---
inference: false
language:
- ar
library_name: sentence-transformers
tags:
- sentence-transformers
- sentence-similarity
- feature-extraction
- generated_from_trainer
- dataset_size:557850
- loss:MatryoshkaLoss
- loss:MultipleNegativesRankingLoss
- mteb
base_model: sentence-transformers/paraphrase-multilingual-mpnet-base-v2
datasets:
- Omartificial-Intelligence-Space/Arabic-NLi-Triplet
metrics:
- pearson_cosine
- spearman_cosine
- pearson_manhattan
- spearman_manhattan
- pearson_euclidean
- spearman_euclidean
- pearson_dot
- spearman_dot
- pearson_max
- spearman_max
widget:
- source_sentence: ذكر متوازن بعناية يقف على قدم واحدة بالقرب من منطقة شاطئ المحيط النظيفة
sentences:
- رجل يقدم عرضاً
- هناك رجل بالخارج قرب الشاطئ
- رجل يجلس على أريكه
- source_sentence: رجل يقفز إلى سريره القذر
sentences:
- السرير قذر.
- رجل يضحك أثناء غسيل الملابس
- الرجل على القمر
- source_sentence: الفتيات بالخارج
sentences:
- امرأة تلف الخيط إلى كرات بجانب كومة من الكرات
- فتيان يركبان في جولة متعة
- >-
ثلاث فتيات يقفون سوية في غرفة واحدة تستمع وواحدة تكتب على الحائط والثالثة
تتحدث إليهن
- source_sentence: الرجل يرتدي قميصاً أزرق.
sentences:
- >-
رجل يرتدي قميصاً أزرق يميل إلى الجدار بجانب الطريق مع شاحنة زرقاء وسيارة
حمراء مع الماء في الخلفية.
- كتاب القصص مفتوح
- رجل يرتدي قميص أسود يعزف على الجيتار.
- source_sentence: يجلس شاب ذو شعر أشقر على الحائط يقرأ جريدة بينما تمر امرأة وفتاة شابة.
sentences:
- ذكر شاب ينظر إلى جريدة بينما تمر إمرأتان بجانبه
- رجل يستلقي على وجهه على مقعد في الحديقة.
- الشاب نائم بينما الأم تقود ابنتها إلى الحديقة
pipeline_tag: sentence-similarity
model-index:
- name: Omartificial-Intelligence-Space/Arabic-all-nli-triplet-Matryoshka
results:
- dataset:
config: default
name: MTEB BIOSSES (default)
revision: d3fb88f8f02e40887cd149695127462bbcf29b4a
split: test
type: mteb/biosses-sts
metrics:
- type: cosine_pearson
value: 81.20578037912223
- type: cosine_spearman
value: 77.43670420687278
- type: euclidean_pearson
value: 74.60444698819703
- type: euclidean_spearman
value: 72.25767053642666
- type: main_score
value: 77.43670420687278
- type: manhattan_pearson
value: 73.86951335383257
- type: manhattan_spearman
value: 71.41608509527123
task:
type: STS
- dataset:
config: default
name: MTEB SICK-R (default)
revision: 20a6d6f312dd54037fe07a32d58e5e168867909d
split: test
type: mteb/sickr-sts
metrics:
- type: cosine_pearson
value: 83.11155556919923
- type: cosine_spearman
value: 79.39435627520159
- type: euclidean_pearson
value: 81.05225024180342
- type: euclidean_spearman
value: 79.09926890001618
- type: main_score
value: 79.39435627520159
- type: manhattan_pearson
value: 80.74351302609706
- type: manhattan_spearman
value: 78.826254748334
task:
type: STS
- dataset:
config: default
name: MTEB STS12 (default)
revision: a0d554a64d88156834ff5ae9920b964011b16384
split: test
type: mteb/sts12-sts
metrics:
- type: cosine_pearson
value: 85.10074960888633
- type: cosine_spearman
value: 78.93043293576132
- type: euclidean_pearson
value: 84.1168219787408
- type: euclidean_spearman
value: 78.44739559202252
- type: main_score
value: 78.93043293576132
- type: manhattan_pearson
value: 83.79447841594396
- type: manhattan_spearman
value: 77.94028171700384
task:
type: STS
- dataset:
config: default
name: MTEB STS13 (default)
revision: 7e90230a92c190f1bf69ae9002b8cea547a64cca
split: test
type: mteb/sts13-sts
metrics:
- type: cosine_pearson
value: 81.34459901517775
- type: cosine_spearman
value: 82.73032633919925
- type: euclidean_pearson
value: 82.83546499367434
- type: euclidean_spearman
value: 83.29701673615389
- type: main_score
value: 82.73032633919925
- type: manhattan_pearson
value: 82.63480502797324
- type: manhattan_spearman
value: 83.05016589615636
task:
type: STS
- dataset:
config: default
name: MTEB STS14 (default)
revision: 6031580fec1f6af667f0bd2da0a551cf4f0b2375
split: test
type: mteb/sts14-sts
metrics:
- type: cosine_pearson
value: 82.53179983763488
- type: cosine_spearman
value: 81.64974497557361
- type: euclidean_pearson
value: 83.03981070806898
- type: euclidean_spearman
value: 82.65556168300631
- type: main_score
value: 81.64974497557361
- type: manhattan_pearson
value: 82.83722360191446
- type: manhattan_spearman
value: 82.4164264119
task:
type: STS
- dataset:
config: default
name: MTEB STS15 (default)
revision: ae752c7c21bf194d8b67fd573edf7ae58183cbe3
split: test
type: mteb/sts15-sts
metrics:
- type: cosine_pearson
value: 86.5684162475647
- type: cosine_spearman
value: 87.62163215009723
- type: euclidean_pearson
value: 87.3068288651339
- type: euclidean_spearman
value: 88.03508640722863
- type: main_score
value: 87.62163215009723
- type: manhattan_pearson
value: 87.21818681800193
- type: manhattan_spearman
value: 87.94690511382603
task:
type: STS
- dataset:
config: default
name: MTEB STS16 (default)
revision: 4d8694f8f0e0100860b497b999b3dbed754a0513
split: test
type: mteb/sts16-sts
metrics:
- type: cosine_pearson
value: 81.70518105237446
- type: cosine_spearman
value: 83.66083698795428
- type: euclidean_pearson
value: 82.80400684544435
- type: euclidean_spearman
value: 83.39926895275799
- type: main_score
value: 83.66083698795428
- type: manhattan_pearson
value: 82.44430538731845
- type: manhattan_spearman
value: 82.99600783826028
task:
type: STS
- dataset:
config: ar-ar
name: MTEB STS17 (ar-ar)
revision: faeb762787bd10488a50c8b5be4a3b82e411949c
split: test
type: mteb/sts17-crosslingual-sts
metrics:
- type: cosine_pearson
value: 82.23229967696153
- type: cosine_spearman
value: 82.40039006538706
- type: euclidean_pearson
value: 79.21322872573518
- type: euclidean_spearman
value: 79.14230529579783
- type: main_score
value: 82.40039006538706
- type: manhattan_pearson
value: 79.1476348987964
- type: manhattan_spearman
value: 78.82381660638143
task:
type: STS
- dataset:
config: ar
name: MTEB STS22 (ar)
revision: de9d86b3b84231dc21f76c7b7af1f28e2f57f6e3
split: test
type: mteb/sts22-crosslingual-sts
metrics:
- type: cosine_pearson
value: 45.95767124518871
- type: cosine_spearman
value: 51.37922888872568
- type: euclidean_pearson
value: 45.519471121310126
- type: euclidean_spearman
value: 51.45605803385654
- type: main_score
value: 51.37922888872568
- type: manhattan_pearson
value: 45.98761117909666
- type: manhattan_spearman
value: 51.48451973989366
task:
type: STS
- dataset:
config: default
name: MTEB STSBenchmark (default)
revision: b0fddb56ed78048fa8b90373c8a3cfc37b684831
split: test
type: mteb/stsbenchmark-sts
metrics:
- type: cosine_pearson
value: 85.38916827757183
- type: cosine_spearman
value: 86.16303183485594
- type: euclidean_pearson
value: 85.16406897245115
- type: euclidean_spearman
value: 85.40364087457081
- type: main_score
value: 86.16303183485594
- type: manhattan_pearson
value: 84.96853193915084
- type: manhattan_spearman
value: 85.13238442843544
task:
type: STS
- dataset:
config: default
name: MTEB SummEval (default)
revision: cda12ad7615edc362dbf25a00fdd61d3b1eaf93c
split: test
type: mteb/summeval
metrics:
- type: cosine_pearson
value: 30.077426987171158
- type: cosine_spearman
value: 30.163682020271608
- type: dot_pearson
value: 27.31125295906803
- type: dot_spearman
value: 29.138235153208193
- type: main_score
value: 30.163682020271608
- type: pearson
value: 30.077426987171158
- type: spearman
value: 30.163682020271608
task:
type: Summarization
- name: >-
SentenceTransformer based on
sentence-transformers/paraphrase-multilingual-mpnet-base-v2
results:
- task:
type: semantic-similarity
name: Semantic Similarity
dataset:
name: sts test 768
type: sts-test-768
metrics:
- type: pearson_cosine
value: 0.8538831619509135
name: Pearson Cosine
- type: spearman_cosine
value: 0.861625750018802
name: Spearman Cosine
- type: pearson_manhattan
value: 0.8496745674597512
name: Pearson Manhattan
- type: spearman_manhattan
value: 0.8513333417508545
name: Spearman Manhattan
- type: pearson_euclidean
value: 0.8516261261374778
name: Pearson Euclidean
- type: spearman_euclidean
value: 0.8540549341060195
name: Spearman Euclidean
- type: pearson_dot
value: 0.7281308266536204
name: Pearson Dot
- type: spearman_dot
value: 0.7230282720855726
name: Spearman Dot
- type: pearson_max
value: 0.8538831619509135
name: Pearson Max
- type: spearman_max
value: 0.861625750018802
name: Spearman Max
- task:
type: semantic-similarity
name: Semantic Similarity
dataset:
name: sts test 512
type: sts-test-512
metrics:
- type: pearson_cosine
value: 0.8542379189261009
name: Pearson Cosine
- type: spearman_cosine
value: 0.8609329396560859
name: Spearman Cosine
- type: pearson_manhattan
value: 0.8486657899695456
name: Pearson Manhattan
- type: spearman_manhattan
value: 0.8512120732504748
name: Spearman Manhattan
- type: pearson_euclidean
value: 0.8505249483849495
name: Pearson Euclidean
- type: spearman_euclidean
value: 0.8538738365440234
name: Spearman Euclidean
- type: pearson_dot
value: 0.7075618032859148
name: Pearson Dot
- type: spearman_dot
value: 0.7028728329509918
name: Spearman Dot
- type: pearson_max
value: 0.8542379189261009
name: Pearson Max
- type: spearman_max
value: 0.8609329396560859
name: Spearman Max
- task:
type: semantic-similarity
name: Semantic Similarity
dataset:
name: sts test 256
type: sts-test-256
metrics:
- type: pearson_cosine
value: 0.8486308733045101
name: Pearson Cosine
- type: spearman_cosine
value: 0.8578681811996274
name: Spearman Cosine
- type: pearson_manhattan
value: 0.8404506123980291
name: Pearson Manhattan
- type: spearman_manhattan
value: 0.845565163232125
name: Spearman Manhattan
- type: pearson_euclidean
value: 0.8414758099131773
name: Pearson Euclidean
- type: spearman_euclidean
value: 0.8471566121478254
name: Spearman Euclidean
- type: pearson_dot
value: 0.6668664182302968
name: Pearson Dot
- type: spearman_dot
value: 0.6651222481800894
name: Spearman Dot
- type: pearson_max
value: 0.8486308733045101
name: Pearson Max
- type: spearman_max
value: 0.8578681811996274
name: Spearman Max
- task:
type: semantic-similarity
name: Semantic Similarity
dataset:
name: sts test 128
type: sts-test-128
metrics:
- type: pearson_cosine
value: 0.8389761445410956
name: Pearson Cosine
- type: spearman_cosine
value: 0.8499312736457453
name: Spearman Cosine
- type: pearson_manhattan
value: 0.8287388421834582
name: Pearson Manhattan
- type: spearman_manhattan
value: 0.8353046807483782
name: Spearman Manhattan
- type: pearson_euclidean
value: 0.8297699263897746
name: Pearson Euclidean
- type: spearman_euclidean
value: 0.8371843253238523
name: Spearman Euclidean
- type: pearson_dot
value: 0.5855876200722326
name: Pearson Dot
- type: spearman_dot
value: 0.5834920267418124
name: Spearman Dot
- type: pearson_max
value: 0.8389761445410956
name: Pearson Max
- type: spearman_max
value: 0.8499312736457453
name: Spearman Max
- task:
type: semantic-similarity
name: Semantic Similarity
dataset:
name: sts test 64
type: sts-test-64
metrics:
- type: pearson_cosine
value: 0.8290685425698586
name: Pearson Cosine
- type: spearman_cosine
value: 0.8429054799136109
name: Spearman Cosine
- type: pearson_manhattan
value: 0.8100968316314205
name: Pearson Manhattan
- type: spearman_manhattan
value: 0.8221121550434057
name: Spearman Manhattan
- type: pearson_euclidean
value: 0.8129044863346081
name: Pearson Euclidean
- type: spearman_euclidean
value: 0.8255133471709527
name: Spearman Euclidean
- type: pearson_dot
value: 0.5067257944655903
name: Pearson Dot
- type: spearman_dot
value: 0.5109761436588146
name: Spearman Dot
- type: pearson_max
value: 0.8290685425698586
name: Pearson Max
- type: spearman_max
value: 0.8429054799136109
name: Spearman Max
license: apache-2.0
---
# SentenceTransformer based on sentence-transformers/paraphrase-multilingual-mpnet-base-v2
This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [sentence-transformers/paraphrase-multilingual-mpnet-base-v2](https://huggingface.co/sentence-transformers/paraphrase-multilingual-mpnet-base-v2) on the Omartificial-Intelligence-Space/arabic-n_li-triplet dataset. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
## Model Details
### Model Description
- **Model Type:** Sentence Transformer
- **Base model:** [sentence-transformers/paraphrase-multilingual-mpnet-base-v2](https://huggingface.co/sentence-transformers/paraphrase-multilingual-mpnet-base-v2)
- **Maximum Sequence Length:** 128 tokens
- **Output Dimensionality:** 768 tokens
- **Similarity Function:** Cosine Similarity
- **Training Dataset:**
- Omartificial-Intelligence-Space/arabic-n_li-triplet
### Model Sources
- **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
- **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
- **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
### Full Model Architecture
```
SentenceTransformer(
(0): Transformer({'max_seq_length': 128, 'do_lower_case': False}) with Transformer model: XLMRobertaModel
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
)
```
## Usage
### Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
```bash
pip install -U sentence-transformers
```
Then you can load this model and run inference.
```python
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("Omartificial-Intelligence-Space/Arabic-Nli-Matryoshka")
# Run inference
sentences = [
'يجلس شاب ذو شعر أشقر على الحائط يقرأ جريدة بينما تمر امرأة وفتاة شابة.',
'ذكر شاب ينظر إلى جريدة بينما تمر إمرأتان بجانبه',
'الشاب نائم بينما الأم تقود ابنتها إلى الحديقة',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 768]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
```
## Evaluation
### Metrics
#### Semantic Similarity
* Dataset: `sts-test-768`
* Evaluated with [EmbeddingSimilarityEvaluator
](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator)
| Metric | Value |
|:--------------------|:-----------|
| pearson_cosine | 0.8539 |
| **spearman_cosine** | **0.8616** |
| pearson_manhattan | 0.8497 |
| spearman_manhattan | 0.8513 |
| pearson_euclidean | 0.8516 |
| spearman_euclidean | 0.8541 |
| pearson_dot | 0.7281 |
| spearman_dot | 0.723 |
| pearson_max | 0.8539 |
| spearman_max | 0.8616 |
#### Semantic Similarity
* Dataset: `sts-test-512`
* Evaluated with [EmbeddingSimilarityEvaluator
](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator)
| Metric | Value |
|:--------------------|:-----------|
| pearson_cosine | 0.8542 |
| **spearman_cosine** | **0.8609** |
| pearson_manhattan | 0.8487 |
| spearman_manhattan | 0.8512 |
| pearson_euclidean | 0.8505 |
| spearman_euclidean | 0.8539 |
| pearson_dot | 0.7076 |
| spearman_dot | 0.7029 |
| pearson_max | 0.8542 |
| spearman_max | 0.8609 |
#### Semantic Similarity
* Dataset: `sts-test-256`
* Evaluated with [EmbeddingSimilarityEvaluator
](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator)
| Metric | Value |
|:--------------------|:-----------|
| pearson_cosine | 0.8486 |
| **spearman_cosine** | **0.8579** |
| pearson_manhattan | 0.8405 |
| spearman_manhattan | 0.8456 |
| pearson_euclidean | 0.8415 |
| spearman_euclidean | 0.8472 |
| pearson_dot | 0.6669 |
| spearman_dot | 0.6651 |
| pearson_max | 0.8486 |
| spearman_max | 0.8579 |
#### Semantic Similarity
* Dataset: `sts-test-128`
* Evaluated with [EmbeddingSimilarityEvaluator
](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator)
| Metric | Value |
|:--------------------|:-----------|
| pearson_cosine | 0.839 |
| **spearman_cosine** | **0.8499** |
| pearson_manhattan | 0.8287 |
| spearman_manhattan | 0.8353 |
| pearson_euclidean | 0.8298 |
| spearman_euclidean | 0.8372 |
| pearson_dot | 0.5856 |
| spearman_dot | 0.5835 |
| pearson_max | 0.839 |
| spearman_max | 0.8499 |
#### Semantic Similarity
* Dataset: `sts-test-64`
* Evaluated with [EmbeddingSimilarityEvaluator
](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator)
| Metric | Value |
|:--------------------|:-----------|
| pearson_cosine | 0.8291 |
| **spearman_cosine** | **0.8429** |
| pearson_manhattan | 0.8101 |
| spearman_manhattan | 0.8221 |
| pearson_euclidean | 0.8129 |
| spearman_euclidean | 0.8255 |
| pearson_dot | 0.5067 |
| spearman_dot | 0.511 |
| pearson_max | 0.8291 |
| spearman_max | 0.8429 |
## Training Details
### Training Dataset
#### Omartificial-Intelligence-Space/arabic-n_li-triplet
* Dataset: Omartificial-Intelligence-Space/arabic-n_li-triplet
* Size: 557,850 training samples
* Columns: anchor
, positive
, and negative
* Approximate statistics based on the first 1000 samples:
| | anchor | positive | negative |
|:--------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|
| type | string | string | string |
| details |
شخص على حصان يقفز فوق طائرة معطلة
| شخص في الهواء الطلق، على حصان.
| شخص في مطعم، يطلب عجة.
|
| أطفال يبتسمون و يلوحون للكاميرا
| هناك أطفال حاضرون
| الاطفال يتجهمون
|
| صبي يقفز على لوح التزلج في منتصف الجسر الأحمر.
| الفتى يقوم بخدعة التزلج
| الصبي يتزلج على الرصيف
|
* Loss: [MatryoshkaLoss
](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#matryoshkaloss) with these parameters:
```json
{
"loss": "MultipleNegativesRankingLoss",
"matryoshka_dims": [
768,
512,
256,
128,
64
],
"matryoshka_weights": [
1,
1,
1,
1,
1
],
"n_dims_per_step": -1
}
```
### Evaluation Dataset
#### Omartificial-Intelligence-Space/arabic-n_li-triplet
* Dataset: Omartificial-Intelligence-Space/arabic-n_li-triplet
* Size: 6,584 evaluation samples
* Columns: anchor
, positive
, and negative
* Approximate statistics based on the first 1000 samples:
| | anchor | positive | negative |
|:--------|:-----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|:---------------------------------------------------------------------------------|
| type | string | string | string |
| details | امرأتان يتعانقان بينما يحملان حزمة
| إمرأتان يحملان حزمة
| الرجال يتشاجرون خارج مطعم
|
| طفلين صغيرين يرتديان قميصاً أزرق، أحدهما يرتدي الرقم 9 والآخر يرتدي الرقم 2 يقفان على خطوات خشبية في الحمام ويغسلان أيديهما في المغسلة.
| طفلين يرتديان قميصاً مرقماً يغسلون أيديهم
| طفلين يرتديان سترة يذهبان إلى المدرسة
|
| رجل يبيع الدونات لعميل خلال معرض عالمي أقيم في مدينة أنجليس
| رجل يبيع الدونات لعميل
| امرأة تشرب قهوتها في مقهى صغير
|
* Loss: [MatryoshkaLoss
](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#matryoshkaloss) with these parameters:
```json
{
"loss": "MultipleNegativesRankingLoss",
"matryoshka_dims": [
768,
512,
256,
128,
64
],
"matryoshka_weights": [
1,
1,
1,
1,
1
],
"n_dims_per_step": -1
}
```
### Training Hyperparameters
#### Non-Default Hyperparameters
- `per_device_train_batch_size`: 256
- `per_device_eval_batch_size`: 256
- `num_train_epochs`: 1
- `warmup_ratio`: 0.1
- `fp16`: True
- `batch_sampler`: no_duplicates
#### All Hyperparameters