|
import os |
|
import numpy as np |
|
import torch |
|
from PIL import Image |
|
import time |
|
|
|
from segment_anything import sam_model_registry, SamPredictor |
|
|
|
def sam_init(device_id=0): |
|
sam_checkpoint = os.path.join(os.path.dirname(__file__), "sam_vit_h_4b8939.pth") |
|
model_type = "vit_h" |
|
|
|
device = "cuda:{}".format(device_id) if torch.cuda.is_available() else "cpu" |
|
|
|
sam = sam_model_registry[model_type](checkpoint=sam_checkpoint).to(device=device) |
|
predictor = SamPredictor(sam) |
|
return predictor |
|
|
|
def sam_out_nosave(predictor, input_image, *bbox_sliders): |
|
bbox = np.array(bbox_sliders) |
|
image = np.asarray(input_image) |
|
|
|
start_time = time.time() |
|
predictor.set_image(image) |
|
|
|
masks_bbox, scores_bbox, logits_bbox = predictor.predict( |
|
box=bbox, |
|
multimask_output=True |
|
) |
|
|
|
print(f"SAM Time: {time.time() - start_time:.3f}s") |
|
out_image = np.zeros((image.shape[0], image.shape[1], 4), dtype=np.uint8) |
|
out_image[:, :, :3] = image |
|
out_image_bbox = out_image.copy() |
|
out_image_bbox[:, :, 3] = masks_bbox[-1].astype(np.uint8) * 255 |
|
torch.cuda.empty_cache() |
|
return Image.fromarray(out_image_bbox, mode='RGBA') |