JustinLin610 commited on
Commit
c1aa9ef
1 Parent(s): c4bac4c

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +22 -5
README.md CHANGED
@@ -15,10 +15,12 @@ git clone https://huggingface.co/OFA-Sys/OFA-base
15
  ```
16
  After, refer the path to OFA-base to `ckpt_dir`, and prepare an image for the testing example below. Also, ensure that you have pillow and torchvision in your environment.
17
 
 
18
  ```
19
  >>> from PIL import Image
20
  >>> from torchvision import transforms
21
- >>> from transformers import OFATokenizer, OFAForConditionalGeneration
 
22
 
23
  >>> mean, std = [0.5, 0.5, 0.5], [0.5, 0.5, 0.5]
24
  >>> resolution = 384
@@ -29,14 +31,29 @@ After, refer the path to OFA-base to `ckpt_dir`, and prepare an image for the te
29
  transforms.Normalize(mean=mean, std=std)
30
  ])
31
 
32
- >>> model = OFAForConditionalGeneration.from_pretrained(ckpt_dir)
33
  >>> tokenizer = OFATokenizer.from_pretrained(ckpt_dir)
34
 
35
- >>> txt = " what is the description of the image?"
36
- >>> inputs = tokenizer([txt], max_length=1024, return_tensors="pt")["input_ids"]
37
  >>> img = Image.open(path_to_image)
38
  >>> patch_img = patch_resize_transform(img).unsqueeze(0)
39
 
40
- >>> gen = model.generate(inputs, patch_images=patch_img, num_beams=4)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
41
  >>> print(tokenizer.batch_decode(gen, skip_special_tokens=True))
42
  ```
 
15
  ```
16
  After, refer the path to OFA-base to `ckpt_dir`, and prepare an image for the testing example below. Also, ensure that you have pillow and torchvision in your environment.
17
 
18
+
19
  ```
20
  >>> from PIL import Image
21
  >>> from torchvision import transforms
22
+ >>> from transformers import OFATokenizer, OFAModel
23
+ >>> from generate import sequence_generator
24
 
25
  >>> mean, std = [0.5, 0.5, 0.5], [0.5, 0.5, 0.5]
26
  >>> resolution = 384
 
31
  transforms.Normalize(mean=mean, std=std)
32
  ])
33
 
34
+
35
  >>> tokenizer = OFATokenizer.from_pretrained(ckpt_dir)
36
 
37
+ >>> txt = " what does the image describe?"
38
+ >>> inputs = tokenizer([txt], return_tensors="pt").input_ids
39
  >>> img = Image.open(path_to_image)
40
  >>> patch_img = patch_resize_transform(img).unsqueeze(0)
41
 
42
+
43
+ >>> # using the generator of fairseq version
44
+ >>> model = OFAModel.from_pretrained(ckpt_dir, use_cache=True)
45
+ >>> generator = sequence_generator.SequenceGenerator(tokenizer=tokenizer,beam_size=5,
46
+ max_len_b=16,
47
+ min_len=0,
48
+ no_repeat_ngram_size=3) # using the generator of fairseq version
49
+ >>> data = {}
50
+ >>> data["net_input"] = {"input_ids": inputs, 'patch_images': patch_img, 'patch_masks':torch.tensor([True])}
51
+ >>> gen_output = generator.generate([model], data)
52
+ >>> gen = [gen_output[i][0]["tokens"] for i in range(len(gen_output))]
53
+
54
+ >>> # using the generator of huggingface version
55
+ >>> model = OFAModel.from_pretrained(ckpt_dir, use_cache=False)
56
+ >>> gen = model.generate(inputs, patch_images=patch_img, num_beams=5, no_repeat_ngram_size=3)
57
+
58
  >>> print(tokenizer.batch_decode(gen, skip_special_tokens=True))
59
  ```