|
import importlib |
|
|
|
import torch |
|
from torch import optim |
|
import numpy as np |
|
|
|
from inspect import isfunction |
|
from PIL import Image, ImageDraw, ImageFont |
|
|
|
import os |
|
import numpy as np |
|
import matplotlib.pyplot as plt |
|
from PIL import Image |
|
import torch |
|
import time |
|
import cv2 |
|
import PIL |
|
|
|
def pil_rectangle_crop(im): |
|
width, height = im.size |
|
|
|
if width <= height: |
|
left = 0 |
|
right = width |
|
top = (height - width)/2 |
|
bottom = (height + width)/2 |
|
else: |
|
|
|
top = 0 |
|
bottom = height |
|
left = (width - height) / 2 |
|
bottom = (width + height) / 2 |
|
|
|
|
|
im = im.crop((left, top, right, bottom)) |
|
return im |
|
|
|
def add_margin(pil_img, color, size=256): |
|
width, height = pil_img.size |
|
result = Image.new(pil_img.mode, (size, size), color) |
|
result.paste(pil_img, ((size - width) // 2, (size - height) // 2)) |
|
return result |
|
|
|
def load_and_preprocess(interface, input_im): |
|
''' |
|
:param input_im (PIL Image). |
|
:return image (H, W, 3) array in [0, 1]. |
|
''' |
|
|
|
image = input_im.convert('RGB') |
|
|
|
image_without_background = interface([image])[0] |
|
image_without_background = np.array(image_without_background) |
|
est_seg = image_without_background > 127 |
|
image = np.array(image) |
|
foreground = est_seg[:, : , -1].astype(np.bool_) |
|
image[~foreground] = [255., 255., 255.] |
|
x, y, w, h = cv2.boundingRect(foreground.astype(np.uint8)) |
|
image = image[y:y+h, x:x+w, :] |
|
image = PIL.Image.fromarray(np.array(image)) |
|
|
|
|
|
image.thumbnail([200, 200], Image.Resampling.LANCZOS) |
|
image = add_margin(image, (255, 255, 255), size=256) |
|
image = np.array(image) |
|
|
|
return image |
|
|
|
|
|
def log_txt_as_img(wh, xc, size=10): |
|
|
|
|
|
b = len(xc) |
|
txts = list() |
|
for bi in range(b): |
|
txt = Image.new("RGB", wh, color="white") |
|
draw = ImageDraw.Draw(txt) |
|
font = ImageFont.truetype('data/DejaVuSans.ttf', size=size) |
|
nc = int(40 * (wh[0] / 256)) |
|
lines = "\n".join(xc[bi][start:start + nc] for start in range(0, len(xc[bi]), nc)) |
|
|
|
try: |
|
draw.text((0, 0), lines, fill="black", font=font) |
|
except UnicodeEncodeError: |
|
print("Cant encode string for logging. Skipping.") |
|
|
|
txt = np.array(txt).transpose(2, 0, 1) / 127.5 - 1.0 |
|
txts.append(txt) |
|
txts = np.stack(txts) |
|
txts = torch.tensor(txts) |
|
return txts |
|
|
|
|
|
def ismap(x): |
|
if not isinstance(x, torch.Tensor): |
|
return False |
|
return (len(x.shape) == 4) and (x.shape[1] > 3) |
|
|
|
|
|
def isimage(x): |
|
if not isinstance(x,torch.Tensor): |
|
return False |
|
return (len(x.shape) == 4) and (x.shape[1] == 3 or x.shape[1] == 1) |
|
|
|
|
|
def exists(x): |
|
return x is not None |
|
|
|
|
|
def default(val, d): |
|
if exists(val): |
|
return val |
|
return d() if isfunction(d) else d |
|
|
|
|
|
def mean_flat(tensor): |
|
""" |
|
https://github.com/openai/guided-diffusion/blob/27c20a8fab9cb472df5d6bdd6c8d11c8f430b924/guided_diffusion/nn.py#L86 |
|
Take the mean over all non-batch dimensions. |
|
""" |
|
return tensor.mean(dim=list(range(1, len(tensor.shape)))) |
|
|
|
|
|
def count_params(model, verbose=False): |
|
total_params = sum(p.numel() for p in model.parameters()) |
|
if verbose: |
|
print(f"{model.__class__.__name__} has {total_params*1.e-6:.2f} M params.") |
|
return total_params |
|
|
|
|
|
def instantiate_from_config(config): |
|
if not "target" in config: |
|
if config == '__is_first_stage__': |
|
return None |
|
elif config == "__is_unconditional__": |
|
return None |
|
raise KeyError("Expected key `target` to instantiate.") |
|
return get_obj_from_str(config["target"])(**config.get("params", dict())) |
|
|
|
|
|
def get_obj_from_str(string, reload=False): |
|
module, cls = string.rsplit(".", 1) |
|
if reload: |
|
module_imp = importlib.import_module(module) |
|
importlib.reload(module_imp) |
|
return getattr(importlib.import_module(module, package=None), cls) |
|
|
|
|
|
class AdamWwithEMAandWings(optim.Optimizer): |
|
|
|
def __init__(self, params, lr=1.e-3, betas=(0.9, 0.999), eps=1.e-8, |
|
weight_decay=1.e-2, amsgrad=False, ema_decay=0.9999, |
|
ema_power=1., param_names=()): |
|
"""AdamW that saves EMA versions of the parameters.""" |
|
if not 0.0 <= lr: |
|
raise ValueError("Invalid learning rate: {}".format(lr)) |
|
if not 0.0 <= eps: |
|
raise ValueError("Invalid epsilon value: {}".format(eps)) |
|
if not 0.0 <= betas[0] < 1.0: |
|
raise ValueError("Invalid beta parameter at index 0: {}".format(betas[0])) |
|
if not 0.0 <= betas[1] < 1.0: |
|
raise ValueError("Invalid beta parameter at index 1: {}".format(betas[1])) |
|
if not 0.0 <= weight_decay: |
|
raise ValueError("Invalid weight_decay value: {}".format(weight_decay)) |
|
if not 0.0 <= ema_decay <= 1.0: |
|
raise ValueError("Invalid ema_decay value: {}".format(ema_decay)) |
|
defaults = dict(lr=lr, betas=betas, eps=eps, |
|
weight_decay=weight_decay, amsgrad=amsgrad, ema_decay=ema_decay, |
|
ema_power=ema_power, param_names=param_names) |
|
super().__init__(params, defaults) |
|
|
|
def __setstate__(self, state): |
|
super().__setstate__(state) |
|
for group in self.param_groups: |
|
group.setdefault('amsgrad', False) |
|
|
|
@torch.no_grad() |
|
def step(self, closure=None): |
|
"""Performs a single optimization step. |
|
Args: |
|
closure (callable, optional): A closure that reevaluates the model |
|
and returns the loss. |
|
""" |
|
loss = None |
|
if closure is not None: |
|
with torch.enable_grad(): |
|
loss = closure() |
|
|
|
for group in self.param_groups: |
|
params_with_grad = [] |
|
grads = [] |
|
exp_avgs = [] |
|
exp_avg_sqs = [] |
|
ema_params_with_grad = [] |
|
state_sums = [] |
|
max_exp_avg_sqs = [] |
|
state_steps = [] |
|
amsgrad = group['amsgrad'] |
|
beta1, beta2 = group['betas'] |
|
ema_decay = group['ema_decay'] |
|
ema_power = group['ema_power'] |
|
|
|
for p in group['params']: |
|
if p.grad is None: |
|
continue |
|
params_with_grad.append(p) |
|
if p.grad.is_sparse: |
|
raise RuntimeError('AdamW does not support sparse gradients') |
|
grads.append(p.grad) |
|
|
|
state = self.state[p] |
|
|
|
|
|
if len(state) == 0: |
|
state['step'] = 0 |
|
|
|
state['exp_avg'] = torch.zeros_like(p, memory_format=torch.preserve_format) |
|
|
|
state['exp_avg_sq'] = torch.zeros_like(p, memory_format=torch.preserve_format) |
|
if amsgrad: |
|
|
|
state['max_exp_avg_sq'] = torch.zeros_like(p, memory_format=torch.preserve_format) |
|
|
|
state['param_exp_avg'] = p.detach().float().clone() |
|
|
|
exp_avgs.append(state['exp_avg']) |
|
exp_avg_sqs.append(state['exp_avg_sq']) |
|
ema_params_with_grad.append(state['param_exp_avg']) |
|
|
|
if amsgrad: |
|
max_exp_avg_sqs.append(state['max_exp_avg_sq']) |
|
|
|
|
|
state['step'] += 1 |
|
|
|
state_steps.append(state['step']) |
|
|
|
optim._functional.adamw(params_with_grad, |
|
grads, |
|
exp_avgs, |
|
exp_avg_sqs, |
|
max_exp_avg_sqs, |
|
state_steps, |
|
amsgrad=amsgrad, |
|
beta1=beta1, |
|
beta2=beta2, |
|
lr=group['lr'], |
|
weight_decay=group['weight_decay'], |
|
eps=group['eps'], |
|
maximize=False) |
|
|
|
cur_ema_decay = min(ema_decay, 1 - state['step'] ** -ema_power) |
|
for param, ema_param in zip(params_with_grad, ema_params_with_grad): |
|
ema_param.mul_(cur_ema_decay).add_(param.float(), alpha=1 - cur_ema_decay) |
|
|
|
return loss |