSzJoFkdApPv3/Lkjo3V9lChoBmgJaA9DCJG0G33MR/2/lIaUUpRoFUsyaBZHQKT7vlEqlP91fZQoaAZoCWgPQwizXDY654cIwJSGlFKUaBVLMmgWR0Ck+4FTFVDKdX2UKGgGaAloD0MIfewuUFIABcCUhpRSlGgVSzJoFkdApPtCVObiInV9lChoBmgJaA9DCLPNjekJqwDAlIaUUpRoFUsyaBZHQKT8/cBU70Z1fZQoaAZoCWgPQwgH7dXHQ98CwJSGlFKUaBVLMmgWR0Ck/MTYEnstdX2UKGgGaAloD0MIiEfi5encC8CUhpRSlGgVSzJoFkdApPyIwyqMnHV9lChoBmgJaA9DCL9J06Bo3gjAlIaUUpRoFUsyaBZHQKT8ScAiml91fZQoaAZoCWgPQwhwlpLlJJQFwJSGlFKUaBVLMmgWR0Ck/fj94u9OdX2UKGgGaAloD0MI4UbKFkk7AcCUhpRSlGgVSzJoFkdApP2/ZPEbYXV9lChoBmgJaA9DCARUOIJUagHAlIaUUpRoFUsyaBZHQKT9gpQ1rIp1fZQoaAZoCWgPQwiwdD48SxAIwJSGlFKUaBVLMmgWR0Ck/UNLDhtMdX2UKGgGaAloD0MISKMCJ9sgD8CUhpRSlGgVSzJoFkdApP7xJ5E+gXV9lChoBmgJaA9DCDp15bM8z/6/lIaUUpRoFUsyaBZHQKT+t4ptrKx1fZQoaAZoCWgPQwgQ641aYeoRwJSGlFKUaBVLMmgWR0Ck/nq+zt1IdX2UKGgGaAloD0MIRPtYwW+jBcCUhpRSlGgVSzJoFkdApP47i++M63V9lChoBmgJaA9DCMkiTbwDvArAlIaUUpRoFUsyaBZHQKT/5GEPDpF1fZQoaAZoCWgPQwhntiv0wXIFwJSGlFKUaBVLMmgWR0Ck/6sMy8BddX2UKGgGaAloD0MIy0v+J393/r+UhpRSlGgVSzJoFkdApP9uEIw/PnV9lChoBmgJaA9DCEn2CDVDCgjAlIaUUpRoFUsyaBZHQKT/LrleWv91fZQoaAZoCWgPQwi0yeGTTqT7v5SGlFKUaBVLMmgWR0ClAOEt29tedX2UKGgGaAloD0MIwopTrYW5DMCUhpRSlGgVSzJoFkdApQCnmknCwnV9lChoBmgJaA9DCMNhaeBH1QbAlIaUUpRoFUsyaBZHQKUAaqtHQQd1fZQoaAZoCWgPQwiIhVrTvGMAwJSGlFKUaBVLMmgWR0ClACtorWiDdX2UKGgGaAloD0MIMlncf2Q6AcCUhpRSlGgVSzJoFkdApQHl3B55aHV9lChoBmgJaA9DCC8Whsjpa/m/lIaUUpRoFUsyaBZHQKUBrD6WPcV1fZQoaAZoCWgPQwi+h0uOO6UCwJSGlFKUaBVLMmgWR0ClAW+KbaysdX2UKGgGaAloD0MIX1yq0hZXAMCUhpRSlGgVSzJoFkdApQEwQBgeBHV9lChoBmgJaA9DCLbz/dR4CQLAlIaUUpRoFUsyaBZHQKUC16Hj6vd1fZQoaAZoCWgPQwjbEyS2u0f5v5SGlFKUaBVLMmgWR0ClAp4XXRPXdX2UKGgGaAloD0MI5IbfTbcMAsCUhpRSlGgVSzJoFkdApQJhDG96C3V9lChoBmgJaA9DCDNv1XWoBgbAlIaUUpRoFUsyaBZHQKUCIbMotth1ZS4="
81
+ },
82
+ "ep_success_buffer": {
83
+ ":type:": "<class 'collections.deque'>",
84
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
85
+ },
86
+ "_n_updates": 50000,
87
+ "n_steps": 5,
88
+ "gamma": 0.99,
89
+ "gae_lambda": 1.0,
90
+ "ent_coef": 0.0,
91
+ "vf_coef": 0.5,
92
+ "max_grad_norm": 0.5,
93
+ "normalize_advantage": false
94
+ }
a2c-PandaReachDense-v2/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:2637b7098affa982e6013339502e61ff0263a54c178c2030862836285742a0a0
3
+ size 44734
a2c-PandaReachDense-v2/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:a89b15826031bc7e6c8029b02c2b0d1004f9cd97d100f9f803db23ad7e471c48
3
+ size 46014
a2c-PandaReachDense-v2/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
3
+ size 431
a2c-PandaReachDense-v2/system_info.txt ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ - OS: Linux-5.10.147+-x86_64-with-glibc2.29 # 1 SMP Sat Dec 10 16:00:40 UTC 2022
2
+ - Python: 3.8.10
3
+ - Stable-Baselines3: 1.7.0
4
+ - PyTorch: 1.13.1+cu116
5
+ - GPU Enabled: True
6
+ - Numpy: 1.21.6
7
+ - Gym: 0.21.0
config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=", "__module__": "stable_baselines3.common.policies", "__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7f619ce48b80>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7f619ce4a210>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVgQAAAAAAAAB9lCiMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=", "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "observation_space": {":type:": "<class 'gym.spaces.dict.Dict'>", ":serialized:": "gAWVUgMAAAAAAACMD2d5bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwOZ3ltLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUaBCTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowGX3NoYXBllEsDhZSMA2xvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZSMAUOUdJRSlIwEaGlnaJRoHSiWDAAAAAAAAAAAACBBAAAgQQAAIEGUaBVLA4WUaCB0lFKUjA1ib3VuZGVkX2JlbG93lGgdKJYDAAAAAAAAAAEBAZRoEowCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZRoIHSUUpSMDWJvdW5kZWRfYWJvdmWUaB0olgMAAAAAAAAAAQEBlGgsSwOFlGggdJRSlIwKX25wX3JhbmRvbZROdWKMDGRlc2lyZWRfZ29hbJRoDSmBlH2UKGgQaBVoGEsDhZRoGmgdKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZRoIHSUUpRoI2gdKJYMAAAAAAAAAAAAIEEAACBBAAAgQZRoFUsDhZRoIHSUUpRoKGgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoMmgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoN051YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgVaBhLBoWUaBpoHSiWGAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBVLBoWUaCB0lFKUaCNoHSiWGAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBVLBoWUaCB0lFKUaChoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDJoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDdOdWJ1aBhOaBBOaDdOdWIu", "spaces": "OrderedDict([('achieved_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('desired_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('observation', Box([-10. -10. -10. -10. -10. -10.], [10. 10. 10. 10. 10. 10.], (6,), float32))])", "_shape": null, "dtype": null, "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVbQEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLA4WUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaApLA4WUjAFDlHSUUpSMBGhpZ2iUaBIolgwAAAAAAAAAAACAPwAAgD8AAIA/lGgKSwOFlGgVdJRSlIwNYm91bmRlZF9iZWxvd5RoEiiWAwAAAAAAAAABAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYDAAAAAAAAAAEBAZRoIUsDhZRoFXSUUpSMCl9ucF9yYW5kb22UTnViLg==", "dtype": "float32", "_shape": [3], "low": "[-1. -1. -1.]", "high": "[1. 1. 1.]", "bounded_below": "[ True True True]", "bounded_above": "[ True True True]", "_np_random": null}, "n_envs": 4, "num_timesteps": 1000000, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1674586559342492520, "learning_rate": 0.0007, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/RvAGjbi6x4WUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAAyGXIPofeSjvvixA/yGXIPofeSjvvixA/yGXIPofeSjvvixA/yGXIPofeSjvvixA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAUB6jvzYQZT8x76o/gfkAvyes3D/cS8a/PvmuP1VSjD/fVxu+2+GAv860fD4QQn6/lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADIZcg+h95KO++LED9pu287tsknuiKfObnIZcg+h95KO++LED9pu287tsknuiKfObnIZcg+h95KO++LED9pu287tsknuiKfObnIZcg+h95KO++LED9pu287tsknuiKfObmUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[0.39140153 0.00309554 0.5646352 ]\n [0.39140153 0.00309554 0.5646352 ]\n [0.39140153 0.00309554 0.5646352 ]\n [0.39140153 0.00309554 0.5646352 ]]", "desired_goal": "[[-1.2743626 0.8947786 1.3354245 ]\n [-0.5038071 1.7240037 -1.54919 ]\n [ 1.3669813 1.0962626 -0.15170239]\n [-1.0068926 0.24678347 -0.99319553]]", "observation": "[[ 3.9140153e-01 3.0955391e-03 5.6463522e-01 3.6580211e-03\n -6.4006017e-04 -1.7702256e-04]\n [ 3.9140153e-01 3.0955391e-03 5.6463522e-01 3.6580211e-03\n -6.4006017e-04 -1.7702256e-04]\n [ 3.9140153e-01 3.0955391e-03 5.6463522e-01 3.6580211e-03\n -6.4006017e-04 -1.7702256e-04]\n [ 3.9140153e-01 3.0955391e-03 5.6463522e-01 3.6580211e-03\n -6.4006017e-04 -1.7702256e-04]]"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAEBAQGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAADlsBPoS8BL12io0+wtENPjAlJTwbYyE+ep32PZPA7rskjv49wYOGPQdpFL6eOzg+lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]", "desired_goal": "[[ 0.12632391 -0.03240635 0.276447 ]\n [ 0.13849548 0.01007967 0.15760462]\n [ 0.12041755 -0.00728614 0.12429455]\n [ 0.06568099 -0.1449319 0.17991492]]", "observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"}, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMI5xvRPevaB8CUhpRSlIwBbJRLMowBdJRHQKTrcvOhTOx1fZQoaAZoCWgPQwhzgGCOHv8FwJSGlFKUaBVLMmgWR0Ck6zlF2FFldX2UKGgGaAloD0MIZVWEm4xq+7+UhpRSlGgVSzJoFkdApOr8Ouq3mXV9lChoBmgJaA9DCNVeRNsxdQTAlIaUUpRoFUsyaBZHQKTqvTOPeYV1fZQoaAZoCWgPQwhH41C/C5sJwJSGlFKUaBVLMmgWR0Ck7Gs2eg+RdX2UKGgGaAloD0MIezGUE+1KBMCUhpRSlGgVSzJoFkdApOwxmXgLqnV9lChoBmgJaA9DCJm4VRAD/QPAlIaUUpRoFUsyaBZHQKTr9JZGKAJ1fZQoaAZoCWgPQwi63ct9cnQDwJSGlFKUaBVLMmgWR0Ck67UyP+4tdX2UKGgGaAloD0MIy/Yhb7n6/7+UhpRSlGgVSzJoFkdApO1kDhcZ+HV9lChoBmgJaA9DCMCTFi6rkArAlIaUUpRoFUsyaBZHQKTtKl/H5rR1fZQoaAZoCWgPQwi4kEdwI/UQwJSGlFKUaBVLMmgWR0Ck7O1CHARDdX2UKGgGaAloD0MI3q0s0VlGC8CUhpRSlGgVSzJoFkdApOyt6/qPfnV9lChoBmgJaA9DCKJ9rOC3AQXAlIaUUpRoFUsyaBZHQKTuXD6WPcV1fZQoaAZoCWgPQwj2QgHbwbgRwJSGlFKUaBVLMmgWR0Ck7iLSVnmJdX2UKGgGaAloD0MIO/w1WaNeA8CUhpRSlGgVSzJoFkdApO3mgam4zHV9lChoBmgJaA9DCLLYJhWNNQXAlIaUUpRoFUsyaBZHQKTtp2JSBLB1fZQoaAZoCWgPQwjLgok/iloJwJSGlFKUaBVLMmgWR0Ck702Jiy6ddX2UKGgGaAloD0MIAfbRqSt/BMCUhpRSlGgVSzJoFkdApO8T4Hoou3V9lChoBmgJaA9DCHEBaJQu3Q/AlIaUUpRoFUsyaBZHQKTu1sMy8Bd1fZQoaAZoCWgPQwghy4KJPwoFwJSGlFKUaBVLMmgWR0Ck7pe5Fw1jdX2UKGgGaAloD0MId6BOeXQjBcCUhpRSlGgVSzJoFkdApPA+kLx7RnV9lChoBmgJaA9DCAkzbf/KKgLAlIaUUpRoFUsyaBZHQKTwBPYWcjJ1fZQoaAZoCWgPQwgNpfYi2m4BwJSGlFKUaBVLMmgWR0Ck78fpD/lydX2UKGgGaAloD0MIOdGuQspvB8CUhpRSlGgVSzJoFkdApO+IizLOiXV9lChoBmgJaA9DCDv8NVmjHg7AlIaUUpRoFUsyaBZHQKTxM5H3Del1fZQoaAZoCWgPQwhW73A7NIwHwJSGlFKUaBVLMmgWR0Ck8PoSlFc6dX2UKGgGaAloD0MII74Ts14sB8CUhpRSlGgVSzJoFkdApPC9RDTjN3V9lChoBmgJaA9DCN/i4T0H1ve/lIaUUpRoFUsyaBZHQKTwffmcOLB1fZQoaAZoCWgPQwhHPUSjO7gQwJSGlFKUaBVLMmgWR0Ck8io42jwhdX2UKGgGaAloD0MIAgzLn2/rCcCUhpRSlGgVSzJoFkdApPHwkHD77HV9lChoBmgJaA9DCL9jeOxnsQTAlIaUUpRoFUsyaBZHQKTxs4x1xKh1fZQoaAZoCWgPQwihKxGo/oEEwJSGlFKUaBVLMmgWR0Ck8XSS/0uldX2UKGgGaAloD0MIQswlVdvtB8CUhpRSlGgVSzJoFkdApPMePkq+anV9lChoBmgJaA9DCHOdRloqrwTAlIaUUpRoFUsyaBZHQKTy5Jz1bq11fZQoaAZoCWgPQwi/Khcq/7oEwJSGlFKUaBVLMmgWR0Ck8qfiHZbqdX2UKGgGaAloD0MIQYF38ukRAMCUhpRSlGgVSzJoFkdApPJoow22onV9lChoBmgJaA9DCEllijkIOgHAlIaUUpRoFUsyaBZHQKT0FrRBu4x1fZQoaAZoCWgPQwia7+AnDmAHwJSGlFKUaBVLMmgWR0Ck893ocJdCdX2UKGgGaAloD0MIgxd9BWkGCcCUhpRSlGgVSzJoFkdApPOhBw++unV9lChoBmgJaA9DCDE/NzRlJwPAlIaUUpRoFUsyaBZHQKTzYdKdxyZ1fZQoaAZoCWgPQwhGQfD49m4GwJSGlFKUaBVLMmgWR0Ck9QvTw2ETdX2UKGgGaAloD0MI5neazHj7A8CUhpRSlGgVSzJoFkdApPTSJqIrOXV9lChoBmgJaA9DCNY2xeOiGgbAlIaUUpRoFUsyaBZHQKT0lVZs9B91fZQoaAZoCWgPQwjj4T0HlgMIwJSGlFKUaBVLMmgWR0Ck9FYDTz/ZdX2UKGgGaAloD0MIgH106sonCcCUhpRSlGgVSzJoFkdApPYIESuhbnV9lChoBmgJaA9DCAgGED6UiAjAlIaUUpRoFUsyaBZHQKT1znwG4Zx1fZQoaAZoCWgPQwjRzmkWaDcHwJSGlFKUaBVLMmgWR0Ck9ZGdZq20dX2UKGgGaAloD0MIVryReeTP/r+UhpRSlGgVSzJoFkdApPVSURnOB3V9lChoBmgJaA9DCHKG4o43eQHAlIaUUpRoFUsyaBZHQKT3A/yGzrx1fZQoaAZoCWgPQwg8FtukopECwJSGlFKUaBVLMmgWR0Ck9spaaCtjdX2UKGgGaAloD0MIbR6HwfwV/r+UhpRSlGgVSzJoFkdApPaNedCmdnV9lChoBmgJaA9DCMWqQZjb/QLAlIaUUpRoFUsyaBZHQKT2TlcQiA51fZQoaAZoCWgPQwglBoGVQ0v9v5SGlFKUaBVLMmgWR0Ck9/wzLwF1dX2UKGgGaAloD0MIjnkdccimCMCUhpRSlGgVSzJoFkdApPfCofjjrHV9lChoBmgJaA9DCB9lxAWg0QHAlIaUUpRoFUsyaBZHQKT3hbRF7Up1fZQoaAZoCWgPQwhaLEXylaAIwJSGlFKUaBVLMmgWR0Ck90axxDLKdX2UKGgGaAloD0MIm1Wfq63YAsCUhpRSlGgVSzJoFkdApPkCMJhOQHV9lChoBmgJaA9DCJYFE38UNQ3AlIaUUpRoFUsyaBZHQKT4yH31zyV1fZQoaAZoCWgPQwhIUtLD0KoEwJSGlFKUaBVLMmgWR0Ck+IuSOinHdX2UKGgGaAloD0MIlzldFhPbC8CUhpRSlGgVSzJoFkdApPhMMG5c1XV9lChoBmgJaA9DCHZvRWKCWgfAlIaUUpRoFUsyaBZHQKT5/srNGEx1fZQoaAZoCWgPQwjZJhWNtT//v5SGlFKUaBVLMmgWR0Ck+cUgr6LwdX2UKGgGaAloD0MIjxg9t9AVA8CUhpRSlGgVSzJoFkdApPmIFqzqr3V9lChoBmgJaA9DCMmwijcyrwPAlIaUUpRoFUsyaBZHQKT5SMwUQCl1fZQoaAZoCWgPQwhZFkz8URT7v5SGlFKUaBVLMmgWR0Ck+vmIsRQKdX2UKGgGaAloD0MIJezbSUS4BMCUhpRSlGgVSzJoFkdApPq/4/NZ/3V9lChoBmgJaA9DCHBh3Xh3tBDAlIaUUpRoFUsyaBZHQKT6gudPLxJ1fZQoaAZoCWgPQwjCwd7EkLwLwJSGlFKUaBVLMmgWR0Ck+kPw3HaOdX2UKGgGaAloD0MIK4arAyAOCcCUhpRSlGgVSzJoFkdApPv3/Lkjo3V9lChoBmgJaA9DCJG0G33MR/2/lIaUUpRoFUsyaBZHQKT7vlEqlP91fZQoaAZoCWgPQwizXDY654cIwJSGlFKUaBVLMmgWR0Ck+4FTFVDKdX2UKGgGaAloD0MIfewuUFIABcCUhpRSlGgVSzJoFkdApPtCVObiInV9lChoBmgJaA9DCLPNjekJqwDAlIaUUpRoFUsyaBZHQKT8/cBU70Z1fZQoaAZoCWgPQwgH7dXHQ98CwJSGlFKUaBVLMmgWR0Ck/MTYEnstdX2UKGgGaAloD0MIiEfi5encC8CUhpRSlGgVSzJoFkdApPyIwyqMnHV9lChoBmgJaA9DCL9J06Bo3gjAlIaUUpRoFUsyaBZHQKT8ScAiml91fZQoaAZoCWgPQwhwlpLlJJQFwJSGlFKUaBVLMmgWR0Ck/fj94u9OdX2UKGgGaAloD0MI4UbKFkk7AcCUhpRSlGgVSzJoFkdApP2/ZPEbYXV9lChoBmgJaA9DCARUOIJUagHAlIaUUpRoFUsyaBZHQKT9gpQ1rIp1fZQoaAZoCWgPQwiwdD48SxAIwJSGlFKUaBVLMmgWR0Ck/UNLDhtMdX2UKGgGaAloD0MISKMCJ9sgD8CUhpRSlGgVSzJoFkdApP7xJ5E+gXV9lChoBmgJaA9DCDp15bM8z/6/lIaUUpRoFUsyaBZHQKT+t4ptrKx1fZQoaAZoCWgPQwgQ641aYeoRwJSGlFKUaBVLMmgWR0Ck/nq+zt1IdX2UKGgGaAloD0MIRPtYwW+jBcCUhpRSlGgVSzJoFkdApP47i++M63V9lChoBmgJaA9DCMkiTbwDvArAlIaUUpRoFUsyaBZHQKT/5GEPDpF1fZQoaAZoCWgPQwhntiv0wXIFwJSGlFKUaBVLMmgWR0Ck/6sMy8BddX2UKGgGaAloD0MIy0v+J393/r+UhpRSlGgVSzJoFkdApP9uEIw/PnV9lChoBmgJaA9DCEn2CDVDCgjAlIaUUpRoFUsyaBZHQKT/LrleWv91fZQoaAZoCWgPQwi0yeGTTqT7v5SGlFKUaBVLMmgWR0ClAOEt29tedX2UKGgGaAloD0MIwopTrYW5DMCUhpRSlGgVSzJoFkdApQCnmknCwnV9lChoBmgJaA9DCMNhaeBH1QbAlIaUUpRoFUsyaBZHQKUAaqtHQQd1fZQoaAZoCWgPQwiIhVrTvGMAwJSGlFKUaBVLMmgWR0ClACtorWiDdX2UKGgGaAloD0MIMlncf2Q6AcCUhpRSlGgVSzJoFkdApQHl3B55aHV9lChoBmgJaA9DCC8Whsjpa/m/lIaUUpRoFUsyaBZHQKUBrD6WPcV1fZQoaAZoCWgPQwi+h0uOO6UCwJSGlFKUaBVLMmgWR0ClAW+KbaysdX2UKGgGaAloD0MIX1yq0hZXAMCUhpRSlGgVSzJoFkdApQEwQBgeBHV9lChoBmgJaA9DCLbz/dR4CQLAlIaUUpRoFUsyaBZHQKUC16Hj6vd1fZQoaAZoCWgPQwjbEyS2u0f5v5SGlFKUaBVLMmgWR0ClAp4XXRPXdX2UKGgGaAloD0MI5IbfTbcMAsCUhpRSlGgVSzJoFkdApQJhDG96C3V9lChoBmgJaA9DCDNv1XWoBgbAlIaUUpRoFUsyaBZHQKUCIbMotth1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 50000, "n_steps": 5, "gamma": 0.99, "gae_lambda": 1.0, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "normalize_advantage": false, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.29 # 1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.8.10", "Stable-Baselines3": "1.7.0", "PyTorch": "1.13.1+cu116", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
replay.mp4 ADDED
Binary file (735 kB). View file
 
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mean_reward": -2.33114491837332, "std_reward": 0.6058929933716088, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-01-24T19:40:52.890959"}
vec_normalize.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:aaea9f8403ba65af8c2a0143a7966e589f9ee8979c4e9baba860db175981ca79
3
+ size 3056