Update modeling_llava.py
Browse files- modeling_llava.py +1498 -17
modeling_llava.py
CHANGED
@@ -1,17 +1,1365 @@
|
|
1 |
# coding=utf-8
|
|
|
2 |
from dataclasses import dataclass
|
3 |
from typing import List, Optional, Tuple, Union
|
4 |
|
5 |
import torch
|
|
|
6 |
import torch.utils.checkpoint
|
7 |
from torch import nn
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
8 |
|
9 |
-
|
10 |
-
from
|
|
|
|
|
|
|
11 |
|
12 |
-
|
13 |
-
from
|
14 |
-
from
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
15 |
|
16 |
|
17 |
@dataclass
|
@@ -24,22 +1372,86 @@ class LlavaCausalLMOutputWithPast(ModelOutput):
|
|
24 |
image_features: Optional[torch.FloatTensor] = None
|
25 |
|
26 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
27 |
class LlavaMultiModalProjector(nn.Module):
|
28 |
def __init__(self, config: LlavaConfig):
|
29 |
super().__init__()
|
30 |
|
31 |
self.linear_1 = nn.Linear(
|
32 |
config.vision_embed_dim,
|
33 |
-
config.text_config.
|
34 |
bias=True,
|
35 |
)
|
36 |
self.act = nn.GELU()
|
37 |
self.linear_2 = nn.Linear(
|
38 |
-
config.text_config.
|
39 |
-
config.text_config.
|
40 |
bias=True,
|
41 |
)
|
42 |
-
self.projector_tokens_num = config.projector_tokens_num
|
43 |
|
44 |
def forward(self, image_features):
|
45 |
hidden_states = self.linear_1(image_features)
|
@@ -71,11 +1483,10 @@ class LlavaPreTrainedModel(PreTrainedModel):
|
|
71 |
return self.language_model._supports_sdpa
|
72 |
|
73 |
|
74 |
-
class
|
75 |
def __init__(self, config: LlavaConfig):
|
76 |
super().__init__(config)
|
77 |
-
|
78 |
-
self.vision_model = clip_model.visual
|
79 |
|
80 |
self.multi_modal_projector = LlavaMultiModalProjector(config)
|
81 |
self.vocab_size = config.vocab_size
|
@@ -246,6 +1657,38 @@ class LlavaForConditionalGeneration(LlavaPreTrainedModel):
|
|
246 |
attention_mask,
|
247 |
position_ids,
|
248 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
249 |
|
250 |
outputs = self.language_model(
|
251 |
input_ids=None,
|
@@ -261,7 +1704,6 @@ class LlavaForConditionalGeneration(LlavaPreTrainedModel):
|
|
261 |
|
262 |
logits = outputs[0]
|
263 |
|
264 |
-
|
265 |
if not return_dict:
|
266 |
output = (logits,) + outputs[1:]
|
267 |
return output
|
@@ -283,11 +1725,49 @@ class LlavaForConditionalGeneration(LlavaPreTrainedModel):
|
|
283 |
image_features=None,
|
284 |
**kwargs,
|
285 |
):
|
286 |
-
|
287 |
-
|
288 |
-
|
289 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
290 |
|
|
|
291 |
if inputs_embeds is not None and past_key_values is None:
|
292 |
model_inputs = {"inputs_embeds": inputs_embeds}
|
293 |
else:
|
@@ -295,6 +1775,7 @@ class LlavaForConditionalGeneration(LlavaPreTrainedModel):
|
|
295 |
|
296 |
model_inputs.update(
|
297 |
{
|
|
|
298 |
"past_key_values": past_key_values,
|
299 |
"use_cache": kwargs.get("use_cache"),
|
300 |
"attention_mask": attention_mask,
|
|
|
1 |
# coding=utf-8
|
2 |
+
import math
|
3 |
from dataclasses import dataclass
|
4 |
from typing import List, Optional, Tuple, Union
|
5 |
|
6 |
import torch
|
7 |
+
import torch.nn.functional as F
|
8 |
import torch.utils.checkpoint
|
9 |
from torch import nn
|
10 |
+
from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss
|
11 |
+
from transformers import PreTrainedModel, SiglipVisionModel
|
12 |
+
from transformers.activations import ACT2FN
|
13 |
+
from transformers.cache_utils import Cache, DynamicCache
|
14 |
+
from transformers.modeling_attn_mask_utils import _prepare_4d_causal_attention_mask
|
15 |
+
from transformers.modeling_outputs import (
|
16 |
+
BaseModelOutputWithPast,
|
17 |
+
CausalLMOutputWithPast,
|
18 |
+
ModelOutput,
|
19 |
+
SequenceClassifierOutputWithPast,
|
20 |
+
TokenClassifierOutput,
|
21 |
+
)
|
22 |
+
from transformers.utils import (
|
23 |
+
is_flash_attn_2_available,
|
24 |
+
is_flash_attn_greater_or_equal_2_10,
|
25 |
+
logging,
|
26 |
+
)
|
27 |
|
28 |
+
try:
|
29 |
+
from flash_attn import flash_attn_func, flash_attn_varlen_func
|
30 |
+
from flash_attn.bert_padding import index_first_axis, pad_input, unpad_input # noqa
|
31 |
+
except Exception as exp:
|
32 |
+
print(exp)
|
33 |
|
34 |
+
|
35 |
+
from transformers.configuration_utils import PretrainedConfig
|
36 |
+
from transformers import SiglipVisionConfig
|
37 |
+
|
38 |
+
|
39 |
+
logger = logging.get_logger(__name__)
|
40 |
+
|
41 |
+
|
42 |
+
class PhiConfig(PretrainedConfig):
|
43 |
+
model_type = "phi"
|
44 |
+
keys_to_ignore_at_inference = ["past_key_values"]
|
45 |
+
|
46 |
+
def __init__(
|
47 |
+
self,
|
48 |
+
vocab_size=51200,
|
49 |
+
hidden_size=2048,
|
50 |
+
intermediate_size=8192,
|
51 |
+
num_hidden_layers=24,
|
52 |
+
num_attention_heads=32,
|
53 |
+
num_key_value_heads=None,
|
54 |
+
resid_pdrop=0.0,
|
55 |
+
embd_pdrop=0.0,
|
56 |
+
attention_dropout=0.0,
|
57 |
+
hidden_act="gelu_new",
|
58 |
+
max_position_embeddings=2048,
|
59 |
+
initializer_range=0.02,
|
60 |
+
layer_norm_eps=1e-5,
|
61 |
+
use_cache=True,
|
62 |
+
tie_word_embeddings=False,
|
63 |
+
rope_theta=10000.0,
|
64 |
+
rope_scaling=None,
|
65 |
+
partial_rotary_factor=0.5,
|
66 |
+
qk_layernorm=False,
|
67 |
+
bos_token_id=1,
|
68 |
+
eos_token_id=2,
|
69 |
+
**kwargs,
|
70 |
+
):
|
71 |
+
self.vocab_size = vocab_size
|
72 |
+
self.hidden_size = hidden_size
|
73 |
+
self.intermediate_size = intermediate_size
|
74 |
+
self.num_hidden_layers = num_hidden_layers
|
75 |
+
self.num_attention_heads = num_attention_heads
|
76 |
+
|
77 |
+
if num_key_value_heads is None:
|
78 |
+
num_key_value_heads = num_attention_heads
|
79 |
+
|
80 |
+
self.num_key_value_heads = num_key_value_heads
|
81 |
+
self.resid_pdrop = resid_pdrop
|
82 |
+
self.embd_pdrop = embd_pdrop
|
83 |
+
self.attention_dropout = attention_dropout
|
84 |
+
self.hidden_act = hidden_act
|
85 |
+
self.max_position_embeddings = max_position_embeddings
|
86 |
+
self.initializer_range = initializer_range
|
87 |
+
self.layer_norm_eps = layer_norm_eps
|
88 |
+
self.use_cache = use_cache
|
89 |
+
self.rope_theta = rope_theta
|
90 |
+
self.rope_scaling = rope_scaling
|
91 |
+
self.partial_rotary_factor = partial_rotary_factor
|
92 |
+
self.qk_layernorm = qk_layernorm
|
93 |
+
self._rope_scaling_validation()
|
94 |
+
|
95 |
+
super().__init__(
|
96 |
+
bos_token_id=bos_token_id,
|
97 |
+
eos_token_id=eos_token_id,
|
98 |
+
tie_word_embeddings=tie_word_embeddings,
|
99 |
+
**kwargs,
|
100 |
+
)
|
101 |
+
|
102 |
+
def _rope_scaling_validation(self):
|
103 |
+
"""
|
104 |
+
Validate the `rope_scaling` configuration.
|
105 |
+
"""
|
106 |
+
if self.rope_scaling is None:
|
107 |
+
return
|
108 |
+
|
109 |
+
if not isinstance(self.rope_scaling, dict) or len(self.rope_scaling) != 2:
|
110 |
+
raise ValueError(
|
111 |
+
"`rope_scaling` must be a dictionary with with two fields, `type` and `factor`, "
|
112 |
+
f"got {self.rope_scaling}"
|
113 |
+
)
|
114 |
+
rope_scaling_type = self.rope_scaling.get("type", None)
|
115 |
+
rope_scaling_factor = self.rope_scaling.get("factor", None)
|
116 |
+
if rope_scaling_type is None or rope_scaling_type not in ["linear", "dynamic"]:
|
117 |
+
raise ValueError(
|
118 |
+
f"`rope_scaling`'s type field must be one of ['linear', 'dynamic'], got {rope_scaling_type}"
|
119 |
+
)
|
120 |
+
if (
|
121 |
+
rope_scaling_factor is None
|
122 |
+
or not isinstance(rope_scaling_factor, float)
|
123 |
+
or rope_scaling_factor <= 1.0
|
124 |
+
):
|
125 |
+
raise ValueError(
|
126 |
+
f"`rope_scaling`'s factor field must be a float > 1, got {rope_scaling_factor}"
|
127 |
+
)
|
128 |
+
|
129 |
+
|
130 |
+
class LlavaConfig(PretrainedConfig):
|
131 |
+
model_type = "mc-llava"
|
132 |
+
is_composition = False
|
133 |
+
|
134 |
+
def __init__(
|
135 |
+
self,
|
136 |
+
text_config=None,
|
137 |
+
vision_config=None,
|
138 |
+
ignore_index=-100,
|
139 |
+
image_token_index=50297,
|
140 |
+
projector_hidden_act="gelu",
|
141 |
+
projector_tokens_num=1,
|
142 |
+
vocab_size=51200,
|
143 |
+
**kwargs,
|
144 |
+
):
|
145 |
+
self.ignore_index = ignore_index
|
146 |
+
self.image_token_index = image_token_index
|
147 |
+
self.projector_hidden_act = projector_hidden_act
|
148 |
+
self.projector_tokens_num = projector_tokens_num
|
149 |
+
self.vocab_size = vocab_size
|
150 |
+
|
151 |
+
self.text_config = text_config
|
152 |
+
if isinstance(self.text_config, dict):
|
153 |
+
text_config["model_type"] = (
|
154 |
+
text_config["model_type"] if "model_type" in text_config else "phi"
|
155 |
+
)
|
156 |
+
self.text_config = PhiConfig(**text_config)
|
157 |
+
self.vocab_size = self.text_config.vocab_size
|
158 |
+
|
159 |
+
self.vision_config = vision_config
|
160 |
+
if isinstance(self.vision_config, dict):
|
161 |
+
self.vision_config = SiglipVisionConfig(**vision_config)
|
162 |
+
self.vision_embed_dim = self.vision_config.hidden_size
|
163 |
+
|
164 |
+
super().__init__(**kwargs)
|
165 |
+
|
166 |
+
|
167 |
+
# Copied from transformers.models.llama.modeling_llama._get_unpad_data
|
168 |
+
def _get_unpad_data(attention_mask):
|
169 |
+
seqlens_in_batch = attention_mask.sum(dim=-1, dtype=torch.int32)
|
170 |
+
indices = torch.nonzero(attention_mask.flatten(), as_tuple=False).flatten()
|
171 |
+
max_seqlen_in_batch = seqlens_in_batch.max().item()
|
172 |
+
cu_seqlens = F.pad(
|
173 |
+
torch.cumsum(seqlens_in_batch, dim=0, dtype=torch.torch.int32), (1, 0)
|
174 |
+
)
|
175 |
+
return (
|
176 |
+
indices,
|
177 |
+
cu_seqlens,
|
178 |
+
max_seqlen_in_batch,
|
179 |
+
)
|
180 |
+
|
181 |
+
|
182 |
+
# Copied from transformers.models.llama.modeling_llama.LlamaRotaryEmbedding with Llama->Phi
|
183 |
+
class PhiRotaryEmbedding(nn.Module):
|
184 |
+
def __init__(self, dim, max_position_embeddings=2048, base=10000, device=None):
|
185 |
+
super().__init__()
|
186 |
+
|
187 |
+
self.dim = dim
|
188 |
+
self.max_position_embeddings = max_position_embeddings
|
189 |
+
self.base = base
|
190 |
+
inv_freq = 1.0 / (
|
191 |
+
self.base ** (torch.arange(0, self.dim, 2).float().to(device) / self.dim)
|
192 |
+
)
|
193 |
+
self.register_buffer("inv_freq", inv_freq, persistent=False)
|
194 |
+
|
195 |
+
# Build here to make `torch.jit.trace` work.
|
196 |
+
self._set_cos_sin_cache(
|
197 |
+
seq_len=max_position_embeddings,
|
198 |
+
device=self.inv_freq.device,
|
199 |
+
dtype=torch.get_default_dtype(),
|
200 |
+
)
|
201 |
+
|
202 |
+
def _set_cos_sin_cache(self, seq_len, device, dtype):
|
203 |
+
self.max_seq_len_cached = seq_len
|
204 |
+
t = torch.arange(
|
205 |
+
self.max_seq_len_cached, device=device, dtype=self.inv_freq.dtype
|
206 |
+
)
|
207 |
+
|
208 |
+
freqs = torch.outer(t, self.inv_freq)
|
209 |
+
# Different from paper, but it uses a different permutation in order to obtain the same calculation
|
210 |
+
emb = torch.cat((freqs, freqs), dim=-1)
|
211 |
+
self.register_buffer("cos_cached", emb.cos().to(dtype), persistent=False)
|
212 |
+
self.register_buffer("sin_cached", emb.sin().to(dtype), persistent=False)
|
213 |
+
|
214 |
+
def forward(self, x, seq_len=None):
|
215 |
+
# x: [bs, num_attention_heads, seq_len, head_size]
|
216 |
+
if seq_len > self.max_seq_len_cached:
|
217 |
+
self._set_cos_sin_cache(seq_len=seq_len, device=x.device, dtype=x.dtype)
|
218 |
+
|
219 |
+
return (
|
220 |
+
self.cos_cached[:seq_len].to(dtype=x.dtype),
|
221 |
+
self.sin_cached[:seq_len].to(dtype=x.dtype),
|
222 |
+
)
|
223 |
+
|
224 |
+
|
225 |
+
# Copied from transformers.models.llama.modeling_llama.LlamaLinearScalingRotaryEmbedding with Llama->Phi
|
226 |
+
class PhiLinearScalingRotaryEmbedding(PhiRotaryEmbedding):
|
227 |
+
"""PhiRotaryEmbedding extended with linear scaling. Credits to the Reddit user /u/kaiokendev"""
|
228 |
+
|
229 |
+
def __init__(
|
230 |
+
self,
|
231 |
+
dim,
|
232 |
+
max_position_embeddings=2048,
|
233 |
+
base=10000,
|
234 |
+
device=None,
|
235 |
+
scaling_factor=1.0,
|
236 |
+
):
|
237 |
+
self.scaling_factor = scaling_factor
|
238 |
+
super().__init__(dim, max_position_embeddings, base, device)
|
239 |
+
|
240 |
+
def _set_cos_sin_cache(self, seq_len, device, dtype):
|
241 |
+
self.max_seq_len_cached = seq_len
|
242 |
+
t = torch.arange(
|
243 |
+
self.max_seq_len_cached, device=device, dtype=self.inv_freq.dtype
|
244 |
+
)
|
245 |
+
t = t / self.scaling_factor
|
246 |
+
|
247 |
+
freqs = torch.outer(t, self.inv_freq)
|
248 |
+
# Different from paper, but it uses a different permutation in order to obtain the same calculation
|
249 |
+
emb = torch.cat((freqs, freqs), dim=-1)
|
250 |
+
self.register_buffer("cos_cached", emb.cos().to(dtype), persistent=False)
|
251 |
+
self.register_buffer("sin_cached", emb.sin().to(dtype), persistent=False)
|
252 |
+
|
253 |
+
|
254 |
+
# Copied from transformers.models.llama.modeling_llama.LlamaDynamicNTKScalingRotaryEmbedding with Llama->Phi
|
255 |
+
class PhiDynamicNTKScalingRotaryEmbedding(PhiRotaryEmbedding):
|
256 |
+
"""PhiRotaryEmbedding extended with Dynamic NTK scaling. Credits to the Reddit users /u/bloc97 and /u/emozilla"""
|
257 |
+
|
258 |
+
def __init__(
|
259 |
+
self,
|
260 |
+
dim,
|
261 |
+
max_position_embeddings=2048,
|
262 |
+
base=10000,
|
263 |
+
device=None,
|
264 |
+
scaling_factor=1.0,
|
265 |
+
):
|
266 |
+
self.scaling_factor = scaling_factor
|
267 |
+
super().__init__(dim, max_position_embeddings, base, device)
|
268 |
+
|
269 |
+
def _set_cos_sin_cache(self, seq_len, device, dtype):
|
270 |
+
self.max_seq_len_cached = seq_len
|
271 |
+
|
272 |
+
if seq_len > self.max_position_embeddings:
|
273 |
+
base = self.base * (
|
274 |
+
(self.scaling_factor * seq_len / self.max_position_embeddings)
|
275 |
+
- (self.scaling_factor - 1)
|
276 |
+
) ** (self.dim / (self.dim - 2))
|
277 |
+
inv_freq = 1.0 / (
|
278 |
+
base ** (torch.arange(0, self.dim, 2).float().to(device) / self.dim)
|
279 |
+
)
|
280 |
+
self.register_buffer("inv_freq", inv_freq, persistent=False)
|
281 |
+
|
282 |
+
t = torch.arange(
|
283 |
+
self.max_seq_len_cached, device=device, dtype=self.inv_freq.dtype
|
284 |
+
)
|
285 |
+
|
286 |
+
freqs = torch.outer(t, self.inv_freq)
|
287 |
+
# Different from paper, but it uses a different permutation in order to obtain the same calculation
|
288 |
+
emb = torch.cat((freqs, freqs), dim=-1)
|
289 |
+
self.register_buffer("cos_cached", emb.cos().to(dtype), persistent=False)
|
290 |
+
self.register_buffer("sin_cached", emb.sin().to(dtype), persistent=False)
|
291 |
+
|
292 |
+
|
293 |
+
# Copied from transformers.models.llama.modeling_llama.rotate_half
|
294 |
+
def rotate_half(x):
|
295 |
+
"""Rotates half the hidden dims of the input."""
|
296 |
+
x1 = x[..., : x.shape[-1] // 2]
|
297 |
+
x2 = x[..., x.shape[-1] // 2 :]
|
298 |
+
return torch.cat((-x2, x1), dim=-1)
|
299 |
+
|
300 |
+
|
301 |
+
# Copied from transformers.models.llama.modeling_llama.apply_rotary_pos_emb
|
302 |
+
def apply_rotary_pos_emb(q, k, cos, sin, position_ids, unsqueeze_dim=1):
|
303 |
+
cos = cos[position_ids].unsqueeze(unsqueeze_dim)
|
304 |
+
sin = sin[position_ids].unsqueeze(unsqueeze_dim)
|
305 |
+
q_embed = (q * cos) + (rotate_half(q) * sin)
|
306 |
+
k_embed = (k * cos) + (rotate_half(k) * sin)
|
307 |
+
return q_embed, k_embed
|
308 |
+
|
309 |
+
|
310 |
+
# Copied from transformers.models.clip.modeling_clip.CLIPMLP with CLIP->Phi
|
311 |
+
class PhiMLP(nn.Module):
|
312 |
+
def __init__(self, config):
|
313 |
+
super().__init__()
|
314 |
+
self.config = config
|
315 |
+
self.activation_fn = ACT2FN[config.hidden_act]
|
316 |
+
self.fc1 = nn.Linear(config.hidden_size, config.intermediate_size)
|
317 |
+
self.fc2 = nn.Linear(config.intermediate_size, config.hidden_size)
|
318 |
+
|
319 |
+
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
|
320 |
+
hidden_states = self.fc1(hidden_states)
|
321 |
+
hidden_states = self.activation_fn(hidden_states)
|
322 |
+
hidden_states = self.fc2(hidden_states)
|
323 |
+
return hidden_states
|
324 |
+
|
325 |
+
|
326 |
+
# Copied from transformers.models.llama.modeling_llama.repeat_kv with llama->phi
|
327 |
+
def repeat_kv(hidden_states: torch.Tensor, n_rep: int) -> torch.Tensor:
|
328 |
+
"""
|
329 |
+
This is the equivalent of torch.repeat_interleave(x, dim=1, repeats=n_rep). The hidden states go from (batch,
|
330 |
+
num_key_value_heads, seqlen, head_dim) to (batch, num_attention_heads, seqlen, head_dim)
|
331 |
+
"""
|
332 |
+
batch, num_key_value_heads, slen, head_dim = hidden_states.shape
|
333 |
+
if n_rep == 1:
|
334 |
+
return hidden_states
|
335 |
+
hidden_states = hidden_states[:, :, None, :, :].expand(
|
336 |
+
batch, num_key_value_heads, n_rep, slen, head_dim
|
337 |
+
)
|
338 |
+
return hidden_states.reshape(batch, num_key_value_heads * n_rep, slen, head_dim)
|
339 |
+
|
340 |
+
|
341 |
+
class PhiAttention(nn.Module):
|
342 |
+
"""Multi-headed attention from 'Attention Is All You Need' paper"""
|
343 |
+
|
344 |
+
def __init__(self, config: PhiConfig, layer_idx: Optional[int] = None):
|
345 |
+
super().__init__()
|
346 |
+
self.config = config
|
347 |
+
self.layer_idx = layer_idx
|
348 |
+
if layer_idx is None:
|
349 |
+
logger.warning_once(
|
350 |
+
f"Instantiating {self.__class__.__name__} without passing `layer_idx` is not recommended and will "
|
351 |
+
"to errors during the forward call, if caching is used. Please make sure to provide a `layer_idx` "
|
352 |
+
"when creating this class."
|
353 |
+
)
|
354 |
+
|
355 |
+
self.attention_dropout = config.attention_dropout
|
356 |
+
self.hidden_size = config.hidden_size
|
357 |
+
self.num_heads = config.num_attention_heads
|
358 |
+
self.head_dim = self.hidden_size // self.num_heads
|
359 |
+
self.num_key_value_heads = config.num_key_value_heads
|
360 |
+
self.num_key_value_groups = self.num_heads // self.num_key_value_heads
|
361 |
+
self.max_position_embeddings = config.max_position_embeddings
|
362 |
+
self.rope_theta = config.rope_theta
|
363 |
+
self.partial_rotary_factor = config.partial_rotary_factor
|
364 |
+
self.is_causal = True
|
365 |
+
|
366 |
+
if (self.head_dim * self.num_heads) != self.hidden_size:
|
367 |
+
raise ValueError(
|
368 |
+
f"hidden_size must be divisible by num_heads (got `hidden_size`: {self.hidden_size}"
|
369 |
+
f" and `num_heads`: {self.num_heads})."
|
370 |
+
)
|
371 |
+
|
372 |
+
self.q_proj = nn.Linear(
|
373 |
+
self.hidden_size, self.num_heads * self.head_dim, bias=True
|
374 |
+
)
|
375 |
+
self.k_proj = nn.Linear(
|
376 |
+
self.hidden_size, self.num_key_value_heads * self.head_dim, bias=True
|
377 |
+
)
|
378 |
+
self.v_proj = nn.Linear(
|
379 |
+
self.hidden_size, self.num_key_value_heads * self.head_dim, bias=True
|
380 |
+
)
|
381 |
+
self.dense = nn.Linear(
|
382 |
+
self.num_heads * self.head_dim, self.hidden_size, bias=True
|
383 |
+
)
|
384 |
+
|
385 |
+
self.qk_layernorm = config.qk_layernorm
|
386 |
+
if self.qk_layernorm:
|
387 |
+
self.q_layernorm = nn.LayerNorm(
|
388 |
+
config.hidden_size // self.num_heads,
|
389 |
+
eps=config.layer_norm_eps,
|
390 |
+
elementwise_affine=True,
|
391 |
+
)
|
392 |
+
self.k_layernorm = nn.LayerNorm(
|
393 |
+
config.hidden_size // self.num_heads,
|
394 |
+
eps=config.layer_norm_eps,
|
395 |
+
elementwise_affine=True,
|
396 |
+
)
|
397 |
+
|
398 |
+
self._init_rope()
|
399 |
+
|
400 |
+
def _init_rope(self):
|
401 |
+
if self.config.rope_scaling is None:
|
402 |
+
self.rotary_emb = PhiRotaryEmbedding(
|
403 |
+
int(self.partial_rotary_factor * self.head_dim),
|
404 |
+
max_position_embeddings=self.max_position_embeddings,
|
405 |
+
base=self.rope_theta,
|
406 |
+
)
|
407 |
+
else:
|
408 |
+
scaling_type = self.config.rope_scaling["type"]
|
409 |
+
scaling_factor = self.config.rope_scaling["factor"]
|
410 |
+
if scaling_type == "linear":
|
411 |
+
self.rotary_emb = PhiLinearScalingRotaryEmbedding(
|
412 |
+
int(self.partial_rotary_factor * self.head_dim),
|
413 |
+
max_position_embeddings=self.max_position_embeddings,
|
414 |
+
scaling_factor=scaling_factor,
|
415 |
+
base=self.rope_theta,
|
416 |
+
)
|
417 |
+
elif scaling_type == "dynamic":
|
418 |
+
self.rotary_emb = PhiDynamicNTKScalingRotaryEmbedding(
|
419 |
+
int(self.partial_rotary_factor * self.head_dim),
|
420 |
+
max_position_embeddings=self.max_position_embeddings,
|
421 |
+
scaling_factor=scaling_factor,
|
422 |
+
base=self.rope_theta,
|
423 |
+
)
|
424 |
+
else:
|
425 |
+
raise ValueError(f"Unknown RoPE scaling type {scaling_type}")
|
426 |
+
|
427 |
+
# Phi-2 has an attention overflow issue (with FP16) and requires autocast to be disabled
|
428 |
+
@torch.autocast("cpu", enabled=False)
|
429 |
+
@torch.autocast("cuda", enabled=False)
|
430 |
+
def forward(
|
431 |
+
self,
|
432 |
+
hidden_states: torch.Tensor,
|
433 |
+
attention_mask: Optional[torch.Tensor] = None,
|
434 |
+
position_ids: Optional[torch.LongTensor] = None,
|
435 |
+
past_key_value: Optional[Cache] = None,
|
436 |
+
output_attentions: bool = False,
|
437 |
+
use_cache: bool = False,
|
438 |
+
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
|
439 |
+
bsz, q_len, _ = hidden_states.size()
|
440 |
+
|
441 |
+
query_states = self.q_proj(hidden_states)
|
442 |
+
key_states = self.k_proj(hidden_states)
|
443 |
+
value_states = self.v_proj(hidden_states)
|
444 |
+
|
445 |
+
if self.qk_layernorm:
|
446 |
+
query_states = self.q_layernorm(query_states)
|
447 |
+
key_states = self.k_layernorm(key_states)
|
448 |
+
|
449 |
+
query_states = query_states.view(
|
450 |
+
bsz, q_len, self.num_heads, self.head_dim
|
451 |
+
).transpose(1, 2)
|
452 |
+
key_states = key_states.view(
|
453 |
+
bsz, q_len, self.num_key_value_heads, self.head_dim
|
454 |
+
).transpose(1, 2)
|
455 |
+
value_states = value_states.view(
|
456 |
+
bsz, q_len, self.num_key_value_heads, self.head_dim
|
457 |
+
).transpose(1, 2)
|
458 |
+
|
459 |
+
kv_seq_len = key_states.shape[-2]
|
460 |
+
if past_key_value is not None:
|
461 |
+
if self.layer_idx is None:
|
462 |
+
raise ValueError(
|
463 |
+
f"The cache structure has changed since version v4.36. If you are using {self.__class__.__name__} "
|
464 |
+
"for auto-regressive decoding with k/v caching, please make sure to initialize the attention class "
|
465 |
+
"with a layer index."
|
466 |
+
)
|
467 |
+
kv_seq_len += past_key_value.get_usable_length(kv_seq_len, self.layer_idx)
|
468 |
+
cos, sin = self.rotary_emb(value_states, seq_len=kv_seq_len)
|
469 |
+
|
470 |
+
# Partial rotary embedding
|
471 |
+
query_rot, query_pass = (
|
472 |
+
query_states[..., : self.rotary_emb.dim],
|
473 |
+
query_states[..., self.rotary_emb.dim :],
|
474 |
+
)
|
475 |
+
key_rot, key_pass = (
|
476 |
+
key_states[..., : self.rotary_emb.dim],
|
477 |
+
key_states[..., self.rotary_emb.dim :],
|
478 |
+
)
|
479 |
+
# [batch_size, seq_length, num_heads, head_dim // config.partial_rotary_factor]
|
480 |
+
query_rot, key_rot = apply_rotary_pos_emb(
|
481 |
+
query_rot, key_rot, cos, sin, position_ids
|
482 |
+
)
|
483 |
+
|
484 |
+
# [batch_size, seq_length, num_heads, head_dim]
|
485 |
+
query_states = torch.cat((query_rot, query_pass), dim=-1)
|
486 |
+
key_states = torch.cat((key_rot, key_pass), dim=-1)
|
487 |
+
|
488 |
+
if past_key_value is not None:
|
489 |
+
cache_kwargs = {
|
490 |
+
"sin": sin,
|
491 |
+
"cos": cos,
|
492 |
+
"partial_rotation_size": self.rotary_emb.dim,
|
493 |
+
}
|
494 |
+
key_states, value_states = past_key_value.update(
|
495 |
+
key_states, value_states, self.layer_idx, cache_kwargs
|
496 |
+
)
|
497 |
+
|
498 |
+
key_states = repeat_kv(key_states, self.num_key_value_groups)
|
499 |
+
value_states = repeat_kv(value_states, self.num_key_value_groups)
|
500 |
+
|
501 |
+
# Queries and keys upcast to fp32 is required by Phi-2 to avoid overflow
|
502 |
+
attn_weights = torch.matmul(
|
503 |
+
query_states.to(torch.float32), key_states.to(torch.float32).transpose(2, 3)
|
504 |
+
) / math.sqrt(self.head_dim)
|
505 |
+
|
506 |
+
if attn_weights.size() != (bsz, self.num_heads, q_len, kv_seq_len):
|
507 |
+
raise ValueError(
|
508 |
+
f"Attention weights should be of size {(bsz, self.num_heads, q_len, kv_seq_len)}, but is"
|
509 |
+
f" {attn_weights.size()}"
|
510 |
+
)
|
511 |
+
|
512 |
+
if attention_mask is not None:
|
513 |
+
if attention_mask.size() != (bsz, 1, q_len, kv_seq_len):
|
514 |
+
raise ValueError(
|
515 |
+
f"Attention mask should be of size {(bsz, 1, q_len, kv_seq_len)}, but is {attention_mask.size()}"
|
516 |
+
)
|
517 |
+
attn_weights = attn_weights + attention_mask
|
518 |
+
|
519 |
+
# upcast attention to fp32
|
520 |
+
attn_weights = nn.functional.softmax(
|
521 |
+
attn_weights, dim=-1, dtype=torch.float32
|
522 |
+
).to(value_states.dtype)
|
523 |
+
attn_weights = nn.functional.dropout(
|
524 |
+
attn_weights, p=self.attention_dropout, training=self.training
|
525 |
+
)
|
526 |
+
|
527 |
+
attn_output = torch.matmul(attn_weights, value_states)
|
528 |
+
|
529 |
+
if attn_output.size() != (bsz, self.num_heads, q_len, self.head_dim):
|
530 |
+
raise ValueError(
|
531 |
+
f"`attn_output` should be of size {(bsz, self.num_heads, q_len, self.head_dim)}, but is"
|
532 |
+
f" {attn_output.size()}"
|
533 |
+
)
|
534 |
+
|
535 |
+
attn_output = attn_output.transpose(1, 2).contiguous()
|
536 |
+
attn_output = attn_output.reshape(bsz, q_len, self.hidden_size)
|
537 |
+
|
538 |
+
attn_output = self.dense(attn_output)
|
539 |
+
|
540 |
+
if not output_attentions:
|
541 |
+
attn_weights = None
|
542 |
+
|
543 |
+
return attn_output, attn_weights, past_key_value
|
544 |
+
|
545 |
+
|
546 |
+
class PhiFlashAttention2(PhiAttention):
|
547 |
+
# Copied from transformers.models.llama.modeling_llama.LlamaFlashAttention2.__init__
|
548 |
+
def __init__(self, *args, **kwargs):
|
549 |
+
super().__init__(*args, **kwargs)
|
550 |
+
|
551 |
+
# TODO: Should be removed once Flash Attention for RoCm is bumped to 2.1.
|
552 |
+
# flash_attn<2.1 generates top-left aligned causal mask, while what is needed here is bottom-right alignement, that was made default for flash_attn>=2.1. This attribute is used to handle this difference. Reference: https://github.com/Dao-AILab/flash-attention/releases/tag/v2.1.0.
|
553 |
+
# Beware that with flash_attn<2.1, using q_seqlen != k_seqlen (except for the case q_seqlen == 1) produces a wrong mask (top-left).
|
554 |
+
self._flash_attn_uses_top_left_mask = not is_flash_attn_greater_or_equal_2_10()
|
555 |
+
|
556 |
+
def forward(
|
557 |
+
self,
|
558 |
+
hidden_states: torch.Tensor,
|
559 |
+
attention_mask: Optional[torch.LongTensor] = None,
|
560 |
+
position_ids: Optional[torch.LongTensor] = None,
|
561 |
+
past_key_value: Optional[Cache] = None,
|
562 |
+
output_attentions: bool = False,
|
563 |
+
use_cache: bool = False,
|
564 |
+
**kwargs,
|
565 |
+
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
|
566 |
+
# PhiFlashAttention2 attention does not support output_attentions
|
567 |
+
|
568 |
+
output_attentions = False
|
569 |
+
|
570 |
+
bsz, q_len, _ = hidden_states.size()
|
571 |
+
|
572 |
+
query_states = self.q_proj(hidden_states)
|
573 |
+
key_states = self.k_proj(hidden_states)
|
574 |
+
value_states = self.v_proj(hidden_states)
|
575 |
+
|
576 |
+
if self.qk_layernorm:
|
577 |
+
query_states = self.q_layernorm(query_states)
|
578 |
+
key_states = self.k_layernorm(key_states)
|
579 |
+
|
580 |
+
# Flash attention requires the input to have the shape
|
581 |
+
# batch_size x seq_length x head_dim x hidden_dim
|
582 |
+
# therefore we just need to keep the original shape
|
583 |
+
query_states = query_states.view(
|
584 |
+
bsz, q_len, self.num_heads, self.head_dim
|
585 |
+
).transpose(1, 2)
|
586 |
+
key_states = key_states.view(
|
587 |
+
bsz, q_len, self.num_key_value_heads, self.head_dim
|
588 |
+
).transpose(1, 2)
|
589 |
+
value_states = value_states.view(
|
590 |
+
bsz, q_len, self.num_key_value_heads, self.head_dim
|
591 |
+
).transpose(1, 2)
|
592 |
+
|
593 |
+
kv_seq_len = key_states.shape[-2]
|
594 |
+
if past_key_value is not None:
|
595 |
+
kv_seq_len += past_key_value.get_usable_length(kv_seq_len, self.layer_idx)
|
596 |
+
cos, sin = self.rotary_emb(value_states, seq_len=kv_seq_len)
|
597 |
+
|
598 |
+
# Partial rotary embedding
|
599 |
+
query_rot, query_pass = (
|
600 |
+
query_states[..., : self.rotary_emb.dim],
|
601 |
+
query_states[..., self.rotary_emb.dim :],
|
602 |
+
)
|
603 |
+
key_rot, key_pass = (
|
604 |
+
key_states[..., : self.rotary_emb.dim],
|
605 |
+
key_states[..., self.rotary_emb.dim :],
|
606 |
+
)
|
607 |
+
# [batch_size, seq_length, num_heads, head_dim // config.partial_rotary_factor]
|
608 |
+
query_rot, key_rot = apply_rotary_pos_emb(
|
609 |
+
query_rot, key_rot, cos, sin, position_ids
|
610 |
+
)
|
611 |
+
|
612 |
+
# [batch_size, seq_length, num_heads, head_dim]
|
613 |
+
query_states = torch.cat((query_rot, query_pass), dim=-1)
|
614 |
+
key_states = torch.cat((key_rot, key_pass), dim=-1)
|
615 |
+
|
616 |
+
if past_key_value is not None:
|
617 |
+
cache_kwargs = {
|
618 |
+
"sin": sin,
|
619 |
+
"cos": cos,
|
620 |
+
"partial_rotation_size": self.rotary_emb.dim,
|
621 |
+
}
|
622 |
+
key_states, value_states = past_key_value.update(
|
623 |
+
key_states, value_states, self.layer_idx, cache_kwargs
|
624 |
+
)
|
625 |
+
|
626 |
+
# TODO: These transpose are quite inefficient but Flash Attention requires the layout [batch_size, sequence_length, num_heads, head_dim]. We would need to refactor the KV cache
|
627 |
+
# to be able to avoid many of these transpose/reshape/view.
|
628 |
+
query_states = query_states.transpose(1, 2)
|
629 |
+
key_states = key_states.transpose(1, 2)
|
630 |
+
value_states = value_states.transpose(1, 2)
|
631 |
+
|
632 |
+
attn_dropout = self.attention_dropout if self.training else 0.0
|
633 |
+
|
634 |
+
# In PEFT, usually we cast the layer norms in float32 for training stability reasons
|
635 |
+
# therefore the input hidden states gets silently casted in float32. Hence, we need
|
636 |
+
# cast them back in the correct dtype just to be sure everything works as expected.
|
637 |
+
# This might slowdown training & inference so it is recommended to not cast the LayerNorms
|
638 |
+
# in fp32.
|
639 |
+
|
640 |
+
if query_states.dtype == torch.float32:
|
641 |
+
if torch.is_autocast_enabled():
|
642 |
+
target_dtype = torch.get_autocast_gpu_dtype()
|
643 |
+
# Handle the case where the model is quantized
|
644 |
+
elif hasattr(self.config, "_pre_quantization_dtype"):
|
645 |
+
target_dtype = self.config._pre_quantization_dtype
|
646 |
+
else:
|
647 |
+
target_dtype = self.q_proj.weight.dtype
|
648 |
+
|
649 |
+
logger.warning_once(
|
650 |
+
f"The input hidden states seems to be silently casted in float32, this might be related to"
|
651 |
+
f" the fact you have upcasted embedding or layer norm layers in float32. We will cast back the input in"
|
652 |
+
f" {target_dtype}."
|
653 |
+
)
|
654 |
+
|
655 |
+
query_states = query_states.to(target_dtype)
|
656 |
+
key_states = key_states.to(target_dtype)
|
657 |
+
value_states = value_states.to(target_dtype)
|
658 |
+
|
659 |
+
attn_output = self._flash_attention_forward(
|
660 |
+
query_states,
|
661 |
+
key_states,
|
662 |
+
value_states,
|
663 |
+
attention_mask,
|
664 |
+
q_len,
|
665 |
+
dropout=attn_dropout,
|
666 |
+
softmax_scale=None,
|
667 |
+
)
|
668 |
+
|
669 |
+
attn_output = attn_output.reshape(bsz, q_len, self.hidden_size).contiguous()
|
670 |
+
attn_output = self.dense(attn_output)
|
671 |
+
|
672 |
+
if not output_attentions:
|
673 |
+
attn_weights = None
|
674 |
+
|
675 |
+
return attn_output, attn_weights, past_key_value
|
676 |
+
|
677 |
+
# Copied from transformers.models.llama.modeling_llama.LlamaFlashAttention2._flash_attention_forward
|
678 |
+
def _flash_attention_forward(
|
679 |
+
self,
|
680 |
+
query_states,
|
681 |
+
key_states,
|
682 |
+
value_states,
|
683 |
+
attention_mask,
|
684 |
+
query_length,
|
685 |
+
dropout=0.0,
|
686 |
+
softmax_scale=None,
|
687 |
+
):
|
688 |
+
if not self._flash_attn_uses_top_left_mask:
|
689 |
+
causal = self.is_causal
|
690 |
+
else:
|
691 |
+
# TODO: Remove the `query_length != 1` check once Flash Attention for RoCm is bumped to 2.1. For details, please see the comment in LlamaFlashAttention2 __init__.
|
692 |
+
causal = self.is_causal and query_length != 1
|
693 |
+
|
694 |
+
# Contains at least one padding token in the sequence
|
695 |
+
if attention_mask is not None:
|
696 |
+
batch_size = query_states.shape[0]
|
697 |
+
(
|
698 |
+
query_states,
|
699 |
+
key_states,
|
700 |
+
value_states,
|
701 |
+
indices_q,
|
702 |
+
cu_seq_lens,
|
703 |
+
max_seq_lens,
|
704 |
+
) = self._upad_input(
|
705 |
+
query_states, key_states, value_states, attention_mask, query_length
|
706 |
+
)
|
707 |
+
|
708 |
+
cu_seqlens_q, cu_seqlens_k = cu_seq_lens
|
709 |
+
max_seqlen_in_batch_q, max_seqlen_in_batch_k = max_seq_lens
|
710 |
+
|
711 |
+
attn_output_unpad = flash_attn_varlen_func(
|
712 |
+
query_states,
|
713 |
+
key_states,
|
714 |
+
value_states,
|
715 |
+
cu_seqlens_q=cu_seqlens_q,
|
716 |
+
cu_seqlens_k=cu_seqlens_k,
|
717 |
+
max_seqlen_q=max_seqlen_in_batch_q,
|
718 |
+
max_seqlen_k=max_seqlen_in_batch_k,
|
719 |
+
dropout_p=dropout,
|
720 |
+
softmax_scale=softmax_scale,
|
721 |
+
causal=causal,
|
722 |
+
)
|
723 |
+
|
724 |
+
attn_output = pad_input(
|
725 |
+
attn_output_unpad, indices_q, batch_size, query_length
|
726 |
+
)
|
727 |
+
else:
|
728 |
+
attn_output = flash_attn_func(
|
729 |
+
query_states,
|
730 |
+
key_states,
|
731 |
+
value_states,
|
732 |
+
dropout,
|
733 |
+
softmax_scale=softmax_scale,
|
734 |
+
causal=causal,
|
735 |
+
)
|
736 |
+
|
737 |
+
return attn_output
|
738 |
+
|
739 |
+
# Copied from transformers.models.llama.modeling_llama.LlamaFlashAttention2._upad_input
|
740 |
+
def _upad_input(
|
741 |
+
self, query_layer, key_layer, value_layer, attention_mask, query_length
|
742 |
+
):
|
743 |
+
indices_k, cu_seqlens_k, max_seqlen_in_batch_k = _get_unpad_data(attention_mask)
|
744 |
+
batch_size, kv_seq_len, num_key_value_heads, head_dim = key_layer.shape
|
745 |
+
|
746 |
+
key_layer = index_first_axis(
|
747 |
+
key_layer.reshape(batch_size * kv_seq_len, num_key_value_heads, head_dim),
|
748 |
+
indices_k,
|
749 |
+
)
|
750 |
+
value_layer = index_first_axis(
|
751 |
+
value_layer.reshape(batch_size * kv_seq_len, num_key_value_heads, head_dim),
|
752 |
+
indices_k,
|
753 |
+
)
|
754 |
+
if query_length == kv_seq_len:
|
755 |
+
query_layer = index_first_axis(
|
756 |
+
query_layer.reshape(batch_size * kv_seq_len, self.num_heads, head_dim),
|
757 |
+
indices_k,
|
758 |
+
)
|
759 |
+
cu_seqlens_q = cu_seqlens_k
|
760 |
+
max_seqlen_in_batch_q = max_seqlen_in_batch_k
|
761 |
+
indices_q = indices_k
|
762 |
+
elif query_length == 1:
|
763 |
+
max_seqlen_in_batch_q = 1
|
764 |
+
cu_seqlens_q = torch.arange(
|
765 |
+
batch_size + 1, dtype=torch.int32, device=query_layer.device
|
766 |
+
) # There is a memcpy here, that is very bad.
|
767 |
+
indices_q = cu_seqlens_q[:-1]
|
768 |
+
query_layer = query_layer.squeeze(1)
|
769 |
+
else:
|
770 |
+
# The -q_len: slice assumes left padding.
|
771 |
+
attention_mask = attention_mask[:, -query_length:]
|
772 |
+
query_layer, indices_q, cu_seqlens_q, max_seqlen_in_batch_q = unpad_input(
|
773 |
+
query_layer, attention_mask
|
774 |
+
)
|
775 |
+
|
776 |
+
return (
|
777 |
+
query_layer,
|
778 |
+
key_layer,
|
779 |
+
value_layer,
|
780 |
+
indices_q,
|
781 |
+
(cu_seqlens_q, cu_seqlens_k),
|
782 |
+
(max_seqlen_in_batch_q, max_seqlen_in_batch_k),
|
783 |
+
)
|
784 |
+
|
785 |
+
|
786 |
+
PHI_ATTENTION_CLASSES = {
|
787 |
+
"flash_attention_2": PhiFlashAttention2,
|
788 |
+
"eager": PhiAttention,
|
789 |
+
}
|
790 |
+
|
791 |
+
|
792 |
+
class PhiDecoderLayer(nn.Module):
|
793 |
+
def __init__(self, config: PhiConfig, layer_idx: int):
|
794 |
+
super().__init__()
|
795 |
+
if is_flash_attn_2_available():
|
796 |
+
config._attn_implementation = "flash_attention_2"
|
797 |
+
self.self_attn = PHI_ATTENTION_CLASSES[config._attn_implementation](
|
798 |
+
config, layer_idx=layer_idx
|
799 |
+
)
|
800 |
+
self.mlp = PhiMLP(config)
|
801 |
+
self.input_layernorm = nn.LayerNorm(
|
802 |
+
config.hidden_size, eps=config.layer_norm_eps
|
803 |
+
)
|
804 |
+
self.resid_dropout = nn.Dropout(config.resid_pdrop)
|
805 |
+
|
806 |
+
def forward(
|
807 |
+
self,
|
808 |
+
hidden_states: torch.Tensor,
|
809 |
+
attention_mask: Optional[torch.Tensor] = None,
|
810 |
+
position_ids: Optional[torch.LongTensor] = None,
|
811 |
+
output_attentions: Optional[bool] = False,
|
812 |
+
use_cache: Optional[bool] = False,
|
813 |
+
past_key_value: Optional[Tuple[torch.Tensor]] = None,
|
814 |
+
) -> Tuple[
|
815 |
+
torch.FloatTensor, Optional[Tuple[torch.FloatTensor, torch.FloatTensor]]
|
816 |
+
]:
|
817 |
+
residual = hidden_states
|
818 |
+
|
819 |
+
hidden_states = self.input_layernorm(hidden_states)
|
820 |
+
|
821 |
+
# Self Attention
|
822 |
+
attn_outputs, self_attn_weights, present_key_value = self.self_attn(
|
823 |
+
hidden_states=hidden_states,
|
824 |
+
attention_mask=attention_mask,
|
825 |
+
position_ids=position_ids,
|
826 |
+
past_key_value=past_key_value,
|
827 |
+
output_attentions=output_attentions,
|
828 |
+
use_cache=use_cache,
|
829 |
+
)
|
830 |
+
attn_outputs = self.resid_dropout(attn_outputs)
|
831 |
+
|
832 |
+
feed_forward_hidden_states = self.resid_dropout(self.mlp(hidden_states))
|
833 |
+
hidden_states = attn_outputs + feed_forward_hidden_states + residual
|
834 |
+
outputs = (hidden_states,)
|
835 |
+
|
836 |
+
if output_attentions:
|
837 |
+
outputs += (self_attn_weights,)
|
838 |
+
|
839 |
+
if use_cache:
|
840 |
+
outputs += (present_key_value,)
|
841 |
+
|
842 |
+
return outputs
|
843 |
+
|
844 |
+
|
845 |
+
class PhiPreTrainedModel(PreTrainedModel):
|
846 |
+
config_class = PhiConfig
|
847 |
+
base_model_prefix = "model"
|
848 |
+
supports_gradient_checkpointing = True
|
849 |
+
_no_split_modules = ["PhiDecoderLayer"]
|
850 |
+
_skip_keys_device_placement = "past_key_values"
|
851 |
+
_supports_flash_attn_2 = True
|
852 |
+
_supports_cache_class = True
|
853 |
+
|
854 |
+
|
855 |
+
class PhiModel(PhiPreTrainedModel):
|
856 |
+
"""
|
857 |
+
Transformer decoder consisting of *config.num_hidden_layers* layers. Each layer is a [`PhiDecoderLayer`]
|
858 |
+
Args:
|
859 |
+
config: PhiConfig
|
860 |
+
"""
|
861 |
+
|
862 |
+
def __init__(self, config: PhiConfig):
|
863 |
+
super().__init__(config)
|
864 |
+
self.padding_idx = config.pad_token_id
|
865 |
+
self.vocab_size = config.vocab_size
|
866 |
+
|
867 |
+
self.embed_tokens = nn.Embedding(
|
868 |
+
config.vocab_size, config.hidden_size, self.padding_idx
|
869 |
+
)
|
870 |
+
self.embed_dropout = nn.Dropout(config.embd_pdrop)
|
871 |
+
self.layers = nn.ModuleList(
|
872 |
+
[
|
873 |
+
PhiDecoderLayer(config, layer_idx)
|
874 |
+
for layer_idx in range(config.num_hidden_layers)
|
875 |
+
]
|
876 |
+
)
|
877 |
+
self.final_layernorm = nn.LayerNorm(
|
878 |
+
config.hidden_size, eps=config.layer_norm_eps
|
879 |
+
)
|
880 |
+
self._use_flash_attention_2 = config._attn_implementation == "flash_attention_2"
|
881 |
+
|
882 |
+
self.gradient_checkpointing = False
|
883 |
+
# Initialize weights and apply final processing
|
884 |
+
self.post_init()
|
885 |
+
|
886 |
+
def get_input_embeddings(self):
|
887 |
+
return self.embed_tokens
|
888 |
+
|
889 |
+
def set_input_embeddings(self, value):
|
890 |
+
self.embed_tokens = value
|
891 |
+
|
892 |
+
def forward(
|
893 |
+
self,
|
894 |
+
input_ids: torch.LongTensor = None,
|
895 |
+
attention_mask: Optional[torch.Tensor] = None,
|
896 |
+
position_ids: Optional[torch.LongTensor] = None,
|
897 |
+
past_key_values: Optional[List[torch.FloatTensor]] = None,
|
898 |
+
inputs_embeds: Optional[torch.FloatTensor] = None,
|
899 |
+
use_cache: Optional[bool] = None,
|
900 |
+
output_attentions: Optional[bool] = None,
|
901 |
+
output_hidden_states: Optional[bool] = None,
|
902 |
+
return_dict: Optional[bool] = None,
|
903 |
+
) -> Union[Tuple, BaseModelOutputWithPast]:
|
904 |
+
output_attentions = (
|
905 |
+
output_attentions
|
906 |
+
if output_attentions is not None
|
907 |
+
else self.config.output_attentions
|
908 |
+
)
|
909 |
+
output_hidden_states = (
|
910 |
+
output_hidden_states
|
911 |
+
if output_hidden_states is not None
|
912 |
+
else self.config.output_hidden_states
|
913 |
+
)
|
914 |
+
use_cache = use_cache if use_cache is not None else self.config.use_cache
|
915 |
+
|
916 |
+
return_dict = (
|
917 |
+
return_dict if return_dict is not None else self.config.use_return_dict
|
918 |
+
)
|
919 |
+
|
920 |
+
# retrieve input_ids and inputs_embeds
|
921 |
+
if input_ids is not None and inputs_embeds is not None:
|
922 |
+
raise ValueError(
|
923 |
+
"You cannot specify both input_ids and inputs_embeds at the same time"
|
924 |
+
)
|
925 |
+
elif input_ids is not None:
|
926 |
+
batch_size, seq_length = input_ids.shape[:2]
|
927 |
+
elif inputs_embeds is not None:
|
928 |
+
batch_size, seq_length = inputs_embeds.shape[:2]
|
929 |
+
else:
|
930 |
+
raise ValueError("You have to specify either input_ids or inputs_embeds")
|
931 |
+
|
932 |
+
past_key_values_length = 0
|
933 |
+
|
934 |
+
if self.gradient_checkpointing and self.training:
|
935 |
+
if use_cache:
|
936 |
+
logger.warning_once(
|
937 |
+
"`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`..."
|
938 |
+
)
|
939 |
+
use_cache = False
|
940 |
+
|
941 |
+
if use_cache:
|
942 |
+
use_legacy_cache = not isinstance(past_key_values, Cache)
|
943 |
+
if use_legacy_cache:
|
944 |
+
past_key_values = DynamicCache.from_legacy_cache(past_key_values)
|
945 |
+
past_key_values_length = past_key_values.get_usable_length(seq_length)
|
946 |
+
|
947 |
+
if position_ids is None:
|
948 |
+
device = input_ids.device if input_ids is not None else inputs_embeds.device
|
949 |
+
position_ids = torch.arange(
|
950 |
+
past_key_values_length,
|
951 |
+
seq_length + past_key_values_length,
|
952 |
+
dtype=torch.long,
|
953 |
+
device=device,
|
954 |
+
)
|
955 |
+
position_ids = position_ids.unsqueeze(0)
|
956 |
+
|
957 |
+
if inputs_embeds is None:
|
958 |
+
inputs_embeds = self.embed_tokens(input_ids)
|
959 |
+
|
960 |
+
inputs_embeds = self.embed_dropout(inputs_embeds)
|
961 |
+
|
962 |
+
# Attention mask.
|
963 |
+
if self._use_flash_attention_2:
|
964 |
+
# 2d mask is passed through the layers
|
965 |
+
attention_mask = (
|
966 |
+
attention_mask
|
967 |
+
if (attention_mask is not None and 0 in attention_mask)
|
968 |
+
else None
|
969 |
+
)
|
970 |
+
else:
|
971 |
+
# 4d mask is passed through the layers
|
972 |
+
attention_mask = _prepare_4d_causal_attention_mask(
|
973 |
+
attention_mask,
|
974 |
+
(batch_size, seq_length),
|
975 |
+
inputs_embeds,
|
976 |
+
past_key_values_length,
|
977 |
+
)
|
978 |
+
|
979 |
+
hidden_states = inputs_embeds
|
980 |
+
|
981 |
+
# decoder layers
|
982 |
+
all_hidden_states = () if output_hidden_states else None
|
983 |
+
all_self_attns = () if output_attentions else None
|
984 |
+
next_decoder_cache = None
|
985 |
+
|
986 |
+
for decoder_layer in self.layers:
|
987 |
+
if output_hidden_states:
|
988 |
+
all_hidden_states += (hidden_states,)
|
989 |
+
|
990 |
+
if self.gradient_checkpointing and self.training:
|
991 |
+
layer_outputs = self._gradient_checkpointing_func(
|
992 |
+
decoder_layer.__call__,
|
993 |
+
hidden_states,
|
994 |
+
attention_mask,
|
995 |
+
position_ids,
|
996 |
+
past_key_values,
|
997 |
+
output_attentions,
|
998 |
+
)
|
999 |
+
else:
|
1000 |
+
layer_outputs = decoder_layer(
|
1001 |
+
hidden_states,
|
1002 |
+
attention_mask=attention_mask,
|
1003 |
+
position_ids=position_ids,
|
1004 |
+
past_key_value=past_key_values,
|
1005 |
+
output_attentions=output_attentions,
|
1006 |
+
use_cache=use_cache,
|
1007 |
+
)
|
1008 |
+
|
1009 |
+
hidden_states = layer_outputs[0]
|
1010 |
+
|
1011 |
+
if use_cache:
|
1012 |
+
next_decoder_cache = layer_outputs[2 if output_attentions else 1]
|
1013 |
+
|
1014 |
+
if output_attentions:
|
1015 |
+
all_self_attns += (layer_outputs[1],)
|
1016 |
+
|
1017 |
+
hidden_states = self.final_layernorm(hidden_states)
|
1018 |
+
|
1019 |
+
# add hidden states from the last decoder layer
|
1020 |
+
if output_hidden_states:
|
1021 |
+
all_hidden_states += (hidden_states,)
|
1022 |
+
|
1023 |
+
next_cache = None
|
1024 |
+
if use_cache:
|
1025 |
+
next_cache = (
|
1026 |
+
next_decoder_cache.to_legacy_cache()
|
1027 |
+
if use_legacy_cache
|
1028 |
+
else next_decoder_cache
|
1029 |
+
)
|
1030 |
+
if not return_dict:
|
1031 |
+
return tuple(
|
1032 |
+
v
|
1033 |
+
for v in [hidden_states, next_cache, all_hidden_states, all_self_attns]
|
1034 |
+
if v is not None
|
1035 |
+
)
|
1036 |
+
return BaseModelOutputWithPast(
|
1037 |
+
last_hidden_state=hidden_states,
|
1038 |
+
past_key_values=next_cache,
|
1039 |
+
hidden_states=all_hidden_states,
|
1040 |
+
attentions=all_self_attns,
|
1041 |
+
)
|
1042 |
+
|
1043 |
+
|
1044 |
+
class PhiForCausalLM(PhiPreTrainedModel):
|
1045 |
+
_tied_weights_keys = ["lm_head.weight"]
|
1046 |
+
|
1047 |
+
# Copied from transformers.models.llama.modeling_llama.LlamaForCausalLM.__init__ with Llama->Phi,bias=False->bias=True
|
1048 |
+
def __init__(self, config):
|
1049 |
+
super().__init__(config)
|
1050 |
+
self.model = PhiModel(config)
|
1051 |
+
self.vocab_size = config.vocab_size
|
1052 |
+
self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=True)
|
1053 |
+
|
1054 |
+
# Initialize weights and apply final processing
|
1055 |
+
self.post_init()
|
1056 |
+
|
1057 |
+
# Copied from transformers.models.llama.modeling_llama.LlamaForCausalLM.get_input_embeddings
|
1058 |
+
def get_input_embeddings(self):
|
1059 |
+
return self.model.embed_tokens
|
1060 |
+
|
1061 |
+
# Copied from transformers.models.llama.modeling_llama.LlamaForCausalLM.set_input_embeddings
|
1062 |
+
def set_input_embeddings(self, value):
|
1063 |
+
self.model.embed_tokens = value
|
1064 |
+
|
1065 |
+
# Copied from transformers.models.llama.modeling_llama.LlamaForCausalLM.get_output_embeddings
|
1066 |
+
def get_output_embeddings(self):
|
1067 |
+
return self.lm_head
|
1068 |
+
|
1069 |
+
# Copied from transformers.models.llama.modeling_llama.LlamaForCausalLM.set_output_embeddings
|
1070 |
+
def set_output_embeddings(self, new_embeddings):
|
1071 |
+
self.lm_head = new_embeddings
|
1072 |
+
|
1073 |
+
# Copied from transformers.models.llama.modeling_llama.LlamaForCausalLM.set_decoder
|
1074 |
+
def set_decoder(self, decoder):
|
1075 |
+
self.model = decoder
|
1076 |
+
|
1077 |
+
# Copied from transformers.models.llama.modeling_llama.LlamaForCausalLM.get_decoder
|
1078 |
+
def get_decoder(self):
|
1079 |
+
return self.model
|
1080 |
+
|
1081 |
+
def forward(
|
1082 |
+
self,
|
1083 |
+
input_ids: torch.LongTensor = None,
|
1084 |
+
attention_mask: Optional[torch.Tensor] = None,
|
1085 |
+
position_ids: Optional[torch.LongTensor] = None,
|
1086 |
+
past_key_values: Optional[List[torch.FloatTensor]] = None,
|
1087 |
+
inputs_embeds: Optional[torch.FloatTensor] = None,
|
1088 |
+
labels: Optional[torch.LongTensor] = None,
|
1089 |
+
use_cache: Optional[bool] = None,
|
1090 |
+
output_attentions: Optional[bool] = None,
|
1091 |
+
output_hidden_states: Optional[bool] = None,
|
1092 |
+
return_dict: Optional[bool] = None,
|
1093 |
+
) -> Union[Tuple, CausalLMOutputWithPast]:
|
1094 |
+
output_attentions = (
|
1095 |
+
output_attentions
|
1096 |
+
if output_attentions is not None
|
1097 |
+
else self.config.output_attentions
|
1098 |
+
)
|
1099 |
+
output_hidden_states = (
|
1100 |
+
output_hidden_states
|
1101 |
+
if output_hidden_states is not None
|
1102 |
+
else self.config.output_hidden_states
|
1103 |
+
)
|
1104 |
+
return_dict = (
|
1105 |
+
return_dict if return_dict is not None else self.config.use_return_dict
|
1106 |
+
)
|
1107 |
+
|
1108 |
+
# decoder outputs consists of (dec_features, layer_state, dec_hidden, dec_attn)
|
1109 |
+
outputs = self.model(
|
1110 |
+
input_ids=input_ids,
|
1111 |
+
attention_mask=attention_mask,
|
1112 |
+
position_ids=position_ids,
|
1113 |
+
past_key_values=past_key_values,
|
1114 |
+
inputs_embeds=inputs_embeds,
|
1115 |
+
use_cache=use_cache,
|
1116 |
+
output_attentions=output_attentions,
|
1117 |
+
output_hidden_states=output_hidden_states,
|
1118 |
+
return_dict=return_dict,
|
1119 |
+
)
|
1120 |
+
|
1121 |
+
hidden_states = outputs[0]
|
1122 |
+
logits = self.lm_head(hidden_states)
|
1123 |
+
logits = logits.float()
|
1124 |
+
|
1125 |
+
loss = None
|
1126 |
+
if labels is not None:
|
1127 |
+
# Shift so that tokens < n predict n
|
1128 |
+
shift_logits = logits[..., :-1, :].contiguous()
|
1129 |
+
shift_labels = labels[..., 1:].contiguous()
|
1130 |
+
# Flatten the tokens
|
1131 |
+
loss_fct = CrossEntropyLoss()
|
1132 |
+
shift_logits = shift_logits.view(-1, self.config.vocab_size)
|
1133 |
+
shift_labels = shift_labels.view(-1)
|
1134 |
+
# Enable model parallelism
|
1135 |
+
shift_labels = shift_labels.to(shift_logits.device)
|
1136 |
+
loss = loss_fct(shift_logits, shift_labels)
|
1137 |
+
|
1138 |
+
if not return_dict:
|
1139 |
+
output = (logits,) + outputs[1:]
|
1140 |
+
return (loss,) + output if loss is not None else output
|
1141 |
+
|
1142 |
+
return CausalLMOutputWithPast(
|
1143 |
+
loss=loss,
|
1144 |
+
logits=logits,
|
1145 |
+
past_key_values=outputs.past_key_values,
|
1146 |
+
hidden_states=outputs.hidden_states,
|
1147 |
+
attentions=outputs.attentions,
|
1148 |
+
)
|
1149 |
+
|
1150 |
+
@staticmethod
|
1151 |
+
# Copied from transformers.models.llama.modeling_llama.LlamaForCausalLM._reorder_cache
|
1152 |
+
def _reorder_cache(past_key_values, beam_idx):
|
1153 |
+
reordered_past = ()
|
1154 |
+
for layer_past in past_key_values:
|
1155 |
+
reordered_past += (
|
1156 |
+
tuple(
|
1157 |
+
past_state.index_select(0, beam_idx.to(past_state.device))
|
1158 |
+
for past_state in layer_past
|
1159 |
+
),
|
1160 |
+
)
|
1161 |
+
return reordered_past
|
1162 |
+
|
1163 |
+
|
1164 |
+
class PhiForSequenceClassification(PhiPreTrainedModel):
|
1165 |
+
def __init__(self, config):
|
1166 |
+
super().__init__(config)
|
1167 |
+
self.num_labels = config.num_labels
|
1168 |
+
self.model = PhiModel(config)
|
1169 |
+
self.score = nn.Linear(config.hidden_size, self.num_labels, bias=False)
|
1170 |
+
|
1171 |
+
# Initialize weights and apply final processing
|
1172 |
+
self.post_init()
|
1173 |
+
|
1174 |
+
def get_input_embeddings(self):
|
1175 |
+
return self.model.embed_tokens
|
1176 |
+
|
1177 |
+
def set_input_embeddings(self, value):
|
1178 |
+
self.model.embed_tokens = value
|
1179 |
+
|
1180 |
+
def forward(
|
1181 |
+
self,
|
1182 |
+
input_ids: torch.LongTensor = None,
|
1183 |
+
attention_mask: Optional[torch.Tensor] = None,
|
1184 |
+
position_ids: Optional[torch.LongTensor] = None,
|
1185 |
+
past_key_values: Optional[List[torch.FloatTensor]] = None,
|
1186 |
+
inputs_embeds: Optional[torch.FloatTensor] = None,
|
1187 |
+
labels: Optional[torch.LongTensor] = None,
|
1188 |
+
use_cache: Optional[bool] = None,
|
1189 |
+
output_attentions: Optional[bool] = None,
|
1190 |
+
output_hidden_states: Optional[bool] = None,
|
1191 |
+
return_dict: Optional[bool] = None,
|
1192 |
+
) -> Union[Tuple, SequenceClassifierOutputWithPast]:
|
1193 |
+
r"""
|
1194 |
+
labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
|
1195 |
+
Labels for computing the sequence classification/regression loss. Indices should be in `[0, ...,
|
1196 |
+
config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If
|
1197 |
+
`config.num_labels > 1` a classification loss is computed (Cross-Entropy).
|
1198 |
+
"""
|
1199 |
+
return_dict = (
|
1200 |
+
return_dict if return_dict is not None else self.config.use_return_dict
|
1201 |
+
)
|
1202 |
+
|
1203 |
+
model_outputs = self.model(
|
1204 |
+
input_ids,
|
1205 |
+
attention_mask=attention_mask,
|
1206 |
+
position_ids=position_ids,
|
1207 |
+
past_key_values=past_key_values,
|
1208 |
+
inputs_embeds=inputs_embeds,
|
1209 |
+
use_cache=use_cache,
|
1210 |
+
output_attentions=output_attentions,
|
1211 |
+
output_hidden_states=output_hidden_states,
|
1212 |
+
return_dict=return_dict,
|
1213 |
+
)
|
1214 |
+
hidden_states = model_outputs[0]
|
1215 |
+
logits = self.score(hidden_states)
|
1216 |
+
|
1217 |
+
if input_ids is not None:
|
1218 |
+
batch_size = input_ids.shape[0]
|
1219 |
+
else:
|
1220 |
+
batch_size = inputs_embeds.shape[0]
|
1221 |
+
|
1222 |
+
if self.config.pad_token_id is None and batch_size != 1:
|
1223 |
+
raise ValueError(
|
1224 |
+
"Cannot handle batch sizes > 1 if no padding token is defined."
|
1225 |
+
)
|
1226 |
+
if self.config.pad_token_id is None:
|
1227 |
+
sequence_lengths = -1
|
1228 |
+
else:
|
1229 |
+
if input_ids is not None:
|
1230 |
+
# if no pad token found, use modulo instead of reverse indexing for ONNX compatibility
|
1231 |
+
sequence_lengths = (
|
1232 |
+
torch.eq(input_ids, self.config.pad_token_id).int().argmax(-1) - 1
|
1233 |
+
)
|
1234 |
+
sequence_lengths = sequence_lengths % input_ids.shape[-1]
|
1235 |
+
sequence_lengths = sequence_lengths.to(logits.device)
|
1236 |
+
else:
|
1237 |
+
sequence_lengths = -1
|
1238 |
+
|
1239 |
+
pooled_logits = logits[
|
1240 |
+
torch.arange(batch_size, device=logits.device), sequence_lengths
|
1241 |
+
]
|
1242 |
+
|
1243 |
+
loss = None
|
1244 |
+
if labels is not None:
|
1245 |
+
labels = labels.to(logits.device)
|
1246 |
+
if self.config.problem_type is None:
|
1247 |
+
if self.num_labels == 1:
|
1248 |
+
self.config.problem_type = "regression"
|
1249 |
+
elif self.num_labels > 1 and (
|
1250 |
+
labels.dtype == torch.long or labels.dtype == torch.int
|
1251 |
+
):
|
1252 |
+
self.config.problem_type = "single_label_classification"
|
1253 |
+
else:
|
1254 |
+
self.config.problem_type = "multi_label_classification"
|
1255 |
+
|
1256 |
+
if self.config.problem_type == "regression":
|
1257 |
+
loss_fct = MSELoss()
|
1258 |
+
if self.num_labels == 1:
|
1259 |
+
loss = loss_fct(pooled_logits.squeeze(), labels.squeeze())
|
1260 |
+
else:
|
1261 |
+
loss = loss_fct(pooled_logits, labels)
|
1262 |
+
elif self.config.problem_type == "single_label_classification":
|
1263 |
+
loss_fct = CrossEntropyLoss()
|
1264 |
+
loss = loss_fct(
|
1265 |
+
pooled_logits.view(-1, self.num_labels), labels.view(-1)
|
1266 |
+
)
|
1267 |
+
elif self.config.problem_type == "multi_label_classification":
|
1268 |
+
loss_fct = BCEWithLogitsLoss()
|
1269 |
+
loss = loss_fct(pooled_logits, labels)
|
1270 |
+
if not return_dict:
|
1271 |
+
output = (pooled_logits,) + model_outputs[1:]
|
1272 |
+
return ((loss,) + output) if loss is not None else output
|
1273 |
+
|
1274 |
+
return SequenceClassifierOutputWithPast(
|
1275 |
+
loss=loss,
|
1276 |
+
logits=pooled_logits,
|
1277 |
+
past_key_values=model_outputs.past_key_values,
|
1278 |
+
hidden_states=model_outputs.hidden_states,
|
1279 |
+
attentions=model_outputs.attentions,
|
1280 |
+
)
|
1281 |
+
|
1282 |
+
|
1283 |
+
class PhiForTokenClassification(PhiPreTrainedModel):
|
1284 |
+
def __init__(self, config: PhiConfig):
|
1285 |
+
super().__init__(config)
|
1286 |
+
self.num_labels = config.num_labels
|
1287 |
+
|
1288 |
+
self.model = PhiModel(config)
|
1289 |
+
if (
|
1290 |
+
hasattr(config, "classifier_dropout")
|
1291 |
+
and config.classifier_dropout is not None
|
1292 |
+
):
|
1293 |
+
classifier_dropout = config.classifier_dropout
|
1294 |
+
elif hasattr(config, "hidden_dropout") and config.hidden_dropout is not None:
|
1295 |
+
classifier_dropout = config.hidden_dropout
|
1296 |
+
else:
|
1297 |
+
classifier_dropout = 0.1
|
1298 |
+
self.dropout = nn.Dropout(classifier_dropout)
|
1299 |
+
self.classifier = nn.Linear(config.hidden_size, config.num_labels)
|
1300 |
+
|
1301 |
+
# Initialize weights and apply final processing
|
1302 |
+
self.post_init()
|
1303 |
+
|
1304 |
+
def forward(
|
1305 |
+
self,
|
1306 |
+
input_ids: Optional[torch.LongTensor] = None,
|
1307 |
+
past_key_values: Optional[Tuple[Tuple[torch.Tensor, torch.Tensor], ...]] = None,
|
1308 |
+
attention_mask: Optional[torch.Tensor] = None,
|
1309 |
+
inputs_embeds: Optional[torch.Tensor] = None,
|
1310 |
+
labels: Optional[torch.Tensor] = None,
|
1311 |
+
use_cache: Optional[bool] = None,
|
1312 |
+
output_attentions: Optional[bool] = None,
|
1313 |
+
output_hidden_states: Optional[bool] = None,
|
1314 |
+
return_dict: Optional[bool] = None,
|
1315 |
+
**deprecated_arguments,
|
1316 |
+
) -> Union[Tuple[torch.Tensor], TokenClassifierOutput]:
|
1317 |
+
r"""
|
1318 |
+
labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
|
1319 |
+
Labels for computing the sequence classification/regression loss. Indices should be in `[0, ...,
|
1320 |
+
config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If
|
1321 |
+
`config.num_labels > 1` a classification loss is computed (Cross-Entropy).
|
1322 |
+
"""
|
1323 |
+
return_dict = (
|
1324 |
+
return_dict if return_dict is not None else self.config.use_return_dict
|
1325 |
+
)
|
1326 |
+
|
1327 |
+
model_outputs = self.model(
|
1328 |
+
input_ids,
|
1329 |
+
past_key_values=past_key_values,
|
1330 |
+
attention_mask=attention_mask,
|
1331 |
+
inputs_embeds=inputs_embeds,
|
1332 |
+
use_cache=use_cache,
|
1333 |
+
output_attentions=output_attentions,
|
1334 |
+
output_hidden_states=output_hidden_states,
|
1335 |
+
return_dict=return_dict,
|
1336 |
+
)
|
1337 |
+
|
1338 |
+
hidden_states = model_outputs[0]
|
1339 |
+
hidden_states = self.dropout(hidden_states)
|
1340 |
+
logits = self.classifier(hidden_states)
|
1341 |
+
|
1342 |
+
loss = None
|
1343 |
+
if labels is not None:
|
1344 |
+
# move labels to correct device to enable model parallelism
|
1345 |
+
labels = labels.to(logits.device)
|
1346 |
+
batch_size, seq_length = labels.shape
|
1347 |
+
loss_fct = CrossEntropyLoss()
|
1348 |
+
loss = loss_fct(
|
1349 |
+
logits.view(batch_size * seq_length, self.num_labels),
|
1350 |
+
labels.view(batch_size * seq_length),
|
1351 |
+
)
|
1352 |
+
|
1353 |
+
if not return_dict:
|
1354 |
+
output = (logits,) + model_outputs[2:]
|
1355 |
+
return ((loss,) + output) if loss is not None else output
|
1356 |
+
|
1357 |
+
return TokenClassifierOutput(
|
1358 |
+
loss=loss,
|
1359 |
+
logits=logits,
|
1360 |
+
hidden_states=model_outputs.hidden_states,
|
1361 |
+
attentions=model_outputs.attentions,
|
1362 |
+
)
|
1363 |
|
1364 |
|
1365 |
@dataclass
|
|
|
1372 |
image_features: Optional[torch.FloatTensor] = None
|
1373 |
|
1374 |
|
1375 |
+
class SiglipVisionEncoder(nn.Module):
|
1376 |
+
def __init__(self, config: LlavaConfig):
|
1377 |
+
super().__init__()
|
1378 |
+
self.vision_tower = SiglipVisionModel(config.vision_config)
|
1379 |
+
|
1380 |
+
self.coord_embed = nn.Sequential(
|
1381 |
+
nn.Linear(2, config.vision_embed_dim),
|
1382 |
+
nn.GELU(),
|
1383 |
+
nn.Linear(config.vision_embed_dim, config.vision_embed_dim),
|
1384 |
+
)
|
1385 |
+
|
1386 |
+
self.num_tokens = 728
|
1387 |
+
|
1388 |
+
def feature_select(self, image_forward_outs, coord_feature, num_tokens=None):
|
1389 |
+
image_features = image_forward_outs
|
1390 |
+
image_features = image_features[:, 1:]
|
1391 |
+
if num_tokens is None:
|
1392 |
+
num_tokens = self.num_tokens
|
1393 |
+
split_size = int(num_tokens / image_features.shape[0])
|
1394 |
+
sum = 0
|
1395 |
+
output_list = []
|
1396 |
+
for i in range(image_features.shape[0]):
|
1397 |
+
if i == image_features.shape[0] - 1:
|
1398 |
+
size = num_tokens - sum
|
1399 |
+
else:
|
1400 |
+
size = split_size
|
1401 |
+
sum += size
|
1402 |
+
chunk_output = image_features[i, -size:, :]
|
1403 |
+
chunk_output = chunk_output + coord_feature[i]
|
1404 |
+
output_list.append(chunk_output)
|
1405 |
+
image_features = torch.cat(output_list)
|
1406 |
+
return image_features
|
1407 |
+
|
1408 |
+
def process_image_chunks(self, image_tensor, coord_tensor, num_tokens=None):
|
1409 |
+
if image_tensor.shape[0] > 50:
|
1410 |
+
image_forward_out = []
|
1411 |
+
for i in range(0, image_tensor.shape[0], 50):
|
1412 |
+
part_forward_out = self.vision_tower(
|
1413 |
+
image_tensor[i : i + 50], output_hidden_states=True
|
1414 |
+
).hidden_states[-1]
|
1415 |
+
image_forward_out.append(part_forward_out)
|
1416 |
+
image_forward_out = torch.cat(image_forward_out, dim=0)
|
1417 |
+
else:
|
1418 |
+
image_forward_out = self.vision_tower(
|
1419 |
+
image_tensor, output_hidden_states=True
|
1420 |
+
).hidden_states[-1]
|
1421 |
+
coord_feature = self.coord_embed(coord_tensor)
|
1422 |
+
if len(coord_feature.shape) == 1:
|
1423 |
+
coord_feature = coord_feature.unsqueeze(0)
|
1424 |
+
image_feature = self.feature_select(
|
1425 |
+
image_forward_out, coord_feature, num_tokens
|
1426 |
+
).to(image_tensor.dtype)
|
1427 |
+
return image_feature
|
1428 |
+
|
1429 |
+
def forward(
|
1430 |
+
self, images: List[torch.Tensor], coords: List[torch.Tensor], num_tokens=None
|
1431 |
+
):
|
1432 |
+
image_features = []
|
1433 |
+
for i, image in enumerate(images):
|
1434 |
+
image_feature = self.process_image_chunks(image, coords[i], num_tokens)
|
1435 |
+
image_features.append(image_feature)
|
1436 |
+
image_features = torch.stack(image_features)
|
1437 |
+
return image_features
|
1438 |
+
|
1439 |
+
|
1440 |
class LlavaMultiModalProjector(nn.Module):
|
1441 |
def __init__(self, config: LlavaConfig):
|
1442 |
super().__init__()
|
1443 |
|
1444 |
self.linear_1 = nn.Linear(
|
1445 |
config.vision_embed_dim,
|
1446 |
+
config.text_config.hidden_size,
|
1447 |
bias=True,
|
1448 |
)
|
1449 |
self.act = nn.GELU()
|
1450 |
self.linear_2 = nn.Linear(
|
1451 |
+
config.text_config.hidden_size,
|
1452 |
+
config.text_config.hidden_size,
|
1453 |
bias=True,
|
1454 |
)
|
|
|
1455 |
|
1456 |
def forward(self, image_features):
|
1457 |
hidden_states = self.linear_1(image_features)
|
|
|
1483 |
return self.language_model._supports_sdpa
|
1484 |
|
1485 |
|
1486 |
+
class LlavaForCausalLM(LlavaPreTrainedModel):
|
1487 |
def __init__(self, config: LlavaConfig):
|
1488 |
super().__init__(config)
|
1489 |
+
self.vision_model = SiglipVisionEncoder(config)
|
|
|
1490 |
|
1491 |
self.multi_modal_projector = LlavaMultiModalProjector(config)
|
1492 |
self.vocab_size = config.vocab_size
|
|
|
1657 |
attention_mask,
|
1658 |
position_ids,
|
1659 |
)
|
1660 |
+
else:
|
1661 |
+
# In case input_ids.shape[1] == 1 & pixel_values==None & past_key_values != None, we are in the case of
|
1662 |
+
# generation with cache
|
1663 |
+
if past_key_values is not None and image_features is not None and input_ids.shape[1] == 1:
|
1664 |
+
# Retrieve the first layer to inspect the logits and mask out the hidden states
|
1665 |
+
# that are set to 0
|
1666 |
+
first_layer_past_key_value = past_key_values[0][0][:, :, :, 0]
|
1667 |
+
|
1668 |
+
# Sum all dimensions of head_dim (-2) to avoid random errors such as: https://github.com/huggingface/transformers/pull/28032#issuecomment-1863691941
|
1669 |
+
batch_index, non_attended_tokens = torch.where(first_layer_past_key_value.float().sum(-2) == 0)
|
1670 |
+
|
1671 |
+
# Get the target length
|
1672 |
+
target_seqlen = first_layer_past_key_value.shape[-1] + 1
|
1673 |
+
|
1674 |
+
extended_attention_mask = torch.ones(
|
1675 |
+
(attention_mask.shape[0], target_seqlen - attention_mask.shape[1]),
|
1676 |
+
dtype=attention_mask.dtype,
|
1677 |
+
device=attention_mask.device,
|
1678 |
+
)
|
1679 |
+
|
1680 |
+
# Filter out only the tokens that can be un-attended, this can happen
|
1681 |
+
# if one uses Llava + Fused modules where the cache on the
|
1682 |
+
# first iteration is already big enough, or if one passes custom cache
|
1683 |
+
valid_indices = non_attended_tokens < extended_attention_mask.size(-1)
|
1684 |
+
new_batch_index = batch_index[valid_indices]
|
1685 |
+
new_non_attended_tokens = non_attended_tokens[valid_indices]
|
1686 |
+
|
1687 |
+
# Zero-out the places where we don't need to attend
|
1688 |
+
extended_attention_mask[new_batch_index, new_non_attended_tokens] = 0
|
1689 |
+
|
1690 |
+
attention_mask = torch.cat((attention_mask, extended_attention_mask), dim=1)
|
1691 |
+
position_ids = torch.sum(attention_mask, dim=1).unsqueeze(-1) - 1
|
1692 |
|
1693 |
outputs = self.language_model(
|
1694 |
input_ids=None,
|
|
|
1704 |
|
1705 |
logits = outputs[0]
|
1706 |
|
|
|
1707 |
if not return_dict:
|
1708 |
output = (logits,) + outputs[1:]
|
1709 |
return output
|
|
|
1725 |
image_features=None,
|
1726 |
**kwargs,
|
1727 |
):
|
1728 |
+
if past_key_values is not None:
|
1729 |
+
if isinstance(past_key_values, Cache):
|
1730 |
+
cache_length = past_key_values.get_seq_length()
|
1731 |
+
past_length = past_key_values.seen_tokens
|
1732 |
+
max_cache_length = past_key_values.get_max_length()
|
1733 |
+
else:
|
1734 |
+
cache_length = past_length = past_key_values[0][0].shape[2]
|
1735 |
+
max_cache_length = None
|
1736 |
+
|
1737 |
+
# Keep only the unprocessed tokens:
|
1738 |
+
# 1 - If the length of the attention_mask exceeds the length of input_ids, then we are in a setting where
|
1739 |
+
# some of the inputs are exclusively passed as part of the cache (e.g. when passing input_embeds as
|
1740 |
+
# input)
|
1741 |
+
if (
|
1742 |
+
attention_mask is not None
|
1743 |
+
and attention_mask.shape[1] > input_ids.shape[1]
|
1744 |
+
):
|
1745 |
+
input_ids = input_ids[:, -(attention_mask.shape[1] - past_length) :]
|
1746 |
+
# 2 - If the past_length is smaller than input_ids', then input_ids holds all input tokens. We can discard
|
1747 |
+
# input_ids based on the past_length.
|
1748 |
+
elif past_length < input_ids.shape[1]+image_features.shape[1]-1:
|
1749 |
+
past_length -= image_features.shape[1]-1
|
1750 |
+
input_ids = input_ids[:, past_length:]
|
1751 |
+
attention_mask = attention_mask[:, past_length:]
|
1752 |
+
# 3 - Otherwise (past_length >= input_ids.shape[1]), let's assume input_ids only has unprocessed tokens.
|
1753 |
+
|
1754 |
+
# If we are about to go beyond the maximum cache length, we need to crop the input attention mask.
|
1755 |
+
if (
|
1756 |
+
max_cache_length is not None
|
1757 |
+
and attention_mask is not None
|
1758 |
+
and cache_length + input_ids.shape[1] > max_cache_length
|
1759 |
+
):
|
1760 |
+
attention_mask = attention_mask[:, -max_cache_length:]
|
1761 |
+
|
1762 |
+
position_ids = kwargs.get("position_ids", None)
|
1763 |
+
if attention_mask is not None and position_ids is None:
|
1764 |
+
# create position_ids on the fly for batch generation
|
1765 |
+
position_ids = attention_mask.long().cumsum(-1) - 1
|
1766 |
+
position_ids.masked_fill_(attention_mask == 0, 1)
|
1767 |
+
if past_key_values:
|
1768 |
+
position_ids = position_ids[:, -input_ids.shape[1] :]
|
1769 |
|
1770 |
+
# if `inputs_embeds` are passed, we only want to use them in the 1st generation step
|
1771 |
if inputs_embeds is not None and past_key_values is None:
|
1772 |
model_inputs = {"inputs_embeds": inputs_embeds}
|
1773 |
else:
|
|
|
1775 |
|
1776 |
model_inputs.update(
|
1777 |
{
|
1778 |
+
"position_ids": position_ids,
|
1779 |
"past_key_values": past_key_values,
|
1780 |
"use_cache": kwargs.get("use_cache"),
|
1781 |
"attention_mask": attention_mask,
|