File size: 34,235 Bytes
2952d95 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 |
---
language:
- ar
library_name: sentence-transformers
tags:
- sentence-transformers
- sentence-similarity
- feature-extraction
- generated_from_trainer
- dataset_size:2772052
- loss:MultipleNegativesRankingLoss
- loss:SoftmaxLoss
- loss:CoSENTLoss
base_model: google-bert/bert-base-multilingual-cased
datasets:
- Omartificial-Intelligence-Space/Arabic-stsb
- Omartificial-Intelligence-Space/Arabic-Quora-Duplicates
widget:
- source_sentence: امرأة تكتب شيئاً
sentences:
- قد يكون من الممكن أن يوجد نظام شمسي مثل نظامنا خارج المجرة
- امرأة تقطع البصل الأخضر.
- مراهق يتحدث إلى فتاة عبر كاميرا الإنترنت
- source_sentence: لاعب التزلج على الجليد يقفز فوق برميل
sentences:
- الرجل كان يمشي
- رجل عجوز يجلس في غرفة الانتظار بالمستشفى.
- متزلج على الجليد يقفز
- source_sentence: العديد من النساء يرتدين ملابس الشرق الأوسط من الذهب والأزرق والأصفر
والأحمر ويؤدون رقصة.
sentences:
- الناس توقفوا على جانب الطريق
- هناك على الأقل إمرأتين
- المرأة وحدها نائمة في قاربها على القمر
- source_sentence: الرجل يرتدي قميصاً أزرق.
sentences:
- رجل يرتدي قميصاً أزرق يميل إلى الجدار بجانب الطريق مع شاحنة زرقاء وسيارة حمراء
مع الماء في الخلفية.
- الرجل يجلس بجانب لوحة لنفسه
- رجل يرتدي قميص أسود يعزف على الجيتار.
- source_sentence: ما هي الدروس التي يمكن أن نتعلمها من أدولف هتلر؟
sentences:
- ما هي الدروس التي يمكن أن نتعلمها من أدولف هتلر؟
- ما مدى قربنا من الحرب العالمية؟
- هل حرق وقود الطائرات يذوب أعمدة الصلب؟
pipeline_tag: sentence-similarity
---
# SentenceTransformer based on google-bert/bert-base-multilingual-cased
This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [google-bert/bert-base-multilingual-cased](https://huggingface.co/google-bert/bert-base-multilingual-cased) on the all-nli-pair, all-nli-pair-class, all-nli-pair-score, all-nli-triplet, [stsb](https://huggingface.co/datasets/Omartificial-Intelligence-Space/arabic-stsb) and [quora](https://huggingface.co/datasets/Omartificial-Intelligence-Space/arabic-quora-duplicates) datasets. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
## Model Details
### Model Description
- **Model Type:** Sentence Transformer
- **Base model:** [google-bert/bert-base-multilingual-cased](https://huggingface.co/google-bert/bert-base-multilingual-cased) <!-- at revision 3f076fdb1ab68d5b2880cb87a0886f315b8146f8 -->
- **Maximum Sequence Length:** 512 tokens
- **Output Dimensionality:** 768 tokens
- **Similarity Function:** Cosine Similarity
- **Training Datasets:**
- all-nli-pair
- all-nli-pair-class
- all-nli-pair-score
- all-nli-triplet
- [stsb](https://huggingface.co/datasets/Omartificial-Intelligence-Space/arabic-stsb)
- [quora](https://huggingface.co/datasets/Omartificial-Intelligence-Space/arabic-quora-duplicates)
- **Language:** ar
<!-- - **License:** Unknown -->
### Model Sources
- **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
- **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
- **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
### Full Model Architecture
```
SentenceTransformer(
(0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
)
```
## Usage
### Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
```bash
pip install -U sentence-transformers
```
Then you can load this model and run inference.
```python
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("Omartificial-Intelligence-Space/Arabic-base-all-nli-stsb-quora")
# Run inference
sentences = [
'ما هي الدروس التي يمكن أن نتعلمها من أدولف هتلر؟',
'ما هي الدروس التي يمكن أن نتعلمها من أدولف هتلر؟',
'ما مدى قربنا من الحرب العالمية؟',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 768]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
```
<!--
### Direct Usage (Transformers)
<details><summary>Click to see the direct usage in Transformers</summary>
</details>
-->
<!--
### Downstream Usage (Sentence Transformers)
You can finetune this model on your own dataset.
<details><summary>Click to expand</summary>
</details>
-->
<!--
### Out-of-Scope Use
*List how the model may foreseeably be misused and address what users ought not to do with the model.*
-->
<!--
## Bias, Risks and Limitations
*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
-->
<!--
### Recommendations
*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
-->
## Training Details
### Training Datasets
#### all-nli-pair
* Dataset: all-nli-pair
* Size: 314,315 training samples
* Columns: <code>anchor</code> and <code>positive</code>
* Approximate statistics based on the first 1000 samples:
| | anchor | positive |
|:--------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|
| type | string | string |
| details | <ul><li>min: 6 tokens</li><li>mean: 24.43 tokens</li><li>max: 88 tokens</li></ul> | <ul><li>min: 4 tokens</li><li>mean: 11.73 tokens</li><li>max: 45 tokens</li></ul> |
* Samples:
| anchor | positive |
|:------------------------------------------------------------|:--------------------------------------------|
| <code>شخص على حصان يقفز فوق طائرة معطلة</code> | <code>شخص في الهواء الطلق، على حصان.</code> |
| <code>أطفال يبتسمون و يلوحون للكاميرا</code> | <code>هناك أطفال حاضرون</code> |
| <code>صبي يقفز على لوح التزلج في منتصف الجسر الأحمر.</code> | <code>الفتى يقوم بخدعة التزلج</code> |
* Loss: [<code>MultipleNegativesRankingLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#multiplenegativesrankingloss) with these parameters:
```json
{
"scale": 20.0,
"similarity_fct": "cos_sim"
}
```
#### all-nli-pair-class
* Dataset: all-nli-pair-class
* Size: 942,069 training samples
* Columns: <code>premise</code>, <code>hypothesis</code>, and <code>label</code>
* Approximate statistics based on the first 1000 samples:
| | premise | hypothesis | label |
|:--------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|:-------------------------------------------------------------------|
| type | string | string | int |
| details | <ul><li>min: 8 tokens</li><li>mean: 24.78 tokens</li><li>max: 72 tokens</li></ul> | <ul><li>min: 4 tokens</li><li>mean: 13.55 tokens</li><li>max: 55 tokens</li></ul> | <ul><li>0: ~33.40%</li><li>1: ~33.30%</li><li>2: ~33.30%</li></ul> |
* Samples:
| premise | hypothesis | label |
|:-----------------------------------------------|:--------------------------------------------|:---------------|
| <code>شخص على حصان يقفز فوق طائرة معطلة</code> | <code>شخص يقوم بتدريب حصانه للمنافسة</code> | <code>1</code> |
| <code>شخص على حصان يقفز فوق طائرة معطلة</code> | <code>شخص في مطعم، يطلب عجة.</code> | <code>2</code> |
| <code>شخص على حصان يقفز فوق طائرة معطلة</code> | <code>شخص في الهواء الطلق، على حصان.</code> | <code>0</code> |
* Loss: [<code>SoftmaxLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#softmaxloss)
#### all-nli-pair-score
* Dataset: all-nli-pair-score
* Size: 942,069 training samples
* Columns: <code>sentence1</code>, <code>sentence2</code>, and <code>score</code>
* Approximate statistics based on the first 1000 samples:
| | sentence1 | sentence2 | score |
|:--------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|:--------------------------------------------------------------|
| type | string | string | float |
| details | <ul><li>min: 8 tokens</li><li>mean: 24.78 tokens</li><li>max: 72 tokens</li></ul> | <ul><li>min: 4 tokens</li><li>mean: 13.55 tokens</li><li>max: 55 tokens</li></ul> | <ul><li>min: 0.0</li><li>mean: 0.5</li><li>max: 1.0</li></ul> |
* Samples:
| sentence1 | sentence2 | score |
|:-----------------------------------------------|:--------------------------------------------|:-----------------|
| <code>شخص على حصان يقفز فوق طائرة معطلة</code> | <code>شخص يقوم بتدريب حصانه للمنافسة</code> | <code>0.5</code> |
| <code>شخص على حصان يقفز فوق طائرة معطلة</code> | <code>شخص في مطعم، يطلب عجة.</code> | <code>0.0</code> |
| <code>شخص على حصان يقفز فوق طائرة معطلة</code> | <code>شخص في الهواء الطلق، على حصان.</code> | <code>1.0</code> |
* Loss: [<code>CoSENTLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cosentloss) with these parameters:
```json
{
"scale": 20.0,
"similarity_fct": "pairwise_cos_sim"
}
```
#### all-nli-triplet
* Dataset: all-nli-triplet
* Size: 557,850 training samples
* Columns: <code>anchor</code>, <code>positive</code>, and <code>negative</code>
* Approximate statistics based on the first 1000 samples:
| | anchor | positive | negative |
|:--------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|
| type | string | string | string |
| details | <ul><li>min: 6 tokens</li><li>mean: 12.54 tokens</li><li>max: 72 tokens</li></ul> | <ul><li>min: 6 tokens</li><li>mean: 16.06 tokens</li><li>max: 59 tokens</li></ul> | <ul><li>min: 6 tokens</li><li>mean: 18.13 tokens</li><li>max: 70 tokens</li></ul> |
* Samples:
| anchor | positive | negative |
|:------------------------------------------------------------|:--------------------------------------------|:------------------------------------|
| <code>شخص على حصان يقفز فوق طائرة معطلة</code> | <code>شخص في الهواء الطلق، على حصان.</code> | <code>شخص في مطعم، يطلب عجة.</code> |
| <code>أطفال يبتسمون و يلوحون للكاميرا</code> | <code>هناك أطفال حاضرون</code> | <code>الاطفال يتجهمون</code> |
| <code>صبي يقفز على لوح التزلج في منتصف الجسر الأحمر.</code> | <code>الفتى يقوم بخدعة التزلج</code> | <code>الصبي يتزلج على الرصيف</code> |
* Loss: [<code>MultipleNegativesRankingLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#multiplenegativesrankingloss) with these parameters:
```json
{
"scale": 20.0,
"similarity_fct": "cos_sim"
}
```
#### stsb
* Dataset: [stsb](https://huggingface.co/datasets/Omartificial-Intelligence-Space/arabic-stsb) at [7c6c4bd](https://huggingface.co/datasets/Omartificial-Intelligence-Space/arabic-stsb/tree/7c6c4bd31a465a0f3ed1a3704a31f2682a0f65be)
* Size: 5,749 training samples
* Columns: <code>sentence1</code>, <code>sentence2</code>, and <code>score</code>
* Approximate statistics based on the first 1000 samples:
| | sentence1 | sentence2 | score |
|:--------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|:---------------------------------------------------------------|
| type | string | string | float |
| details | <ul><li>min: 5 tokens</li><li>mean: 11.68 tokens</li><li>max: 34 tokens</li></ul> | <ul><li>min: 5 tokens</li><li>mean: 11.44 tokens</li><li>max: 31 tokens</li></ul> | <ul><li>min: 0.0</li><li>mean: 0.54</li><li>max: 1.0</li></ul> |
* Samples:
| sentence1 | sentence2 | score |
|:-----------------------------------------------|:--------------------------------------------------------|:------------------|
| <code>طائرة ستقلع</code> | <code>طائرة جوية ستقلع</code> | <code>1.0</code> |
| <code>رجل يعزف على ناي كبير</code> | <code>رجل يعزف على الناي.</code> | <code>0.76</code> |
| <code>رجل ينشر الجبن الممزق على البيتزا</code> | <code>رجل ينشر الجبن الممزق على بيتزا غير مطبوخة</code> | <code>0.76</code> |
* Loss: [<code>CoSENTLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cosentloss) with these parameters:
```json
{
"scale": 20.0,
"similarity_fct": "pairwise_cos_sim"
}
```
#### quora
* Dataset: [quora](https://huggingface.co/datasets/Omartificial-Intelligence-Space/arabic-quora-duplicates) at [7d49308](https://huggingface.co/datasets/Omartificial-Intelligence-Space/arabic-quora-duplicates/tree/7d49308a21bbad3a2762d11f2e8c0cbcc86510fe)
* Size: 10,000 training samples
* Columns: <code>anchor</code> and <code>positive</code>
* Approximate statistics based on the first 1000 samples:
| | anchor | positive |
|:--------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|
| type | string | string |
| details | <ul><li>min: 7 tokens</li><li>mean: 19.69 tokens</li><li>max: 58 tokens</li></ul> | <ul><li>min: 6 tokens</li><li>mean: 20.15 tokens</li><li>max: 73 tokens</li></ul> |
* Samples:
| anchor | positive |
|:-----------------------------------------------------------------------|:------------------------------------------------------------------------------------------|
| <code>علم التنجيم: أنا برج الجدي الشمس القمر والقبعة الشمسية...</code> | <code>أنا برج الجدي الثلاثي (الشمس والقمر والصعود في برج الجدي) ماذا يقول هذا عني؟</code> |
| <code>كيف أكون جيولوجياً جيداً؟</code> | <code>ماذا علي أن أفعل لأكون جيولوجياً عظيماً؟</code> |
| <code>كيف أقرأ وأجد تعليقاتي على يوتيوب؟</code> | <code>كيف يمكنني رؤية كل تعليقاتي على اليوتيوب؟</code> |
* Loss: [<code>MultipleNegativesRankingLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#multiplenegativesrankingloss) with these parameters:
```json
{
"scale": 20.0,
"similarity_fct": "cos_sim"
}
```
### Evaluation Datasets
#### all-nli-triplet
* Dataset: all-nli-triplet
* Size: 6,584 evaluation samples
* Columns: <code>anchor</code>, <code>positive</code>, and <code>negative</code>
* Approximate statistics based on the first 1000 samples:
| | anchor | positive | negative |
|:--------|:-----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|
| type | string | string | string |
| details | <ul><li>min: 5 tokens</li><li>mean: 25.81 tokens</li><li>max: 125 tokens</li></ul> | <ul><li>min: 4 tokens</li><li>mean: 12.09 tokens</li><li>max: 52 tokens</li></ul> | <ul><li>min: 5 tokens</li><li>mean: 13.35 tokens</li><li>max: 42 tokens</li></ul> |
* Samples:
| anchor | positive | negative |
|:-----------------------------------------------------------------------------------------------------------------------------------------------------|:-------------------------------------------------------|:---------------------------------------------------|
| <code>امرأتان يتعانقان بينما يحملان حزمة</code> | <code>إمرأتان يحملان حزمة</code> | <code>الرجال يتشاجرون خارج مطعم</code> |
| <code>طفلين صغيرين يرتديان قميصاً أزرق، أحدهما يرتدي الرقم 9 والآخر يرتدي الرقم 2 يقفان على خطوات خشبية في الحمام ويغسلان أيديهما في المغسلة.</code> | <code>طفلين يرتديان قميصاً مرقماً يغسلون أيديهم</code> | <code>طفلين يرتديان سترة يذهبان إلى المدرسة</code> |
| <code>رجل يبيع الدونات لعميل خلال معرض عالمي أقيم في مدينة أنجليس</code> | <code>رجل يبيع الدونات لعميل</code> | <code>امرأة تشرب قهوتها في مقهى صغير</code> |
* Loss: [<code>MultipleNegativesRankingLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#multiplenegativesrankingloss) with these parameters:
```json
{
"scale": 20.0,
"similarity_fct": "cos_sim"
}
```
#### stsb
* Dataset: [stsb](https://huggingface.co/datasets/Omartificial-Intelligence-Space/arabic-stsb) at [7c6c4bd](https://huggingface.co/datasets/Omartificial-Intelligence-Space/arabic-stsb/tree/7c6c4bd31a465a0f3ed1a3704a31f2682a0f65be)
* Size: 1,500 evaluation samples
* Columns: <code>sentence1</code>, <code>sentence2</code>, and <code>score</code>
* Approximate statistics based on the first 1000 samples:
| | sentence1 | sentence2 | score |
|:--------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|:---------------------------------------------------------------|
| type | string | string | float |
| details | <ul><li>min: 5 tokens</li><li>mean: 20.19 tokens</li><li>max: 53 tokens</li></ul> | <ul><li>min: 5 tokens</li><li>mean: 20.09 tokens</li><li>max: 54 tokens</li></ul> | <ul><li>min: 0.0</li><li>mean: 0.47</li><li>max: 1.0</li></ul> |
* Samples:
| sentence1 | sentence2 | score |
|:--------------------------------------|:---------------------------------------|:------------------|
| <code>رجل يرتدي قبعة صلبة يرقص</code> | <code>رجل يرتدي قبعة صلبة يرقص.</code> | <code>1.0</code> |
| <code>طفل صغير يركب حصاناً.</code> | <code>طفل يركب حصاناً.</code> | <code>0.95</code> |
| <code>رجل يطعم فأراً لأفعى</code> | <code>الرجل يطعم الفأر للثعبان.</code> | <code>1.0</code> |
* Loss: [<code>CoSENTLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cosentloss) with these parameters:
```json
{
"scale": 20.0,
"similarity_fct": "pairwise_cos_sim"
}
```
#### quora
* Dataset: [quora](https://huggingface.co/datasets/Omartificial-Intelligence-Space/arabic-quora-duplicates) at [7d49308](https://huggingface.co/datasets/Omartificial-Intelligence-Space/arabic-quora-duplicates/tree/7d49308a21bbad3a2762d11f2e8c0cbcc86510fe)
* Size: 1,000 evaluation samples
* Columns: <code>anchor</code> and <code>positive</code>
* Approximate statistics based on the first 1000 samples:
| | anchor | positive |
|:--------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|
| type | string | string |
| details | <ul><li>min: 7 tokens</li><li>mean: 19.66 tokens</li><li>max: 73 tokens</li></ul> | <ul><li>min: 8 tokens</li><li>mean: 20.17 tokens</li><li>max: 96 tokens</li></ul> |
* Samples:
| anchor | positive |
|:-------------------------------------------------------------------|:---------------------------------------------------------------------------|
| <code>ما هو قرارك في السنة الجديدة؟</code> | <code>ما الذي يمكن أن يكون قراري للعام الجديد لعام 2017؟</code> |
| <code>هل يجب أن أشتري هاتف آيفون 6 أو سامسونج غالاكسي إس 7؟</code> | <code>أيهما أفضل: الـ iPhone 6S Plus أو الـ Samsung Galaxy S7 Edge؟</code> |
| <code>ما هي الاختلافات بين التجاوز والتراجع؟</code> | <code>ما الفرق بين التجاوز والتراجع؟</code> |
* Loss: [<code>MultipleNegativesRankingLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#multiplenegativesrankingloss) with these parameters:
```json
{
"scale": 20.0,
"similarity_fct": "cos_sim"
}
```
### Training Hyperparameters
#### Non-Default Hyperparameters
- `per_device_train_batch_size`: 128
- `num_train_epochs`: 1
- `warmup_ratio`: 0.1
#### All Hyperparameters
<details><summary>Click to expand</summary>
- `overwrite_output_dir`: False
- `do_predict`: False
- `prediction_loss_only`: True
- `per_device_train_batch_size`: 128
- `per_device_eval_batch_size`: 8
- `per_gpu_train_batch_size`: None
- `per_gpu_eval_batch_size`: None
- `gradient_accumulation_steps`: 1
- `eval_accumulation_steps`: None
- `learning_rate`: 5e-05
- `weight_decay`: 0.0
- `adam_beta1`: 0.9
- `adam_beta2`: 0.999
- `adam_epsilon`: 1e-08
- `max_grad_norm`: 1.0
- `num_train_epochs`: 1
- `max_steps`: -1
- `lr_scheduler_type`: linear
- `lr_scheduler_kwargs`: {}
- `warmup_ratio`: 0.1
- `warmup_steps`: 0
- `log_level`: passive
- `log_level_replica`: warning
- `log_on_each_node`: True
- `logging_nan_inf_filter`: True
- `save_safetensors`: True
- `save_on_each_node`: False
- `save_only_model`: False
- `no_cuda`: False
- `use_cpu`: False
- `use_mps_device`: False
- `seed`: 42
- `data_seed`: None
- `jit_mode_eval`: False
- `use_ipex`: False
- `bf16`: False
- `fp16`: False
- `fp16_opt_level`: O1
- `half_precision_backend`: auto
- `bf16_full_eval`: False
- `fp16_full_eval`: False
- `tf32`: None
- `local_rank`: 0
- `ddp_backend`: None
- `tpu_num_cores`: None
- `tpu_metrics_debug`: False
- `debug`: []
- `dataloader_drop_last`: False
- `dataloader_num_workers`: 0
- `dataloader_prefetch_factor`: None
- `past_index`: -1
- `disable_tqdm`: False
- `remove_unused_columns`: True
- `label_names`: None
- `load_best_model_at_end`: False
- `ignore_data_skip`: False
- `fsdp`: []
- `fsdp_min_num_params`: 0
- `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
- `fsdp_transformer_layer_cls_to_wrap`: None
- `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'gradient_accumulation_kwargs': None}
- `deepspeed`: None
- `label_smoothing_factor`: 0.0
- `optim`: adamw_torch
- `optim_args`: None
- `adafactor`: False
- `group_by_length`: False
- `length_column_name`: length
- `ddp_find_unused_parameters`: None
- `ddp_bucket_cap_mb`: None
- `ddp_broadcast_buffers`: False
- `dataloader_pin_memory`: True
- `dataloader_persistent_workers`: False
- `skip_memory_metrics`: True
- `use_legacy_prediction_loop`: False
- `push_to_hub`: False
- `resume_from_checkpoint`: None
- `hub_model_id`: None
- `hub_strategy`: every_save
- `hub_private_repo`: False
- `hub_always_push`: False
- `gradient_checkpointing`: False
- `gradient_checkpointing_kwargs`: None
- `include_inputs_for_metrics`: False
- `eval_do_concat_batches`: True
- `fp16_backend`: auto
- `push_to_hub_model_id`: None
- `push_to_hub_organization`: None
- `mp_parameters`:
- `auto_find_batch_size`: False
- `full_determinism`: False
- `torchdynamo`: None
- `ray_scope`: last
- `ddp_timeout`: 1800
- `torch_compile`: False
- `torch_compile_backend`: None
- `torch_compile_mode`: None
- `dispatch_batches`: None
- `split_batches`: None
- `include_tokens_per_second`: False
- `include_num_input_tokens_seen`: False
- `neftune_noise_alpha`: None
- `optim_target_modules`: None
- `batch_sampler`: batch_sampler
- `multi_dataset_batch_sampler`: proportional
</details>
### Training Logs
| Epoch | Step | Training Loss |
|:------:|:-----:|:-------------:|
| 0.0231 | 500 | 5.0061 |
| 0.0462 | 1000 | 4.7876 |
| 0.0693 | 1500 | 4.6618 |
| 0.0923 | 2000 | 4.7337 |
| 0.1154 | 2500 | 4.5945 |
| 0.1385 | 3000 | 4.7536 |
| 0.1616 | 3500 | 4.619 |
| 0.1847 | 4000 | 4.4761 |
| 0.2078 | 4500 | 4.4454 |
| 0.2309 | 5000 | 4.6376 |
| 0.2539 | 5500 | 4.5513 |
| 0.2770 | 6000 | 4.5619 |
| 0.3001 | 6500 | 4.3416 |
| 0.3232 | 7000 | 4.7372 |
| 0.3463 | 7500 | 4.5906 |
| 0.3694 | 8000 | 4.6546 |
| 0.3924 | 8500 | 4.2452 |
| 0.4155 | 9000 | 4.684 |
| 0.4386 | 9500 | 4.426 |
| 0.4617 | 10000 | 4.2539 |
| 0.4848 | 10500 | 4.3224 |
| 0.5079 | 11000 | 4.4046 |
| 0.5310 | 11500 | 4.4644 |
| 0.5540 | 12000 | 4.4542 |
| 0.5771 | 12500 | 4.6026 |
| 0.6002 | 13000 | 4.3519 |
| 0.6233 | 13500 | 4.5135 |
| 0.6464 | 14000 | 4.3318 |
| 0.6695 | 14500 | 4.4465 |
| 0.6926 | 15000 | 3.9692 |
| 0.7156 | 15500 | 4.2084 |
| 0.7387 | 16000 | 4.2217 |
| 0.7618 | 16500 | 4.2791 |
| 0.7849 | 17000 | 4.5962 |
| 0.8080 | 17500 | 4.5871 |
| 0.8311 | 18000 | 4.3271 |
| 0.8541 | 18500 | 4.1688 |
| 0.8772 | 19000 | 4.2081 |
| 0.9003 | 19500 | 4.2867 |
| 0.9234 | 20000 | 4.5474 |
| 0.9465 | 20500 | 4.5257 |
| 0.9696 | 21000 | 3.8461 |
| 0.9927 | 21500 | 4.1254 |
### Framework Versions
- Python: 3.9.18
- Sentence Transformers: 3.0.1
- Transformers: 4.40.0
- PyTorch: 2.2.2+cu121
- Accelerate: 0.26.1
- Datasets: 2.19.0
- Tokenizers: 0.19.1
## Citation
### BibTeX
#### Sentence Transformers and SoftmaxLoss
```bibtex
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
```
#### MultipleNegativesRankingLoss
```bibtex
@misc{henderson2017efficient,
title={Efficient Natural Language Response Suggestion for Smart Reply},
author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
year={2017},
eprint={1705.00652},
archivePrefix={arXiv},
primaryClass={cs.CL}
}
```
#### CoSENTLoss
```bibtex
@online{kexuefm-8847,
title={CoSENT: A more efficient sentence vector scheme than Sentence-BERT},
author={Su Jianlin},
year={2022},
month={Jan},
url={https://kexue.fm/archives/8847},
}
```
<!--
## Glossary
*Clearly define terms in order to be accessible across audiences.*
-->
<!--
## Model Card Authors
*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
-->
<!--
## Model Card Contact
*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
--> |