update model card README.md
Browse files
README.md
ADDED
@@ -0,0 +1,104 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
language:
|
3 |
+
- ar
|
4 |
+
license: mit
|
5 |
+
tags:
|
6 |
+
- ara
|
7 |
+
- generated_from_trainer
|
8 |
+
datasets:
|
9 |
+
- SDA_CLEAN_NAJDI
|
10 |
+
model-index:
|
11 |
+
- name: SpeechT5 TTS
|
12 |
+
results: []
|
13 |
+
---
|
14 |
+
|
15 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
16 |
+
should probably proofread and complete it, then remove this comment. -->
|
17 |
+
|
18 |
+
# SpeechT5 TTS
|
19 |
+
|
20 |
+
This model is a fine-tuned version of [microsoft/speecht5_tts](https://huggingface.co/microsoft/speecht5_tts) on the SDA dataset.
|
21 |
+
It achieves the following results on the evaluation set:
|
22 |
+
- Loss: 0.4853
|
23 |
+
|
24 |
+
## Model description
|
25 |
+
|
26 |
+
More information needed
|
27 |
+
|
28 |
+
## Intended uses & limitations
|
29 |
+
|
30 |
+
More information needed
|
31 |
+
|
32 |
+
## Training and evaluation data
|
33 |
+
|
34 |
+
More information needed
|
35 |
+
|
36 |
+
## Training procedure
|
37 |
+
|
38 |
+
### Training hyperparameters
|
39 |
+
|
40 |
+
The following hyperparameters were used during training:
|
41 |
+
- learning_rate: 1e-05
|
42 |
+
- train_batch_size: 16
|
43 |
+
- eval_batch_size: 8
|
44 |
+
- seed: 42
|
45 |
+
- gradient_accumulation_steps: 2
|
46 |
+
- total_train_batch_size: 32
|
47 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
48 |
+
- lr_scheduler_type: linear
|
49 |
+
- lr_scheduler_warmup_steps: 500
|
50 |
+
- training_steps: 40000
|
51 |
+
- mixed_precision_training: Native AMP
|
52 |
+
|
53 |
+
### Training results
|
54 |
+
|
55 |
+
| Training Loss | Epoch | Step | Validation Loss |
|
56 |
+
|:-------------:|:-----:|:-----:|:---------------:|
|
57 |
+
| 0.5703 | 1.49 | 1000 | 0.5289 |
|
58 |
+
| 0.541 | 2.98 | 2000 | 0.5131 |
|
59 |
+
| 0.5487 | 4.46 | 3000 | 0.5059 |
|
60 |
+
| 0.5232 | 5.95 | 4000 | 0.5011 |
|
61 |
+
| 0.5295 | 7.44 | 5000 | 0.4979 |
|
62 |
+
| 0.5257 | 8.93 | 6000 | 0.4970 |
|
63 |
+
| 0.5091 | 10.42 | 7000 | 0.4905 |
|
64 |
+
| 0.5141 | 11.9 | 8000 | 0.4893 |
|
65 |
+
| 0.5033 | 13.39 | 9000 | 0.4865 |
|
66 |
+
| 0.507 | 14.88 | 10000 | 0.4850 |
|
67 |
+
| 0.502 | 16.37 | 11000 | 0.4830 |
|
68 |
+
| 0.497 | 17.86 | 12000 | 0.4823 |
|
69 |
+
| 0.4974 | 19.35 | 13000 | 0.4801 |
|
70 |
+
| 0.4993 | 20.83 | 14000 | 0.4794 |
|
71 |
+
| 0.496 | 22.32 | 15000 | 0.4814 |
|
72 |
+
| 0.4845 | 23.81 | 16000 | 0.4780 |
|
73 |
+
| 0.4977 | 25.3 | 17000 | 0.4775 |
|
74 |
+
| 0.4888 | 26.79 | 18000 | 0.4780 |
|
75 |
+
| 0.4773 | 28.27 | 19000 | 0.4792 |
|
76 |
+
| 0.4914 | 29.76 | 20000 | 0.4817 |
|
77 |
+
| 0.4864 | 31.25 | 21000 | 0.4775 |
|
78 |
+
| 0.486 | 32.74 | 22000 | 0.4773 |
|
79 |
+
| 0.4884 | 34.23 | 23000 | 0.4835 |
|
80 |
+
| 0.4856 | 35.71 | 24000 | 0.4788 |
|
81 |
+
| 0.4814 | 37.2 | 25000 | 0.4811 |
|
82 |
+
| 0.4831 | 38.69 | 26000 | 0.4814 |
|
83 |
+
| 0.4732 | 40.18 | 27000 | 0.4816 |
|
84 |
+
| 0.4846 | 41.67 | 28000 | 0.4812 |
|
85 |
+
| 0.4731 | 43.15 | 29000 | 0.4843 |
|
86 |
+
| 0.4772 | 44.64 | 30000 | 0.4830 |
|
87 |
+
| 0.4793 | 46.13 | 31000 | 0.4834 |
|
88 |
+
| 0.4736 | 47.62 | 32000 | 0.4834 |
|
89 |
+
| 0.4798 | 49.11 | 33000 | 0.4826 |
|
90 |
+
| 0.4744 | 50.6 | 34000 | 0.4841 |
|
91 |
+
| 0.4784 | 52.08 | 35000 | 0.4844 |
|
92 |
+
| 0.4743 | 53.57 | 36000 | 0.4851 |
|
93 |
+
| 0.4779 | 55.06 | 37000 | 0.4854 |
|
94 |
+
| 0.4719 | 56.55 | 38000 | 0.4854 |
|
95 |
+
| 0.4825 | 58.04 | 39000 | 0.4856 |
|
96 |
+
| 0.4805 | 59.52 | 40000 | 0.4853 |
|
97 |
+
|
98 |
+
|
99 |
+
### Framework versions
|
100 |
+
|
101 |
+
- Transformers 4.30.0.dev0
|
102 |
+
- Pytorch 2.0.1+cu117
|
103 |
+
- Datasets 2.13.0
|
104 |
+
- Tokenizers 0.13.3
|