--- tags: - generated_from_trainer metrics: - precision - recall - f1 - accuracy model-index: - name: checkpoint-10000-finetuned-ner results: [] --- # checkpoint-10000-finetuned-ner This model was trained from scratch on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.1752 - Precision: 0.7371 - Recall: 0.7711 - F1: 0.7537 - Accuracy: 0.9457 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - distributed_type: tpu - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | 0.4149 | 1.0 | 878 | 0.2236 | 0.6673 | 0.6842 | 0.6757 | 0.9290 | | 0.1795 | 2.0 | 1756 | 0.1849 | 0.7084 | 0.7581 | 0.7325 | 0.9410 | | 0.122 | 3.0 | 2634 | 0.1752 | 0.7371 | 0.7711 | 0.7537 | 0.9457 | ### Framework versions - Transformers 4.37.2 - Pytorch 2.2.0+cu121 - Datasets 2.16.1 - Tokenizers 0.15.1