Chao Xu
commited on
Commit
•
1fae98d
1
Parent(s):
4b06a72
init code
Browse filesThis view is limited to 50 files because it contains too many changes.
See raw diff
- .gitignore +1 -0
- ldm/data/__init__.py +0 -0
- ldm/data/base.py +40 -0
- ldm/data/coco.py +253 -0
- ldm/data/dummy.py +34 -0
- ldm/data/imagenet.py +394 -0
- ldm/data/inpainting/__init__.py +0 -0
- ldm/data/inpainting/synthetic_mask.py +166 -0
- ldm/data/laion.py +537 -0
- ldm/data/lsun.py +92 -0
- ldm/data/nerf_like.py +165 -0
- ldm/data/simple.py +526 -0
- ldm/extras.py +77 -0
- ldm/guidance.py +96 -0
- ldm/lr_scheduler.py +98 -0
- ldm/models/autoencoder.py +443 -0
- ldm/models/diffusion/__init__.py +0 -0
- ldm/models/diffusion/classifier.py +267 -0
- ldm/models/diffusion/ddim.py +326 -0
- ldm/models/diffusion/ddpm.py +1994 -0
- ldm/models/diffusion/plms.py +259 -0
- ldm/models/diffusion/sampling_util.py +50 -0
- ldm/modules/attention.py +266 -0
- ldm/modules/diffusionmodules/__init__.py +0 -0
- ldm/modules/diffusionmodules/model.py +835 -0
- ldm/modules/diffusionmodules/openaimodel.py +996 -0
- ldm/modules/diffusionmodules/util.py +267 -0
- ldm/modules/distributions/__init__.py +0 -0
- ldm/modules/distributions/distributions.py +92 -0
- ldm/modules/ema.py +76 -0
- ldm/modules/encoders/__init__.py +0 -0
- ldm/modules/encoders/modules.py +550 -0
- ldm/modules/evaluate/adm_evaluator.py +676 -0
- ldm/modules/evaluate/evaluate_perceptualsim.py +630 -0
- ldm/modules/evaluate/frechet_video_distance.py +147 -0
- ldm/modules/evaluate/ssim.py +124 -0
- ldm/modules/evaluate/torch_frechet_video_distance.py +294 -0
- ldm/modules/image_degradation/__init__.py +2 -0
- ldm/modules/image_degradation/bsrgan.py +730 -0
- ldm/modules/image_degradation/bsrgan_light.py +650 -0
- ldm/modules/image_degradation/utils/test.png +0 -0
- ldm/modules/image_degradation/utils_image.py +916 -0
- ldm/modules/losses/__init__.py +1 -0
- ldm/modules/losses/contperceptual.py +111 -0
- ldm/modules/losses/vqperceptual.py +167 -0
- ldm/modules/x_transformer.py +641 -0
- ldm/thirdp/psp/helpers.py +121 -0
- ldm/thirdp/psp/id_loss.py +23 -0
- ldm/thirdp/psp/model_irse.py +86 -0
- ldm/util.py +275 -0
.gitignore
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
__pycache__/
|
ldm/data/__init__.py
ADDED
File without changes
|
ldm/data/base.py
ADDED
@@ -0,0 +1,40 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import numpy as np
|
3 |
+
from abc import abstractmethod
|
4 |
+
from torch.utils.data import Dataset, ConcatDataset, ChainDataset, IterableDataset
|
5 |
+
|
6 |
+
|
7 |
+
class Txt2ImgIterableBaseDataset(IterableDataset):
|
8 |
+
'''
|
9 |
+
Define an interface to make the IterableDatasets for text2img data chainable
|
10 |
+
'''
|
11 |
+
def __init__(self, num_records=0, valid_ids=None, size=256):
|
12 |
+
super().__init__()
|
13 |
+
self.num_records = num_records
|
14 |
+
self.valid_ids = valid_ids
|
15 |
+
self.sample_ids = valid_ids
|
16 |
+
self.size = size
|
17 |
+
|
18 |
+
print(f'{self.__class__.__name__} dataset contains {self.__len__()} examples.')
|
19 |
+
|
20 |
+
def __len__(self):
|
21 |
+
return self.num_records
|
22 |
+
|
23 |
+
@abstractmethod
|
24 |
+
def __iter__(self):
|
25 |
+
pass
|
26 |
+
|
27 |
+
|
28 |
+
class PRNGMixin(object):
|
29 |
+
"""
|
30 |
+
Adds a prng property which is a numpy RandomState which gets
|
31 |
+
reinitialized whenever the pid changes to avoid synchronized sampling
|
32 |
+
behavior when used in conjunction with multiprocessing.
|
33 |
+
"""
|
34 |
+
@property
|
35 |
+
def prng(self):
|
36 |
+
currentpid = os.getpid()
|
37 |
+
if getattr(self, "_initpid", None) != currentpid:
|
38 |
+
self._initpid = currentpid
|
39 |
+
self._prng = np.random.RandomState()
|
40 |
+
return self._prng
|
ldm/data/coco.py
ADDED
@@ -0,0 +1,253 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import json
|
3 |
+
import albumentations
|
4 |
+
import numpy as np
|
5 |
+
from PIL import Image
|
6 |
+
from tqdm import tqdm
|
7 |
+
from torch.utils.data import Dataset
|
8 |
+
from abc import abstractmethod
|
9 |
+
|
10 |
+
|
11 |
+
class CocoBase(Dataset):
|
12 |
+
"""needed for (image, caption, segmentation) pairs"""
|
13 |
+
def __init__(self, size=None, dataroot="", datajson="", onehot_segmentation=False, use_stuffthing=False,
|
14 |
+
crop_size=None, force_no_crop=False, given_files=None, use_segmentation=True,crop_type=None):
|
15 |
+
self.split = self.get_split()
|
16 |
+
self.size = size
|
17 |
+
if crop_size is None:
|
18 |
+
self.crop_size = size
|
19 |
+
else:
|
20 |
+
self.crop_size = crop_size
|
21 |
+
|
22 |
+
assert crop_type in [None, 'random', 'center']
|
23 |
+
self.crop_type = crop_type
|
24 |
+
self.use_segmenation = use_segmentation
|
25 |
+
self.onehot = onehot_segmentation # return segmentation as rgb or one hot
|
26 |
+
self.stuffthing = use_stuffthing # include thing in segmentation
|
27 |
+
if self.onehot and not self.stuffthing:
|
28 |
+
raise NotImplemented("One hot mode is only supported for the "
|
29 |
+
"stuffthings version because labels are stored "
|
30 |
+
"a bit different.")
|
31 |
+
|
32 |
+
data_json = datajson
|
33 |
+
with open(data_json) as json_file:
|
34 |
+
self.json_data = json.load(json_file)
|
35 |
+
self.img_id_to_captions = dict()
|
36 |
+
self.img_id_to_filepath = dict()
|
37 |
+
self.img_id_to_segmentation_filepath = dict()
|
38 |
+
|
39 |
+
assert data_json.split("/")[-1] in [f"captions_train{self.year()}.json",
|
40 |
+
f"captions_val{self.year()}.json"]
|
41 |
+
# TODO currently hardcoded paths, would be better to follow logic in
|
42 |
+
# cocstuff pixelmaps
|
43 |
+
if self.use_segmenation:
|
44 |
+
if self.stuffthing:
|
45 |
+
self.segmentation_prefix = (
|
46 |
+
f"data/cocostuffthings/val{self.year()}" if
|
47 |
+
data_json.endswith(f"captions_val{self.year()}.json") else
|
48 |
+
f"data/cocostuffthings/train{self.year()}")
|
49 |
+
else:
|
50 |
+
self.segmentation_prefix = (
|
51 |
+
f"data/coco/annotations/stuff_val{self.year()}_pixelmaps" if
|
52 |
+
data_json.endswith(f"captions_val{self.year()}.json") else
|
53 |
+
f"data/coco/annotations/stuff_train{self.year()}_pixelmaps")
|
54 |
+
|
55 |
+
imagedirs = self.json_data["images"]
|
56 |
+
self.labels = {"image_ids": list()}
|
57 |
+
for imgdir in tqdm(imagedirs, desc="ImgToPath"):
|
58 |
+
self.img_id_to_filepath[imgdir["id"]] = os.path.join(dataroot, imgdir["file_name"])
|
59 |
+
self.img_id_to_captions[imgdir["id"]] = list()
|
60 |
+
pngfilename = imgdir["file_name"].replace("jpg", "png")
|
61 |
+
if self.use_segmenation:
|
62 |
+
self.img_id_to_segmentation_filepath[imgdir["id"]] = os.path.join(
|
63 |
+
self.segmentation_prefix, pngfilename)
|
64 |
+
if given_files is not None:
|
65 |
+
if pngfilename in given_files:
|
66 |
+
self.labels["image_ids"].append(imgdir["id"])
|
67 |
+
else:
|
68 |
+
self.labels["image_ids"].append(imgdir["id"])
|
69 |
+
|
70 |
+
capdirs = self.json_data["annotations"]
|
71 |
+
for capdir in tqdm(capdirs, desc="ImgToCaptions"):
|
72 |
+
# there are in average 5 captions per image
|
73 |
+
#self.img_id_to_captions[capdir["image_id"]].append(np.array([capdir["caption"]]))
|
74 |
+
self.img_id_to_captions[capdir["image_id"]].append(capdir["caption"])
|
75 |
+
|
76 |
+
self.rescaler = albumentations.SmallestMaxSize(max_size=self.size)
|
77 |
+
if self.split=="validation":
|
78 |
+
self.cropper = albumentations.CenterCrop(height=self.crop_size, width=self.crop_size)
|
79 |
+
else:
|
80 |
+
# default option for train is random crop
|
81 |
+
if self.crop_type in [None, 'random']:
|
82 |
+
self.cropper = albumentations.RandomCrop(height=self.crop_size, width=self.crop_size)
|
83 |
+
else:
|
84 |
+
self.cropper = albumentations.CenterCrop(height=self.crop_size, width=self.crop_size)
|
85 |
+
self.preprocessor = albumentations.Compose(
|
86 |
+
[self.rescaler, self.cropper],
|
87 |
+
additional_targets={"segmentation": "image"})
|
88 |
+
if force_no_crop:
|
89 |
+
self.rescaler = albumentations.Resize(height=self.size, width=self.size)
|
90 |
+
self.preprocessor = albumentations.Compose(
|
91 |
+
[self.rescaler],
|
92 |
+
additional_targets={"segmentation": "image"})
|
93 |
+
|
94 |
+
@abstractmethod
|
95 |
+
def year(self):
|
96 |
+
raise NotImplementedError()
|
97 |
+
|
98 |
+
def __len__(self):
|
99 |
+
return len(self.labels["image_ids"])
|
100 |
+
|
101 |
+
def preprocess_image(self, image_path, segmentation_path=None):
|
102 |
+
image = Image.open(image_path)
|
103 |
+
if not image.mode == "RGB":
|
104 |
+
image = image.convert("RGB")
|
105 |
+
image = np.array(image).astype(np.uint8)
|
106 |
+
if segmentation_path:
|
107 |
+
segmentation = Image.open(segmentation_path)
|
108 |
+
if not self.onehot and not segmentation.mode == "RGB":
|
109 |
+
segmentation = segmentation.convert("RGB")
|
110 |
+
segmentation = np.array(segmentation).astype(np.uint8)
|
111 |
+
if self.onehot:
|
112 |
+
assert self.stuffthing
|
113 |
+
# stored in caffe format: unlabeled==255. stuff and thing from
|
114 |
+
# 0-181. to be compatible with the labels in
|
115 |
+
# https://github.com/nightrome/cocostuff/blob/master/labels.txt
|
116 |
+
# we shift stuffthing one to the right and put unlabeled in zero
|
117 |
+
# as long as segmentation is uint8 shifting to right handles the
|
118 |
+
# latter too
|
119 |
+
assert segmentation.dtype == np.uint8
|
120 |
+
segmentation = segmentation + 1
|
121 |
+
|
122 |
+
processed = self.preprocessor(image=image, segmentation=segmentation)
|
123 |
+
|
124 |
+
image, segmentation = processed["image"], processed["segmentation"]
|
125 |
+
else:
|
126 |
+
image = self.preprocessor(image=image,)['image']
|
127 |
+
|
128 |
+
image = (image / 127.5 - 1.0).astype(np.float32)
|
129 |
+
if segmentation_path:
|
130 |
+
if self.onehot:
|
131 |
+
assert segmentation.dtype == np.uint8
|
132 |
+
# make it one hot
|
133 |
+
n_labels = 183
|
134 |
+
flatseg = np.ravel(segmentation)
|
135 |
+
onehot = np.zeros((flatseg.size, n_labels), dtype=np.bool)
|
136 |
+
onehot[np.arange(flatseg.size), flatseg] = True
|
137 |
+
onehot = onehot.reshape(segmentation.shape + (n_labels,)).astype(int)
|
138 |
+
segmentation = onehot
|
139 |
+
else:
|
140 |
+
segmentation = (segmentation / 127.5 - 1.0).astype(np.float32)
|
141 |
+
return image, segmentation
|
142 |
+
else:
|
143 |
+
return image
|
144 |
+
|
145 |
+
def __getitem__(self, i):
|
146 |
+
img_path = self.img_id_to_filepath[self.labels["image_ids"][i]]
|
147 |
+
if self.use_segmenation:
|
148 |
+
seg_path = self.img_id_to_segmentation_filepath[self.labels["image_ids"][i]]
|
149 |
+
image, segmentation = self.preprocess_image(img_path, seg_path)
|
150 |
+
else:
|
151 |
+
image = self.preprocess_image(img_path)
|
152 |
+
captions = self.img_id_to_captions[self.labels["image_ids"][i]]
|
153 |
+
# randomly draw one of all available captions per image
|
154 |
+
caption = captions[np.random.randint(0, len(captions))]
|
155 |
+
example = {"image": image,
|
156 |
+
#"caption": [str(caption[0])],
|
157 |
+
"caption": caption,
|
158 |
+
"img_path": img_path,
|
159 |
+
"filename_": img_path.split(os.sep)[-1]
|
160 |
+
}
|
161 |
+
if self.use_segmenation:
|
162 |
+
example.update({"seg_path": seg_path, 'segmentation': segmentation})
|
163 |
+
return example
|
164 |
+
|
165 |
+
|
166 |
+
class CocoImagesAndCaptionsTrain2017(CocoBase):
|
167 |
+
"""returns a pair of (image, caption)"""
|
168 |
+
def __init__(self, size, onehot_segmentation=False, use_stuffthing=False, crop_size=None, force_no_crop=False,):
|
169 |
+
super().__init__(size=size,
|
170 |
+
dataroot="data/coco/train2017",
|
171 |
+
datajson="data/coco/annotations/captions_train2017.json",
|
172 |
+
onehot_segmentation=onehot_segmentation,
|
173 |
+
use_stuffthing=use_stuffthing, crop_size=crop_size, force_no_crop=force_no_crop)
|
174 |
+
|
175 |
+
def get_split(self):
|
176 |
+
return "train"
|
177 |
+
|
178 |
+
def year(self):
|
179 |
+
return '2017'
|
180 |
+
|
181 |
+
|
182 |
+
class CocoImagesAndCaptionsValidation2017(CocoBase):
|
183 |
+
"""returns a pair of (image, caption)"""
|
184 |
+
def __init__(self, size, onehot_segmentation=False, use_stuffthing=False, crop_size=None, force_no_crop=False,
|
185 |
+
given_files=None):
|
186 |
+
super().__init__(size=size,
|
187 |
+
dataroot="data/coco/val2017",
|
188 |
+
datajson="data/coco/annotations/captions_val2017.json",
|
189 |
+
onehot_segmentation=onehot_segmentation,
|
190 |
+
use_stuffthing=use_stuffthing, crop_size=crop_size, force_no_crop=force_no_crop,
|
191 |
+
given_files=given_files)
|
192 |
+
|
193 |
+
def get_split(self):
|
194 |
+
return "validation"
|
195 |
+
|
196 |
+
def year(self):
|
197 |
+
return '2017'
|
198 |
+
|
199 |
+
|
200 |
+
|
201 |
+
class CocoImagesAndCaptionsTrain2014(CocoBase):
|
202 |
+
"""returns a pair of (image, caption)"""
|
203 |
+
def __init__(self, size, onehot_segmentation=False, use_stuffthing=False, crop_size=None, force_no_crop=False,crop_type='random'):
|
204 |
+
super().__init__(size=size,
|
205 |
+
dataroot="data/coco/train2014",
|
206 |
+
datajson="data/coco/annotations2014/annotations/captions_train2014.json",
|
207 |
+
onehot_segmentation=onehot_segmentation,
|
208 |
+
use_stuffthing=use_stuffthing, crop_size=crop_size, force_no_crop=force_no_crop,
|
209 |
+
use_segmentation=False,
|
210 |
+
crop_type=crop_type)
|
211 |
+
|
212 |
+
def get_split(self):
|
213 |
+
return "train"
|
214 |
+
|
215 |
+
def year(self):
|
216 |
+
return '2014'
|
217 |
+
|
218 |
+
class CocoImagesAndCaptionsValidation2014(CocoBase):
|
219 |
+
"""returns a pair of (image, caption)"""
|
220 |
+
def __init__(self, size, onehot_segmentation=False, use_stuffthing=False, crop_size=None, force_no_crop=False,
|
221 |
+
given_files=None,crop_type='center',**kwargs):
|
222 |
+
super().__init__(size=size,
|
223 |
+
dataroot="data/coco/val2014",
|
224 |
+
datajson="data/coco/annotations2014/annotations/captions_val2014.json",
|
225 |
+
onehot_segmentation=onehot_segmentation,
|
226 |
+
use_stuffthing=use_stuffthing, crop_size=crop_size, force_no_crop=force_no_crop,
|
227 |
+
given_files=given_files,
|
228 |
+
use_segmentation=False,
|
229 |
+
crop_type=crop_type)
|
230 |
+
|
231 |
+
def get_split(self):
|
232 |
+
return "validation"
|
233 |
+
|
234 |
+
def year(self):
|
235 |
+
return '2014'
|
236 |
+
|
237 |
+
if __name__ == '__main__':
|
238 |
+
with open("data/coco/annotations2014/annotations/captions_val2014.json", "r") as json_file:
|
239 |
+
json_data = json.load(json_file)
|
240 |
+
capdirs = json_data["annotations"]
|
241 |
+
import pudb; pudb.set_trace()
|
242 |
+
#d2 = CocoImagesAndCaptionsTrain2014(size=256)
|
243 |
+
d2 = CocoImagesAndCaptionsValidation2014(size=256)
|
244 |
+
print("constructed dataset.")
|
245 |
+
print(f"length of {d2.__class__.__name__}: {len(d2)}")
|
246 |
+
|
247 |
+
ex2 = d2[0]
|
248 |
+
# ex3 = d3[0]
|
249 |
+
# print(ex1["image"].shape)
|
250 |
+
print(ex2["image"].shape)
|
251 |
+
# print(ex3["image"].shape)
|
252 |
+
# print(ex1["segmentation"].shape)
|
253 |
+
print(ex2["caption"].__class__.__name__)
|
ldm/data/dummy.py
ADDED
@@ -0,0 +1,34 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import numpy as np
|
2 |
+
import random
|
3 |
+
import string
|
4 |
+
from torch.utils.data import Dataset, Subset
|
5 |
+
|
6 |
+
class DummyData(Dataset):
|
7 |
+
def __init__(self, length, size):
|
8 |
+
self.length = length
|
9 |
+
self.size = size
|
10 |
+
|
11 |
+
def __len__(self):
|
12 |
+
return self.length
|
13 |
+
|
14 |
+
def __getitem__(self, i):
|
15 |
+
x = np.random.randn(*self.size)
|
16 |
+
letters = string.ascii_lowercase
|
17 |
+
y = ''.join(random.choice(string.ascii_lowercase) for i in range(10))
|
18 |
+
return {"jpg": x, "txt": y}
|
19 |
+
|
20 |
+
|
21 |
+
class DummyDataWithEmbeddings(Dataset):
|
22 |
+
def __init__(self, length, size, emb_size):
|
23 |
+
self.length = length
|
24 |
+
self.size = size
|
25 |
+
self.emb_size = emb_size
|
26 |
+
|
27 |
+
def __len__(self):
|
28 |
+
return self.length
|
29 |
+
|
30 |
+
def __getitem__(self, i):
|
31 |
+
x = np.random.randn(*self.size)
|
32 |
+
y = np.random.randn(*self.emb_size).astype(np.float32)
|
33 |
+
return {"jpg": x, "txt": y}
|
34 |
+
|
ldm/data/imagenet.py
ADDED
@@ -0,0 +1,394 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os, yaml, pickle, shutil, tarfile, glob
|
2 |
+
import cv2
|
3 |
+
import albumentations
|
4 |
+
import PIL
|
5 |
+
import numpy as np
|
6 |
+
import torchvision.transforms.functional as TF
|
7 |
+
from omegaconf import OmegaConf
|
8 |
+
from functools import partial
|
9 |
+
from PIL import Image
|
10 |
+
from tqdm import tqdm
|
11 |
+
from torch.utils.data import Dataset, Subset
|
12 |
+
|
13 |
+
import taming.data.utils as tdu
|
14 |
+
from taming.data.imagenet import str_to_indices, give_synsets_from_indices, download, retrieve
|
15 |
+
from taming.data.imagenet import ImagePaths
|
16 |
+
|
17 |
+
from ldm.modules.image_degradation import degradation_fn_bsr, degradation_fn_bsr_light
|
18 |
+
|
19 |
+
|
20 |
+
def synset2idx(path_to_yaml="data/index_synset.yaml"):
|
21 |
+
with open(path_to_yaml) as f:
|
22 |
+
di2s = yaml.load(f)
|
23 |
+
return dict((v,k) for k,v in di2s.items())
|
24 |
+
|
25 |
+
|
26 |
+
class ImageNetBase(Dataset):
|
27 |
+
def __init__(self, config=None):
|
28 |
+
self.config = config or OmegaConf.create()
|
29 |
+
if not type(self.config)==dict:
|
30 |
+
self.config = OmegaConf.to_container(self.config)
|
31 |
+
self.keep_orig_class_label = self.config.get("keep_orig_class_label", False)
|
32 |
+
self.process_images = True # if False we skip loading & processing images and self.data contains filepaths
|
33 |
+
self._prepare()
|
34 |
+
self._prepare_synset_to_human()
|
35 |
+
self._prepare_idx_to_synset()
|
36 |
+
self._prepare_human_to_integer_label()
|
37 |
+
self._load()
|
38 |
+
|
39 |
+
def __len__(self):
|
40 |
+
return len(self.data)
|
41 |
+
|
42 |
+
def __getitem__(self, i):
|
43 |
+
return self.data[i]
|
44 |
+
|
45 |
+
def _prepare(self):
|
46 |
+
raise NotImplementedError()
|
47 |
+
|
48 |
+
def _filter_relpaths(self, relpaths):
|
49 |
+
ignore = set([
|
50 |
+
"n06596364_9591.JPEG",
|
51 |
+
])
|
52 |
+
relpaths = [rpath for rpath in relpaths if not rpath.split("/")[-1] in ignore]
|
53 |
+
if "sub_indices" in self.config:
|
54 |
+
indices = str_to_indices(self.config["sub_indices"])
|
55 |
+
synsets = give_synsets_from_indices(indices, path_to_yaml=self.idx2syn) # returns a list of strings
|
56 |
+
self.synset2idx = synset2idx(path_to_yaml=self.idx2syn)
|
57 |
+
files = []
|
58 |
+
for rpath in relpaths:
|
59 |
+
syn = rpath.split("/")[0]
|
60 |
+
if syn in synsets:
|
61 |
+
files.append(rpath)
|
62 |
+
return files
|
63 |
+
else:
|
64 |
+
return relpaths
|
65 |
+
|
66 |
+
def _prepare_synset_to_human(self):
|
67 |
+
SIZE = 2655750
|
68 |
+
URL = "https://heibox.uni-heidelberg.de/f/9f28e956cd304264bb82/?dl=1"
|
69 |
+
self.human_dict = os.path.join(self.root, "synset_human.txt")
|
70 |
+
if (not os.path.exists(self.human_dict) or
|
71 |
+
not os.path.getsize(self.human_dict)==SIZE):
|
72 |
+
download(URL, self.human_dict)
|
73 |
+
|
74 |
+
def _prepare_idx_to_synset(self):
|
75 |
+
URL = "https://heibox.uni-heidelberg.de/f/d835d5b6ceda4d3aa910/?dl=1"
|
76 |
+
self.idx2syn = os.path.join(self.root, "index_synset.yaml")
|
77 |
+
if (not os.path.exists(self.idx2syn)):
|
78 |
+
download(URL, self.idx2syn)
|
79 |
+
|
80 |
+
def _prepare_human_to_integer_label(self):
|
81 |
+
URL = "https://heibox.uni-heidelberg.de/f/2362b797d5be43b883f6/?dl=1"
|
82 |
+
self.human2integer = os.path.join(self.root, "imagenet1000_clsidx_to_labels.txt")
|
83 |
+
if (not os.path.exists(self.human2integer)):
|
84 |
+
download(URL, self.human2integer)
|
85 |
+
with open(self.human2integer, "r") as f:
|
86 |
+
lines = f.read().splitlines()
|
87 |
+
assert len(lines) == 1000
|
88 |
+
self.human2integer_dict = dict()
|
89 |
+
for line in lines:
|
90 |
+
value, key = line.split(":")
|
91 |
+
self.human2integer_dict[key] = int(value)
|
92 |
+
|
93 |
+
def _load(self):
|
94 |
+
with open(self.txt_filelist, "r") as f:
|
95 |
+
self.relpaths = f.read().splitlines()
|
96 |
+
l1 = len(self.relpaths)
|
97 |
+
self.relpaths = self._filter_relpaths(self.relpaths)
|
98 |
+
print("Removed {} files from filelist during filtering.".format(l1 - len(self.relpaths)))
|
99 |
+
|
100 |
+
self.synsets = [p.split("/")[0] for p in self.relpaths]
|
101 |
+
self.abspaths = [os.path.join(self.datadir, p) for p in self.relpaths]
|
102 |
+
|
103 |
+
unique_synsets = np.unique(self.synsets)
|
104 |
+
class_dict = dict((synset, i) for i, synset in enumerate(unique_synsets))
|
105 |
+
if not self.keep_orig_class_label:
|
106 |
+
self.class_labels = [class_dict[s] for s in self.synsets]
|
107 |
+
else:
|
108 |
+
self.class_labels = [self.synset2idx[s] for s in self.synsets]
|
109 |
+
|
110 |
+
with open(self.human_dict, "r") as f:
|
111 |
+
human_dict = f.read().splitlines()
|
112 |
+
human_dict = dict(line.split(maxsplit=1) for line in human_dict)
|
113 |
+
|
114 |
+
self.human_labels = [human_dict[s] for s in self.synsets]
|
115 |
+
|
116 |
+
labels = {
|
117 |
+
"relpath": np.array(self.relpaths),
|
118 |
+
"synsets": np.array(self.synsets),
|
119 |
+
"class_label": np.array(self.class_labels),
|
120 |
+
"human_label": np.array(self.human_labels),
|
121 |
+
}
|
122 |
+
|
123 |
+
if self.process_images:
|
124 |
+
self.size = retrieve(self.config, "size", default=256)
|
125 |
+
self.data = ImagePaths(self.abspaths,
|
126 |
+
labels=labels,
|
127 |
+
size=self.size,
|
128 |
+
random_crop=self.random_crop,
|
129 |
+
)
|
130 |
+
else:
|
131 |
+
self.data = self.abspaths
|
132 |
+
|
133 |
+
|
134 |
+
class ImageNetTrain(ImageNetBase):
|
135 |
+
NAME = "ILSVRC2012_train"
|
136 |
+
URL = "http://www.image-net.org/challenges/LSVRC/2012/"
|
137 |
+
AT_HASH = "a306397ccf9c2ead27155983c254227c0fd938e2"
|
138 |
+
FILES = [
|
139 |
+
"ILSVRC2012_img_train.tar",
|
140 |
+
]
|
141 |
+
SIZES = [
|
142 |
+
147897477120,
|
143 |
+
]
|
144 |
+
|
145 |
+
def __init__(self, process_images=True, data_root=None, **kwargs):
|
146 |
+
self.process_images = process_images
|
147 |
+
self.data_root = data_root
|
148 |
+
super().__init__(**kwargs)
|
149 |
+
|
150 |
+
def _prepare(self):
|
151 |
+
if self.data_root:
|
152 |
+
self.root = os.path.join(self.data_root, self.NAME)
|
153 |
+
else:
|
154 |
+
cachedir = os.environ.get("XDG_CACHE_HOME", os.path.expanduser("~/.cache"))
|
155 |
+
self.root = os.path.join(cachedir, "autoencoders/data", self.NAME)
|
156 |
+
|
157 |
+
self.datadir = os.path.join(self.root, "data")
|
158 |
+
self.txt_filelist = os.path.join(self.root, "filelist.txt")
|
159 |
+
self.expected_length = 1281167
|
160 |
+
self.random_crop = retrieve(self.config, "ImageNetTrain/random_crop",
|
161 |
+
default=True)
|
162 |
+
if not tdu.is_prepared(self.root):
|
163 |
+
# prep
|
164 |
+
print("Preparing dataset {} in {}".format(self.NAME, self.root))
|
165 |
+
|
166 |
+
datadir = self.datadir
|
167 |
+
if not os.path.exists(datadir):
|
168 |
+
path = os.path.join(self.root, self.FILES[0])
|
169 |
+
if not os.path.exists(path) or not os.path.getsize(path)==self.SIZES[0]:
|
170 |
+
import academictorrents as at
|
171 |
+
atpath = at.get(self.AT_HASH, datastore=self.root)
|
172 |
+
assert atpath == path
|
173 |
+
|
174 |
+
print("Extracting {} to {}".format(path, datadir))
|
175 |
+
os.makedirs(datadir, exist_ok=True)
|
176 |
+
with tarfile.open(path, "r:") as tar:
|
177 |
+
tar.extractall(path=datadir)
|
178 |
+
|
179 |
+
print("Extracting sub-tars.")
|
180 |
+
subpaths = sorted(glob.glob(os.path.join(datadir, "*.tar")))
|
181 |
+
for subpath in tqdm(subpaths):
|
182 |
+
subdir = subpath[:-len(".tar")]
|
183 |
+
os.makedirs(subdir, exist_ok=True)
|
184 |
+
with tarfile.open(subpath, "r:") as tar:
|
185 |
+
tar.extractall(path=subdir)
|
186 |
+
|
187 |
+
filelist = glob.glob(os.path.join(datadir, "**", "*.JPEG"))
|
188 |
+
filelist = [os.path.relpath(p, start=datadir) for p in filelist]
|
189 |
+
filelist = sorted(filelist)
|
190 |
+
filelist = "\n".join(filelist)+"\n"
|
191 |
+
with open(self.txt_filelist, "w") as f:
|
192 |
+
f.write(filelist)
|
193 |
+
|
194 |
+
tdu.mark_prepared(self.root)
|
195 |
+
|
196 |
+
|
197 |
+
class ImageNetValidation(ImageNetBase):
|
198 |
+
NAME = "ILSVRC2012_validation"
|
199 |
+
URL = "http://www.image-net.org/challenges/LSVRC/2012/"
|
200 |
+
AT_HASH = "5d6d0df7ed81efd49ca99ea4737e0ae5e3a5f2e5"
|
201 |
+
VS_URL = "https://heibox.uni-heidelberg.de/f/3e0f6e9c624e45f2bd73/?dl=1"
|
202 |
+
FILES = [
|
203 |
+
"ILSVRC2012_img_val.tar",
|
204 |
+
"validation_synset.txt",
|
205 |
+
]
|
206 |
+
SIZES = [
|
207 |
+
6744924160,
|
208 |
+
1950000,
|
209 |
+
]
|
210 |
+
|
211 |
+
def __init__(self, process_images=True, data_root=None, **kwargs):
|
212 |
+
self.data_root = data_root
|
213 |
+
self.process_images = process_images
|
214 |
+
super().__init__(**kwargs)
|
215 |
+
|
216 |
+
def _prepare(self):
|
217 |
+
if self.data_root:
|
218 |
+
self.root = os.path.join(self.data_root, self.NAME)
|
219 |
+
else:
|
220 |
+
cachedir = os.environ.get("XDG_CACHE_HOME", os.path.expanduser("~/.cache"))
|
221 |
+
self.root = os.path.join(cachedir, "autoencoders/data", self.NAME)
|
222 |
+
self.datadir = os.path.join(self.root, "data")
|
223 |
+
self.txt_filelist = os.path.join(self.root, "filelist.txt")
|
224 |
+
self.expected_length = 50000
|
225 |
+
self.random_crop = retrieve(self.config, "ImageNetValidation/random_crop",
|
226 |
+
default=False)
|
227 |
+
if not tdu.is_prepared(self.root):
|
228 |
+
# prep
|
229 |
+
print("Preparing dataset {} in {}".format(self.NAME, self.root))
|
230 |
+
|
231 |
+
datadir = self.datadir
|
232 |
+
if not os.path.exists(datadir):
|
233 |
+
path = os.path.join(self.root, self.FILES[0])
|
234 |
+
if not os.path.exists(path) or not os.path.getsize(path)==self.SIZES[0]:
|
235 |
+
import academictorrents as at
|
236 |
+
atpath = at.get(self.AT_HASH, datastore=self.root)
|
237 |
+
assert atpath == path
|
238 |
+
|
239 |
+
print("Extracting {} to {}".format(path, datadir))
|
240 |
+
os.makedirs(datadir, exist_ok=True)
|
241 |
+
with tarfile.open(path, "r:") as tar:
|
242 |
+
tar.extractall(path=datadir)
|
243 |
+
|
244 |
+
vspath = os.path.join(self.root, self.FILES[1])
|
245 |
+
if not os.path.exists(vspath) or not os.path.getsize(vspath)==self.SIZES[1]:
|
246 |
+
download(self.VS_URL, vspath)
|
247 |
+
|
248 |
+
with open(vspath, "r") as f:
|
249 |
+
synset_dict = f.read().splitlines()
|
250 |
+
synset_dict = dict(line.split() for line in synset_dict)
|
251 |
+
|
252 |
+
print("Reorganizing into synset folders")
|
253 |
+
synsets = np.unique(list(synset_dict.values()))
|
254 |
+
for s in synsets:
|
255 |
+
os.makedirs(os.path.join(datadir, s), exist_ok=True)
|
256 |
+
for k, v in synset_dict.items():
|
257 |
+
src = os.path.join(datadir, k)
|
258 |
+
dst = os.path.join(datadir, v)
|
259 |
+
shutil.move(src, dst)
|
260 |
+
|
261 |
+
filelist = glob.glob(os.path.join(datadir, "**", "*.JPEG"))
|
262 |
+
filelist = [os.path.relpath(p, start=datadir) for p in filelist]
|
263 |
+
filelist = sorted(filelist)
|
264 |
+
filelist = "\n".join(filelist)+"\n"
|
265 |
+
with open(self.txt_filelist, "w") as f:
|
266 |
+
f.write(filelist)
|
267 |
+
|
268 |
+
tdu.mark_prepared(self.root)
|
269 |
+
|
270 |
+
|
271 |
+
|
272 |
+
class ImageNetSR(Dataset):
|
273 |
+
def __init__(self, size=None,
|
274 |
+
degradation=None, downscale_f=4, min_crop_f=0.5, max_crop_f=1.,
|
275 |
+
random_crop=True):
|
276 |
+
"""
|
277 |
+
Imagenet Superresolution Dataloader
|
278 |
+
Performs following ops in order:
|
279 |
+
1. crops a crop of size s from image either as random or center crop
|
280 |
+
2. resizes crop to size with cv2.area_interpolation
|
281 |
+
3. degrades resized crop with degradation_fn
|
282 |
+
|
283 |
+
:param size: resizing to size after cropping
|
284 |
+
:param degradation: degradation_fn, e.g. cv_bicubic or bsrgan_light
|
285 |
+
:param downscale_f: Low Resolution Downsample factor
|
286 |
+
:param min_crop_f: determines crop size s,
|
287 |
+
where s = c * min_img_side_len with c sampled from interval (min_crop_f, max_crop_f)
|
288 |
+
:param max_crop_f: ""
|
289 |
+
:param data_root:
|
290 |
+
:param random_crop:
|
291 |
+
"""
|
292 |
+
self.base = self.get_base()
|
293 |
+
assert size
|
294 |
+
assert (size / downscale_f).is_integer()
|
295 |
+
self.size = size
|
296 |
+
self.LR_size = int(size / downscale_f)
|
297 |
+
self.min_crop_f = min_crop_f
|
298 |
+
self.max_crop_f = max_crop_f
|
299 |
+
assert(max_crop_f <= 1.)
|
300 |
+
self.center_crop = not random_crop
|
301 |
+
|
302 |
+
self.image_rescaler = albumentations.SmallestMaxSize(max_size=size, interpolation=cv2.INTER_AREA)
|
303 |
+
|
304 |
+
self.pil_interpolation = False # gets reset later if incase interp_op is from pillow
|
305 |
+
|
306 |
+
if degradation == "bsrgan":
|
307 |
+
self.degradation_process = partial(degradation_fn_bsr, sf=downscale_f)
|
308 |
+
|
309 |
+
elif degradation == "bsrgan_light":
|
310 |
+
self.degradation_process = partial(degradation_fn_bsr_light, sf=downscale_f)
|
311 |
+
|
312 |
+
else:
|
313 |
+
interpolation_fn = {
|
314 |
+
"cv_nearest": cv2.INTER_NEAREST,
|
315 |
+
"cv_bilinear": cv2.INTER_LINEAR,
|
316 |
+
"cv_bicubic": cv2.INTER_CUBIC,
|
317 |
+
"cv_area": cv2.INTER_AREA,
|
318 |
+
"cv_lanczos": cv2.INTER_LANCZOS4,
|
319 |
+
"pil_nearest": PIL.Image.NEAREST,
|
320 |
+
"pil_bilinear": PIL.Image.BILINEAR,
|
321 |
+
"pil_bicubic": PIL.Image.BICUBIC,
|
322 |
+
"pil_box": PIL.Image.BOX,
|
323 |
+
"pil_hamming": PIL.Image.HAMMING,
|
324 |
+
"pil_lanczos": PIL.Image.LANCZOS,
|
325 |
+
}[degradation]
|
326 |
+
|
327 |
+
self.pil_interpolation = degradation.startswith("pil_")
|
328 |
+
|
329 |
+
if self.pil_interpolation:
|
330 |
+
self.degradation_process = partial(TF.resize, size=self.LR_size, interpolation=interpolation_fn)
|
331 |
+
|
332 |
+
else:
|
333 |
+
self.degradation_process = albumentations.SmallestMaxSize(max_size=self.LR_size,
|
334 |
+
interpolation=interpolation_fn)
|
335 |
+
|
336 |
+
def __len__(self):
|
337 |
+
return len(self.base)
|
338 |
+
|
339 |
+
def __getitem__(self, i):
|
340 |
+
example = self.base[i]
|
341 |
+
image = Image.open(example["file_path_"])
|
342 |
+
|
343 |
+
if not image.mode == "RGB":
|
344 |
+
image = image.convert("RGB")
|
345 |
+
|
346 |
+
image = np.array(image).astype(np.uint8)
|
347 |
+
|
348 |
+
min_side_len = min(image.shape[:2])
|
349 |
+
crop_side_len = min_side_len * np.random.uniform(self.min_crop_f, self.max_crop_f, size=None)
|
350 |
+
crop_side_len = int(crop_side_len)
|
351 |
+
|
352 |
+
if self.center_crop:
|
353 |
+
self.cropper = albumentations.CenterCrop(height=crop_side_len, width=crop_side_len)
|
354 |
+
|
355 |
+
else:
|
356 |
+
self.cropper = albumentations.RandomCrop(height=crop_side_len, width=crop_side_len)
|
357 |
+
|
358 |
+
image = self.cropper(image=image)["image"]
|
359 |
+
image = self.image_rescaler(image=image)["image"]
|
360 |
+
|
361 |
+
if self.pil_interpolation:
|
362 |
+
image_pil = PIL.Image.fromarray(image)
|
363 |
+
LR_image = self.degradation_process(image_pil)
|
364 |
+
LR_image = np.array(LR_image).astype(np.uint8)
|
365 |
+
|
366 |
+
else:
|
367 |
+
LR_image = self.degradation_process(image=image)["image"]
|
368 |
+
|
369 |
+
example["image"] = (image/127.5 - 1.0).astype(np.float32)
|
370 |
+
example["LR_image"] = (LR_image/127.5 - 1.0).astype(np.float32)
|
371 |
+
example["caption"] = example["human_label"] # dummy caption
|
372 |
+
return example
|
373 |
+
|
374 |
+
|
375 |
+
class ImageNetSRTrain(ImageNetSR):
|
376 |
+
def __init__(self, **kwargs):
|
377 |
+
super().__init__(**kwargs)
|
378 |
+
|
379 |
+
def get_base(self):
|
380 |
+
with open("data/imagenet_train_hr_indices.p", "rb") as f:
|
381 |
+
indices = pickle.load(f)
|
382 |
+
dset = ImageNetTrain(process_images=False,)
|
383 |
+
return Subset(dset, indices)
|
384 |
+
|
385 |
+
|
386 |
+
class ImageNetSRValidation(ImageNetSR):
|
387 |
+
def __init__(self, **kwargs):
|
388 |
+
super().__init__(**kwargs)
|
389 |
+
|
390 |
+
def get_base(self):
|
391 |
+
with open("data/imagenet_val_hr_indices.p", "rb") as f:
|
392 |
+
indices = pickle.load(f)
|
393 |
+
dset = ImageNetValidation(process_images=False,)
|
394 |
+
return Subset(dset, indices)
|
ldm/data/inpainting/__init__.py
ADDED
File without changes
|
ldm/data/inpainting/synthetic_mask.py
ADDED
@@ -0,0 +1,166 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from PIL import Image, ImageDraw
|
2 |
+
import numpy as np
|
3 |
+
|
4 |
+
settings = {
|
5 |
+
"256narrow": {
|
6 |
+
"p_irr": 1,
|
7 |
+
"min_n_irr": 4,
|
8 |
+
"max_n_irr": 50,
|
9 |
+
"max_l_irr": 40,
|
10 |
+
"max_w_irr": 10,
|
11 |
+
"min_n_box": None,
|
12 |
+
"max_n_box": None,
|
13 |
+
"min_s_box": None,
|
14 |
+
"max_s_box": None,
|
15 |
+
"marg": None,
|
16 |
+
},
|
17 |
+
"256train": {
|
18 |
+
"p_irr": 0.5,
|
19 |
+
"min_n_irr": 1,
|
20 |
+
"max_n_irr": 5,
|
21 |
+
"max_l_irr": 200,
|
22 |
+
"max_w_irr": 100,
|
23 |
+
"min_n_box": 1,
|
24 |
+
"max_n_box": 4,
|
25 |
+
"min_s_box": 30,
|
26 |
+
"max_s_box": 150,
|
27 |
+
"marg": 10,
|
28 |
+
},
|
29 |
+
"512train": { # TODO: experimental
|
30 |
+
"p_irr": 0.5,
|
31 |
+
"min_n_irr": 1,
|
32 |
+
"max_n_irr": 5,
|
33 |
+
"max_l_irr": 450,
|
34 |
+
"max_w_irr": 250,
|
35 |
+
"min_n_box": 1,
|
36 |
+
"max_n_box": 4,
|
37 |
+
"min_s_box": 30,
|
38 |
+
"max_s_box": 300,
|
39 |
+
"marg": 10,
|
40 |
+
},
|
41 |
+
"512train-large": { # TODO: experimental
|
42 |
+
"p_irr": 0.5,
|
43 |
+
"min_n_irr": 1,
|
44 |
+
"max_n_irr": 5,
|
45 |
+
"max_l_irr": 450,
|
46 |
+
"max_w_irr": 400,
|
47 |
+
"min_n_box": 1,
|
48 |
+
"max_n_box": 4,
|
49 |
+
"min_s_box": 75,
|
50 |
+
"max_s_box": 450,
|
51 |
+
"marg": 10,
|
52 |
+
},
|
53 |
+
}
|
54 |
+
|
55 |
+
|
56 |
+
def gen_segment_mask(mask, start, end, brush_width):
|
57 |
+
mask = mask > 0
|
58 |
+
mask = (255 * mask).astype(np.uint8)
|
59 |
+
mask = Image.fromarray(mask)
|
60 |
+
draw = ImageDraw.Draw(mask)
|
61 |
+
draw.line([start, end], fill=255, width=brush_width, joint="curve")
|
62 |
+
mask = np.array(mask) / 255
|
63 |
+
return mask
|
64 |
+
|
65 |
+
|
66 |
+
def gen_box_mask(mask, masked):
|
67 |
+
x_0, y_0, w, h = masked
|
68 |
+
mask[y_0:y_0 + h, x_0:x_0 + w] = 1
|
69 |
+
return mask
|
70 |
+
|
71 |
+
|
72 |
+
def gen_round_mask(mask, masked, radius):
|
73 |
+
x_0, y_0, w, h = masked
|
74 |
+
xy = [(x_0, y_0), (x_0 + w, y_0 + w)]
|
75 |
+
|
76 |
+
mask = mask > 0
|
77 |
+
mask = (255 * mask).astype(np.uint8)
|
78 |
+
mask = Image.fromarray(mask)
|
79 |
+
draw = ImageDraw.Draw(mask)
|
80 |
+
draw.rounded_rectangle(xy, radius=radius, fill=255)
|
81 |
+
mask = np.array(mask) / 255
|
82 |
+
return mask
|
83 |
+
|
84 |
+
|
85 |
+
def gen_large_mask(prng, img_h, img_w,
|
86 |
+
marg, p_irr, min_n_irr, max_n_irr, max_l_irr, max_w_irr,
|
87 |
+
min_n_box, max_n_box, min_s_box, max_s_box):
|
88 |
+
"""
|
89 |
+
img_h: int, an image height
|
90 |
+
img_w: int, an image width
|
91 |
+
marg: int, a margin for a box starting coordinate
|
92 |
+
p_irr: float, 0 <= p_irr <= 1, a probability of a polygonal chain mask
|
93 |
+
|
94 |
+
min_n_irr: int, min number of segments
|
95 |
+
max_n_irr: int, max number of segments
|
96 |
+
max_l_irr: max length of a segment in polygonal chain
|
97 |
+
max_w_irr: max width of a segment in polygonal chain
|
98 |
+
|
99 |
+
min_n_box: int, min bound for the number of box primitives
|
100 |
+
max_n_box: int, max bound for the number of box primitives
|
101 |
+
min_s_box: int, min length of a box side
|
102 |
+
max_s_box: int, max length of a box side
|
103 |
+
"""
|
104 |
+
|
105 |
+
mask = np.zeros((img_h, img_w))
|
106 |
+
uniform = prng.randint
|
107 |
+
|
108 |
+
if np.random.uniform(0, 1) < p_irr: # generate polygonal chain
|
109 |
+
n = uniform(min_n_irr, max_n_irr) # sample number of segments
|
110 |
+
|
111 |
+
for _ in range(n):
|
112 |
+
y = uniform(0, img_h) # sample a starting point
|
113 |
+
x = uniform(0, img_w)
|
114 |
+
|
115 |
+
a = uniform(0, 360) # sample angle
|
116 |
+
l = uniform(10, max_l_irr) # sample segment length
|
117 |
+
w = uniform(5, max_w_irr) # sample a segment width
|
118 |
+
|
119 |
+
# draw segment starting from (x,y) to (x_,y_) using brush of width w
|
120 |
+
x_ = x + l * np.sin(a)
|
121 |
+
y_ = y + l * np.cos(a)
|
122 |
+
|
123 |
+
mask = gen_segment_mask(mask, start=(x, y), end=(x_, y_), brush_width=w)
|
124 |
+
x, y = x_, y_
|
125 |
+
else: # generate Box masks
|
126 |
+
n = uniform(min_n_box, max_n_box) # sample number of rectangles
|
127 |
+
|
128 |
+
for _ in range(n):
|
129 |
+
h = uniform(min_s_box, max_s_box) # sample box shape
|
130 |
+
w = uniform(min_s_box, max_s_box)
|
131 |
+
|
132 |
+
x_0 = uniform(marg, img_w - marg - w) # sample upper-left coordinates of box
|
133 |
+
y_0 = uniform(marg, img_h - marg - h)
|
134 |
+
|
135 |
+
if np.random.uniform(0, 1) < 0.5:
|
136 |
+
mask = gen_box_mask(mask, masked=(x_0, y_0, w, h))
|
137 |
+
else:
|
138 |
+
r = uniform(0, 60) # sample radius
|
139 |
+
mask = gen_round_mask(mask, masked=(x_0, y_0, w, h), radius=r)
|
140 |
+
return mask
|
141 |
+
|
142 |
+
|
143 |
+
make_lama_mask = lambda prng, h, w: gen_large_mask(prng, h, w, **settings["256train"])
|
144 |
+
make_narrow_lama_mask = lambda prng, h, w: gen_large_mask(prng, h, w, **settings["256narrow"])
|
145 |
+
make_512_lama_mask = lambda prng, h, w: gen_large_mask(prng, h, w, **settings["512train"])
|
146 |
+
make_512_lama_mask_large = lambda prng, h, w: gen_large_mask(prng, h, w, **settings["512train-large"])
|
147 |
+
|
148 |
+
|
149 |
+
MASK_MODES = {
|
150 |
+
"256train": make_lama_mask,
|
151 |
+
"256narrow": make_narrow_lama_mask,
|
152 |
+
"512train": make_512_lama_mask,
|
153 |
+
"512train-large": make_512_lama_mask_large
|
154 |
+
}
|
155 |
+
|
156 |
+
if __name__ == "__main__":
|
157 |
+
import sys
|
158 |
+
|
159 |
+
out = sys.argv[1]
|
160 |
+
|
161 |
+
prng = np.random.RandomState(1)
|
162 |
+
kwargs = settings["256train"]
|
163 |
+
mask = gen_large_mask(prng, 256, 256, **kwargs)
|
164 |
+
mask = (255 * mask).astype(np.uint8)
|
165 |
+
mask = Image.fromarray(mask)
|
166 |
+
mask.save(out)
|
ldm/data/laion.py
ADDED
@@ -0,0 +1,537 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import webdataset as wds
|
2 |
+
import kornia
|
3 |
+
from PIL import Image
|
4 |
+
import io
|
5 |
+
import os
|
6 |
+
import torchvision
|
7 |
+
from PIL import Image
|
8 |
+
import glob
|
9 |
+
import random
|
10 |
+
import numpy as np
|
11 |
+
import pytorch_lightning as pl
|
12 |
+
from tqdm import tqdm
|
13 |
+
from omegaconf import OmegaConf
|
14 |
+
from einops import rearrange
|
15 |
+
import torch
|
16 |
+
from webdataset.handlers import warn_and_continue
|
17 |
+
|
18 |
+
|
19 |
+
from ldm.util import instantiate_from_config
|
20 |
+
from ldm.data.inpainting.synthetic_mask import gen_large_mask, MASK_MODES
|
21 |
+
from ldm.data.base import PRNGMixin
|
22 |
+
|
23 |
+
|
24 |
+
class DataWithWings(torch.utils.data.IterableDataset):
|
25 |
+
def __init__(self, min_size, transform=None, target_transform=None):
|
26 |
+
self.min_size = min_size
|
27 |
+
self.transform = transform if transform is not None else nn.Identity()
|
28 |
+
self.target_transform = target_transform if target_transform is not None else nn.Identity()
|
29 |
+
self.kv = OnDiskKV(file='/home/ubuntu/laion5B-watermark-safety-ordered', key_format='q', value_format='ee')
|
30 |
+
self.kv_aesthetic = OnDiskKV(file='/home/ubuntu/laion5B-aesthetic-tags-kv', key_format='q', value_format='e')
|
31 |
+
self.pwatermark_threshold = 0.8
|
32 |
+
self.punsafe_threshold = 0.5
|
33 |
+
self.aesthetic_threshold = 5.
|
34 |
+
self.total_samples = 0
|
35 |
+
self.samples = 0
|
36 |
+
location = 'pipe:aws s3 cp --quiet s3://s-datasets/laion5b/laion2B-data/{000000..231349}.tar -'
|
37 |
+
|
38 |
+
self.inner_dataset = wds.DataPipeline(
|
39 |
+
wds.ResampledShards(location),
|
40 |
+
wds.tarfile_to_samples(handler=wds.warn_and_continue),
|
41 |
+
wds.shuffle(1000, handler=wds.warn_and_continue),
|
42 |
+
wds.decode('pilrgb', handler=wds.warn_and_continue),
|
43 |
+
wds.map(self._add_tags, handler=wds.ignore_and_continue),
|
44 |
+
wds.select(self._filter_predicate),
|
45 |
+
wds.map_dict(jpg=self.transform, txt=self.target_transform, punsafe=self._punsafe_to_class, handler=wds.warn_and_continue),
|
46 |
+
wds.to_tuple('jpg', 'txt', 'punsafe', handler=wds.warn_and_continue),
|
47 |
+
)
|
48 |
+
|
49 |
+
@staticmethod
|
50 |
+
def _compute_hash(url, text):
|
51 |
+
if url is None:
|
52 |
+
url = ''
|
53 |
+
if text is None:
|
54 |
+
text = ''
|
55 |
+
total = (url + text).encode('utf-8')
|
56 |
+
return mmh3.hash64(total)[0]
|
57 |
+
|
58 |
+
def _add_tags(self, x):
|
59 |
+
hsh = self._compute_hash(x['json']['url'], x['txt'])
|
60 |
+
pwatermark, punsafe = self.kv[hsh]
|
61 |
+
aesthetic = self.kv_aesthetic[hsh][0]
|
62 |
+
return {**x, 'pwatermark': pwatermark, 'punsafe': punsafe, 'aesthetic': aesthetic}
|
63 |
+
|
64 |
+
def _punsafe_to_class(self, punsafe):
|
65 |
+
return torch.tensor(punsafe >= self.punsafe_threshold).long()
|
66 |
+
|
67 |
+
def _filter_predicate(self, x):
|
68 |
+
try:
|
69 |
+
return x['pwatermark'] < self.pwatermark_threshold and x['aesthetic'] >= self.aesthetic_threshold and x['json']['original_width'] >= self.min_size and x['json']['original_height'] >= self.min_size
|
70 |
+
except:
|
71 |
+
return False
|
72 |
+
|
73 |
+
def __iter__(self):
|
74 |
+
return iter(self.inner_dataset)
|
75 |
+
|
76 |
+
|
77 |
+
def dict_collation_fn(samples, combine_tensors=True, combine_scalars=True):
|
78 |
+
"""Take a list of samples (as dictionary) and create a batch, preserving the keys.
|
79 |
+
If `tensors` is True, `ndarray` objects are combined into
|
80 |
+
tensor batches.
|
81 |
+
:param dict samples: list of samples
|
82 |
+
:param bool tensors: whether to turn lists of ndarrays into a single ndarray
|
83 |
+
:returns: single sample consisting of a batch
|
84 |
+
:rtype: dict
|
85 |
+
"""
|
86 |
+
keys = set.intersection(*[set(sample.keys()) for sample in samples])
|
87 |
+
batched = {key: [] for key in keys}
|
88 |
+
|
89 |
+
for s in samples:
|
90 |
+
[batched[key].append(s[key]) for key in batched]
|
91 |
+
|
92 |
+
result = {}
|
93 |
+
for key in batched:
|
94 |
+
if isinstance(batched[key][0], (int, float)):
|
95 |
+
if combine_scalars:
|
96 |
+
result[key] = np.array(list(batched[key]))
|
97 |
+
elif isinstance(batched[key][0], torch.Tensor):
|
98 |
+
if combine_tensors:
|
99 |
+
result[key] = torch.stack(list(batched[key]))
|
100 |
+
elif isinstance(batched[key][0], np.ndarray):
|
101 |
+
if combine_tensors:
|
102 |
+
result[key] = np.array(list(batched[key]))
|
103 |
+
else:
|
104 |
+
result[key] = list(batched[key])
|
105 |
+
return result
|
106 |
+
|
107 |
+
|
108 |
+
class WebDataModuleFromConfig(pl.LightningDataModule):
|
109 |
+
def __init__(self, tar_base, batch_size, train=None, validation=None,
|
110 |
+
test=None, num_workers=4, multinode=True, min_size=None,
|
111 |
+
max_pwatermark=1.0,
|
112 |
+
**kwargs):
|
113 |
+
super().__init__(self)
|
114 |
+
print(f'Setting tar base to {tar_base}')
|
115 |
+
self.tar_base = tar_base
|
116 |
+
self.batch_size = batch_size
|
117 |
+
self.num_workers = num_workers
|
118 |
+
self.train = train
|
119 |
+
self.validation = validation
|
120 |
+
self.test = test
|
121 |
+
self.multinode = multinode
|
122 |
+
self.min_size = min_size # filter out very small images
|
123 |
+
self.max_pwatermark = max_pwatermark # filter out watermarked images
|
124 |
+
|
125 |
+
def make_loader(self, dataset_config, train=True):
|
126 |
+
if 'image_transforms' in dataset_config:
|
127 |
+
image_transforms = [instantiate_from_config(tt) for tt in dataset_config.image_transforms]
|
128 |
+
else:
|
129 |
+
image_transforms = []
|
130 |
+
|
131 |
+
image_transforms.extend([torchvision.transforms.ToTensor(),
|
132 |
+
torchvision.transforms.Lambda(lambda x: rearrange(x * 2. - 1., 'c h w -> h w c'))])
|
133 |
+
image_transforms = torchvision.transforms.Compose(image_transforms)
|
134 |
+
|
135 |
+
if 'transforms' in dataset_config:
|
136 |
+
transforms_config = OmegaConf.to_container(dataset_config.transforms)
|
137 |
+
else:
|
138 |
+
transforms_config = dict()
|
139 |
+
|
140 |
+
transform_dict = {dkey: load_partial_from_config(transforms_config[dkey])
|
141 |
+
if transforms_config[dkey] != 'identity' else identity
|
142 |
+
for dkey in transforms_config}
|
143 |
+
img_key = dataset_config.get('image_key', 'jpeg')
|
144 |
+
transform_dict.update({img_key: image_transforms})
|
145 |
+
|
146 |
+
if 'postprocess' in dataset_config:
|
147 |
+
postprocess = instantiate_from_config(dataset_config['postprocess'])
|
148 |
+
else:
|
149 |
+
postprocess = None
|
150 |
+
|
151 |
+
shuffle = dataset_config.get('shuffle', 0)
|
152 |
+
shardshuffle = shuffle > 0
|
153 |
+
|
154 |
+
nodesplitter = wds.shardlists.split_by_node if self.multinode else wds.shardlists.single_node_only
|
155 |
+
|
156 |
+
if self.tar_base == "__improvedaesthetic__":
|
157 |
+
print("## Warning, loading the same improved aesthetic dataset "
|
158 |
+
"for all splits and ignoring shards parameter.")
|
159 |
+
tars = "pipe:aws s3 cp s3://s-laion/improved-aesthetics-laion-2B-en-subsets/aesthetics_tars/{000000..060207}.tar -"
|
160 |
+
else:
|
161 |
+
tars = os.path.join(self.tar_base, dataset_config.shards)
|
162 |
+
|
163 |
+
dset = wds.WebDataset(
|
164 |
+
tars,
|
165 |
+
nodesplitter=nodesplitter,
|
166 |
+
shardshuffle=shardshuffle,
|
167 |
+
handler=wds.warn_and_continue).repeat().shuffle(shuffle)
|
168 |
+
print(f'Loading webdataset with {len(dset.pipeline[0].urls)} shards.')
|
169 |
+
|
170 |
+
dset = (dset
|
171 |
+
.select(self.filter_keys)
|
172 |
+
.decode('pil', handler=wds.warn_and_continue)
|
173 |
+
.select(self.filter_size)
|
174 |
+
.map_dict(**transform_dict, handler=wds.warn_and_continue)
|
175 |
+
)
|
176 |
+
if postprocess is not None:
|
177 |
+
dset = dset.map(postprocess)
|
178 |
+
dset = (dset
|
179 |
+
.batched(self.batch_size, partial=False,
|
180 |
+
collation_fn=dict_collation_fn)
|
181 |
+
)
|
182 |
+
|
183 |
+
loader = wds.WebLoader(dset, batch_size=None, shuffle=False,
|
184 |
+
num_workers=self.num_workers)
|
185 |
+
|
186 |
+
return loader
|
187 |
+
|
188 |
+
def filter_size(self, x):
|
189 |
+
try:
|
190 |
+
valid = True
|
191 |
+
if self.min_size is not None and self.min_size > 1:
|
192 |
+
try:
|
193 |
+
valid = valid and x['json']['original_width'] >= self.min_size and x['json']['original_height'] >= self.min_size
|
194 |
+
except Exception:
|
195 |
+
valid = False
|
196 |
+
if self.max_pwatermark is not None and self.max_pwatermark < 1.0:
|
197 |
+
try:
|
198 |
+
valid = valid and x['json']['pwatermark'] <= self.max_pwatermark
|
199 |
+
except Exception:
|
200 |
+
valid = False
|
201 |
+
return valid
|
202 |
+
except Exception:
|
203 |
+
return False
|
204 |
+
|
205 |
+
def filter_keys(self, x):
|
206 |
+
try:
|
207 |
+
return ("jpg" in x) and ("txt" in x)
|
208 |
+
except Exception:
|
209 |
+
return False
|
210 |
+
|
211 |
+
def train_dataloader(self):
|
212 |
+
return self.make_loader(self.train)
|
213 |
+
|
214 |
+
def val_dataloader(self):
|
215 |
+
return self.make_loader(self.validation, train=False)
|
216 |
+
|
217 |
+
def test_dataloader(self):
|
218 |
+
return self.make_loader(self.test, train=False)
|
219 |
+
|
220 |
+
|
221 |
+
from ldm.modules.image_degradation import degradation_fn_bsr_light
|
222 |
+
import cv2
|
223 |
+
|
224 |
+
class AddLR(object):
|
225 |
+
def __init__(self, factor, output_size, initial_size=None, image_key="jpg"):
|
226 |
+
self.factor = factor
|
227 |
+
self.output_size = output_size
|
228 |
+
self.image_key = image_key
|
229 |
+
self.initial_size = initial_size
|
230 |
+
|
231 |
+
def pt2np(self, x):
|
232 |
+
x = ((x+1.0)*127.5).clamp(0, 255).to(dtype=torch.uint8).detach().cpu().numpy()
|
233 |
+
return x
|
234 |
+
|
235 |
+
def np2pt(self, x):
|
236 |
+
x = torch.from_numpy(x)/127.5-1.0
|
237 |
+
return x
|
238 |
+
|
239 |
+
def __call__(self, sample):
|
240 |
+
# sample['jpg'] is tensor hwc in [-1, 1] at this point
|
241 |
+
x = self.pt2np(sample[self.image_key])
|
242 |
+
if self.initial_size is not None:
|
243 |
+
x = cv2.resize(x, (self.initial_size, self.initial_size), interpolation=2)
|
244 |
+
x = degradation_fn_bsr_light(x, sf=self.factor)['image']
|
245 |
+
x = cv2.resize(x, (self.output_size, self.output_size), interpolation=2)
|
246 |
+
x = self.np2pt(x)
|
247 |
+
sample['lr'] = x
|
248 |
+
return sample
|
249 |
+
|
250 |
+
class AddBW(object):
|
251 |
+
def __init__(self, image_key="jpg"):
|
252 |
+
self.image_key = image_key
|
253 |
+
|
254 |
+
def pt2np(self, x):
|
255 |
+
x = ((x+1.0)*127.5).clamp(0, 255).to(dtype=torch.uint8).detach().cpu().numpy()
|
256 |
+
return x
|
257 |
+
|
258 |
+
def np2pt(self, x):
|
259 |
+
x = torch.from_numpy(x)/127.5-1.0
|
260 |
+
return x
|
261 |
+
|
262 |
+
def __call__(self, sample):
|
263 |
+
# sample['jpg'] is tensor hwc in [-1, 1] at this point
|
264 |
+
x = sample[self.image_key]
|
265 |
+
w = torch.rand(3, device=x.device)
|
266 |
+
w /= w.sum()
|
267 |
+
out = torch.einsum('hwc,c->hw', x, w)
|
268 |
+
|
269 |
+
# Keep as 3ch so we can pass to encoder, also we might want to add hints
|
270 |
+
sample['lr'] = out.unsqueeze(-1).tile(1,1,3)
|
271 |
+
return sample
|
272 |
+
|
273 |
+
class AddMask(PRNGMixin):
|
274 |
+
def __init__(self, mode="512train", p_drop=0.):
|
275 |
+
super().__init__()
|
276 |
+
assert mode in list(MASK_MODES.keys()), f'unknown mask generation mode "{mode}"'
|
277 |
+
self.make_mask = MASK_MODES[mode]
|
278 |
+
self.p_drop = p_drop
|
279 |
+
|
280 |
+
def __call__(self, sample):
|
281 |
+
# sample['jpg'] is tensor hwc in [-1, 1] at this point
|
282 |
+
x = sample['jpg']
|
283 |
+
mask = self.make_mask(self.prng, x.shape[0], x.shape[1])
|
284 |
+
if self.prng.choice(2, p=[1 - self.p_drop, self.p_drop]):
|
285 |
+
mask = np.ones_like(mask)
|
286 |
+
mask[mask < 0.5] = 0
|
287 |
+
mask[mask > 0.5] = 1
|
288 |
+
mask = torch.from_numpy(mask[..., None])
|
289 |
+
sample['mask'] = mask
|
290 |
+
sample['masked_image'] = x * (mask < 0.5)
|
291 |
+
return sample
|
292 |
+
|
293 |
+
|
294 |
+
class AddEdge(PRNGMixin):
|
295 |
+
def __init__(self, mode="512train", mask_edges=True):
|
296 |
+
super().__init__()
|
297 |
+
assert mode in list(MASK_MODES.keys()), f'unknown mask generation mode "{mode}"'
|
298 |
+
self.make_mask = MASK_MODES[mode]
|
299 |
+
self.n_down_choices = [0]
|
300 |
+
self.sigma_choices = [1, 2]
|
301 |
+
self.mask_edges = mask_edges
|
302 |
+
|
303 |
+
@torch.no_grad()
|
304 |
+
def __call__(self, sample):
|
305 |
+
# sample['jpg'] is tensor hwc in [-1, 1] at this point
|
306 |
+
x = sample['jpg']
|
307 |
+
|
308 |
+
mask = self.make_mask(self.prng, x.shape[0], x.shape[1])
|
309 |
+
mask[mask < 0.5] = 0
|
310 |
+
mask[mask > 0.5] = 1
|
311 |
+
mask = torch.from_numpy(mask[..., None])
|
312 |
+
sample['mask'] = mask
|
313 |
+
|
314 |
+
n_down_idx = self.prng.choice(len(self.n_down_choices))
|
315 |
+
sigma_idx = self.prng.choice(len(self.sigma_choices))
|
316 |
+
|
317 |
+
n_choices = len(self.n_down_choices)*len(self.sigma_choices)
|
318 |
+
raveled_idx = np.ravel_multi_index((n_down_idx, sigma_idx),
|
319 |
+
(len(self.n_down_choices), len(self.sigma_choices)))
|
320 |
+
normalized_idx = raveled_idx/max(1, n_choices-1)
|
321 |
+
|
322 |
+
n_down = self.n_down_choices[n_down_idx]
|
323 |
+
sigma = self.sigma_choices[sigma_idx]
|
324 |
+
|
325 |
+
kernel_size = 4*sigma+1
|
326 |
+
kernel_size = (kernel_size, kernel_size)
|
327 |
+
sigma = (sigma, sigma)
|
328 |
+
canny = kornia.filters.Canny(
|
329 |
+
low_threshold=0.1,
|
330 |
+
high_threshold=0.2,
|
331 |
+
kernel_size=kernel_size,
|
332 |
+
sigma=sigma,
|
333 |
+
hysteresis=True,
|
334 |
+
)
|
335 |
+
y = (x+1.0)/2.0 # in 01
|
336 |
+
y = y.unsqueeze(0).permute(0, 3, 1, 2).contiguous()
|
337 |
+
|
338 |
+
# down
|
339 |
+
for i_down in range(n_down):
|
340 |
+
size = min(y.shape[-2], y.shape[-1])//2
|
341 |
+
y = kornia.geometry.transform.resize(y, size, antialias=True)
|
342 |
+
|
343 |
+
# edge
|
344 |
+
_, y = canny(y)
|
345 |
+
|
346 |
+
if n_down > 0:
|
347 |
+
size = x.shape[0], x.shape[1]
|
348 |
+
y = kornia.geometry.transform.resize(y, size, interpolation="nearest")
|
349 |
+
|
350 |
+
y = y.permute(0, 2, 3, 1)[0].expand(-1, -1, 3).contiguous()
|
351 |
+
y = y*2.0-1.0
|
352 |
+
|
353 |
+
if self.mask_edges:
|
354 |
+
sample['masked_image'] = y * (mask < 0.5)
|
355 |
+
else:
|
356 |
+
sample['masked_image'] = y
|
357 |
+
sample['mask'] = torch.zeros_like(sample['mask'])
|
358 |
+
|
359 |
+
# concat normalized idx
|
360 |
+
sample['smoothing_strength'] = torch.ones_like(sample['mask'])*normalized_idx
|
361 |
+
|
362 |
+
return sample
|
363 |
+
|
364 |
+
|
365 |
+
def example00():
|
366 |
+
url = "pipe:aws s3 cp s3://s-datasets/laion5b/laion2B-data/000000.tar -"
|
367 |
+
dataset = wds.WebDataset(url)
|
368 |
+
example = next(iter(dataset))
|
369 |
+
for k in example:
|
370 |
+
print(k, type(example[k]))
|
371 |
+
|
372 |
+
print(example["__key__"])
|
373 |
+
for k in ["json", "txt"]:
|
374 |
+
print(example[k].decode())
|
375 |
+
|
376 |
+
image = Image.open(io.BytesIO(example["jpg"]))
|
377 |
+
outdir = "tmp"
|
378 |
+
os.makedirs(outdir, exist_ok=True)
|
379 |
+
image.save(os.path.join(outdir, example["__key__"] + ".png"))
|
380 |
+
|
381 |
+
|
382 |
+
def load_example(example):
|
383 |
+
return {
|
384 |
+
"key": example["__key__"],
|
385 |
+
"image": Image.open(io.BytesIO(example["jpg"])),
|
386 |
+
"text": example["txt"].decode(),
|
387 |
+
}
|
388 |
+
|
389 |
+
|
390 |
+
for i, example in tqdm(enumerate(dataset)):
|
391 |
+
ex = load_example(example)
|
392 |
+
print(ex["image"].size, ex["text"])
|
393 |
+
if i >= 100:
|
394 |
+
break
|
395 |
+
|
396 |
+
|
397 |
+
def example01():
|
398 |
+
# the first laion shards contain ~10k examples each
|
399 |
+
url = "pipe:aws s3 cp s3://s-datasets/laion5b/laion2B-data/{000000..000002}.tar -"
|
400 |
+
|
401 |
+
batch_size = 3
|
402 |
+
shuffle_buffer = 10000
|
403 |
+
dset = wds.WebDataset(
|
404 |
+
url,
|
405 |
+
nodesplitter=wds.shardlists.split_by_node,
|
406 |
+
shardshuffle=True,
|
407 |
+
)
|
408 |
+
dset = (dset
|
409 |
+
.shuffle(shuffle_buffer, initial=shuffle_buffer)
|
410 |
+
.decode('pil', handler=warn_and_continue)
|
411 |
+
.batched(batch_size, partial=False,
|
412 |
+
collation_fn=dict_collation_fn)
|
413 |
+
)
|
414 |
+
|
415 |
+
num_workers = 2
|
416 |
+
loader = wds.WebLoader(dset, batch_size=None, shuffle=False, num_workers=num_workers)
|
417 |
+
|
418 |
+
batch_sizes = list()
|
419 |
+
keys_per_epoch = list()
|
420 |
+
for epoch in range(5):
|
421 |
+
keys = list()
|
422 |
+
for batch in tqdm(loader):
|
423 |
+
batch_sizes.append(len(batch["__key__"]))
|
424 |
+
keys.append(batch["__key__"])
|
425 |
+
|
426 |
+
for bs in batch_sizes:
|
427 |
+
assert bs==batch_size
|
428 |
+
print(f"{len(batch_sizes)} batches of size {batch_size}.")
|
429 |
+
batch_sizes = list()
|
430 |
+
|
431 |
+
keys_per_epoch.append(keys)
|
432 |
+
for i_batch in [0, 1, -1]:
|
433 |
+
print(f"Batch {i_batch} of epoch {epoch}:")
|
434 |
+
print(keys[i_batch])
|
435 |
+
print("next epoch.")
|
436 |
+
|
437 |
+
|
438 |
+
def example02():
|
439 |
+
from omegaconf import OmegaConf
|
440 |
+
from torch.utils.data.distributed import DistributedSampler
|
441 |
+
from torch.utils.data import IterableDataset
|
442 |
+
from torch.utils.data import DataLoader, RandomSampler, Sampler, SequentialSampler
|
443 |
+
from pytorch_lightning.trainer.supporters import CombinedLoader, CycleIterator
|
444 |
+
|
445 |
+
#config = OmegaConf.load("configs/stable-diffusion/txt2img-1p4B-multinode-clip-encoder-high-res-512.yaml")
|
446 |
+
#config = OmegaConf.load("configs/stable-diffusion/txt2img-upscale-clip-encoder-f16-1024.yaml")
|
447 |
+
config = OmegaConf.load("configs/stable-diffusion/txt2img-v2-clip-encoder-improved_aesthetics-256.yaml")
|
448 |
+
datamod = WebDataModuleFromConfig(**config["data"]["params"])
|
449 |
+
dataloader = datamod.train_dataloader()
|
450 |
+
|
451 |
+
for batch in dataloader:
|
452 |
+
print(batch.keys())
|
453 |
+
print(batch["jpg"].shape)
|
454 |
+
break
|
455 |
+
|
456 |
+
|
457 |
+
def example03():
|
458 |
+
# improved aesthetics
|
459 |
+
tars = "pipe:aws s3 cp s3://s-laion/improved-aesthetics-laion-2B-en-subsets/aesthetics_tars/{000000..060207}.tar -"
|
460 |
+
dataset = wds.WebDataset(tars)
|
461 |
+
|
462 |
+
def filter_keys(x):
|
463 |
+
try:
|
464 |
+
return ("jpg" in x) and ("txt" in x)
|
465 |
+
except Exception:
|
466 |
+
return False
|
467 |
+
|
468 |
+
def filter_size(x):
|
469 |
+
try:
|
470 |
+
return x['json']['original_width'] >= 512 and x['json']['original_height'] >= 512
|
471 |
+
except Exception:
|
472 |
+
return False
|
473 |
+
|
474 |
+
def filter_watermark(x):
|
475 |
+
try:
|
476 |
+
return x['json']['pwatermark'] < 0.5
|
477 |
+
except Exception:
|
478 |
+
return False
|
479 |
+
|
480 |
+
dataset = (dataset
|
481 |
+
.select(filter_keys)
|
482 |
+
.decode('pil', handler=wds.warn_and_continue))
|
483 |
+
n_save = 20
|
484 |
+
n_total = 0
|
485 |
+
n_large = 0
|
486 |
+
n_large_nowm = 0
|
487 |
+
for i, example in enumerate(dataset):
|
488 |
+
n_total += 1
|
489 |
+
if filter_size(example):
|
490 |
+
n_large += 1
|
491 |
+
if filter_watermark(example):
|
492 |
+
n_large_nowm += 1
|
493 |
+
if n_large_nowm < n_save+1:
|
494 |
+
image = example["jpg"]
|
495 |
+
image.save(os.path.join("tmp", f"{n_large_nowm-1:06}.png"))
|
496 |
+
|
497 |
+
if i%500 == 0:
|
498 |
+
print(i)
|
499 |
+
print(f"Large: {n_large}/{n_total} | {n_large/n_total*100:.2f}%")
|
500 |
+
if n_large > 0:
|
501 |
+
print(f"No Watermark: {n_large_nowm}/{n_large} | {n_large_nowm/n_large*100:.2f}%")
|
502 |
+
|
503 |
+
|
504 |
+
|
505 |
+
def example04():
|
506 |
+
# improved aesthetics
|
507 |
+
for i_shard in range(60208)[::-1]:
|
508 |
+
print(i_shard)
|
509 |
+
tars = "pipe:aws s3 cp s3://s-laion/improved-aesthetics-laion-2B-en-subsets/aesthetics_tars/{:06}.tar -".format(i_shard)
|
510 |
+
dataset = wds.WebDataset(tars)
|
511 |
+
|
512 |
+
def filter_keys(x):
|
513 |
+
try:
|
514 |
+
return ("jpg" in x) and ("txt" in x)
|
515 |
+
except Exception:
|
516 |
+
return False
|
517 |
+
|
518 |
+
def filter_size(x):
|
519 |
+
try:
|
520 |
+
return x['json']['original_width'] >= 512 and x['json']['original_height'] >= 512
|
521 |
+
except Exception:
|
522 |
+
return False
|
523 |
+
|
524 |
+
dataset = (dataset
|
525 |
+
.select(filter_keys)
|
526 |
+
.decode('pil', handler=wds.warn_and_continue))
|
527 |
+
try:
|
528 |
+
example = next(iter(dataset))
|
529 |
+
except Exception:
|
530 |
+
print(f"Error @ {i_shard}")
|
531 |
+
|
532 |
+
|
533 |
+
if __name__ == "__main__":
|
534 |
+
#example01()
|
535 |
+
#example02()
|
536 |
+
example03()
|
537 |
+
#example04()
|
ldm/data/lsun.py
ADDED
@@ -0,0 +1,92 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import numpy as np
|
3 |
+
import PIL
|
4 |
+
from PIL import Image
|
5 |
+
from torch.utils.data import Dataset
|
6 |
+
from torchvision import transforms
|
7 |
+
|
8 |
+
|
9 |
+
class LSUNBase(Dataset):
|
10 |
+
def __init__(self,
|
11 |
+
txt_file,
|
12 |
+
data_root,
|
13 |
+
size=None,
|
14 |
+
interpolation="bicubic",
|
15 |
+
flip_p=0.5
|
16 |
+
):
|
17 |
+
self.data_paths = txt_file
|
18 |
+
self.data_root = data_root
|
19 |
+
with open(self.data_paths, "r") as f:
|
20 |
+
self.image_paths = f.read().splitlines()
|
21 |
+
self._length = len(self.image_paths)
|
22 |
+
self.labels = {
|
23 |
+
"relative_file_path_": [l for l in self.image_paths],
|
24 |
+
"file_path_": [os.path.join(self.data_root, l)
|
25 |
+
for l in self.image_paths],
|
26 |
+
}
|
27 |
+
|
28 |
+
self.size = size
|
29 |
+
self.interpolation = {"linear": PIL.Image.LINEAR,
|
30 |
+
"bilinear": PIL.Image.BILINEAR,
|
31 |
+
"bicubic": PIL.Image.BICUBIC,
|
32 |
+
"lanczos": PIL.Image.LANCZOS,
|
33 |
+
}[interpolation]
|
34 |
+
self.flip = transforms.RandomHorizontalFlip(p=flip_p)
|
35 |
+
|
36 |
+
def __len__(self):
|
37 |
+
return self._length
|
38 |
+
|
39 |
+
def __getitem__(self, i):
|
40 |
+
example = dict((k, self.labels[k][i]) for k in self.labels)
|
41 |
+
image = Image.open(example["file_path_"])
|
42 |
+
if not image.mode == "RGB":
|
43 |
+
image = image.convert("RGB")
|
44 |
+
|
45 |
+
# default to score-sde preprocessing
|
46 |
+
img = np.array(image).astype(np.uint8)
|
47 |
+
crop = min(img.shape[0], img.shape[1])
|
48 |
+
h, w, = img.shape[0], img.shape[1]
|
49 |
+
img = img[(h - crop) // 2:(h + crop) // 2,
|
50 |
+
(w - crop) // 2:(w + crop) // 2]
|
51 |
+
|
52 |
+
image = Image.fromarray(img)
|
53 |
+
if self.size is not None:
|
54 |
+
image = image.resize((self.size, self.size), resample=self.interpolation)
|
55 |
+
|
56 |
+
image = self.flip(image)
|
57 |
+
image = np.array(image).astype(np.uint8)
|
58 |
+
example["image"] = (image / 127.5 - 1.0).astype(np.float32)
|
59 |
+
return example
|
60 |
+
|
61 |
+
|
62 |
+
class LSUNChurchesTrain(LSUNBase):
|
63 |
+
def __init__(self, **kwargs):
|
64 |
+
super().__init__(txt_file="data/lsun/church_outdoor_train.txt", data_root="data/lsun/churches", **kwargs)
|
65 |
+
|
66 |
+
|
67 |
+
class LSUNChurchesValidation(LSUNBase):
|
68 |
+
def __init__(self, flip_p=0., **kwargs):
|
69 |
+
super().__init__(txt_file="data/lsun/church_outdoor_val.txt", data_root="data/lsun/churches",
|
70 |
+
flip_p=flip_p, **kwargs)
|
71 |
+
|
72 |
+
|
73 |
+
class LSUNBedroomsTrain(LSUNBase):
|
74 |
+
def __init__(self, **kwargs):
|
75 |
+
super().__init__(txt_file="data/lsun/bedrooms_train.txt", data_root="data/lsun/bedrooms", **kwargs)
|
76 |
+
|
77 |
+
|
78 |
+
class LSUNBedroomsValidation(LSUNBase):
|
79 |
+
def __init__(self, flip_p=0.0, **kwargs):
|
80 |
+
super().__init__(txt_file="data/lsun/bedrooms_val.txt", data_root="data/lsun/bedrooms",
|
81 |
+
flip_p=flip_p, **kwargs)
|
82 |
+
|
83 |
+
|
84 |
+
class LSUNCatsTrain(LSUNBase):
|
85 |
+
def __init__(self, **kwargs):
|
86 |
+
super().__init__(txt_file="data/lsun/cat_train.txt", data_root="data/lsun/cats", **kwargs)
|
87 |
+
|
88 |
+
|
89 |
+
class LSUNCatsValidation(LSUNBase):
|
90 |
+
def __init__(self, flip_p=0., **kwargs):
|
91 |
+
super().__init__(txt_file="data/lsun/cat_val.txt", data_root="data/lsun/cats",
|
92 |
+
flip_p=flip_p, **kwargs)
|
ldm/data/nerf_like.py
ADDED
@@ -0,0 +1,165 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from torch.utils.data import Dataset
|
2 |
+
import os
|
3 |
+
import json
|
4 |
+
import numpy as np
|
5 |
+
import torch
|
6 |
+
import imageio
|
7 |
+
import math
|
8 |
+
import cv2
|
9 |
+
from torchvision import transforms
|
10 |
+
|
11 |
+
def cartesian_to_spherical(xyz):
|
12 |
+
ptsnew = np.hstack((xyz, np.zeros(xyz.shape)))
|
13 |
+
xy = xyz[:,0]**2 + xyz[:,1]**2
|
14 |
+
z = np.sqrt(xy + xyz[:,2]**2)
|
15 |
+
theta = np.arctan2(np.sqrt(xy), xyz[:,2]) # for elevation angle defined from Z-axis down
|
16 |
+
#ptsnew[:,4] = np.arctan2(xyz[:,2], np.sqrt(xy)) # for elevation angle defined from XY-plane up
|
17 |
+
azimuth = np.arctan2(xyz[:,1], xyz[:,0])
|
18 |
+
return np.array([theta, azimuth, z])
|
19 |
+
|
20 |
+
|
21 |
+
def get_T(T_target, T_cond):
|
22 |
+
theta_cond, azimuth_cond, z_cond = cartesian_to_spherical(T_cond[None, :])
|
23 |
+
theta_target, azimuth_target, z_target = cartesian_to_spherical(T_target[None, :])
|
24 |
+
|
25 |
+
d_theta = theta_target - theta_cond
|
26 |
+
d_azimuth = (azimuth_target - azimuth_cond) % (2 * math.pi)
|
27 |
+
d_z = z_target - z_cond
|
28 |
+
|
29 |
+
d_T = torch.tensor([d_theta.item(), math.sin(d_azimuth.item()), math.cos(d_azimuth.item()), d_z.item()])
|
30 |
+
return d_T
|
31 |
+
|
32 |
+
def get_spherical(T_target, T_cond):
|
33 |
+
theta_cond, azimuth_cond, z_cond = cartesian_to_spherical(T_cond[None, :])
|
34 |
+
theta_target, azimuth_target, z_target = cartesian_to_spherical(T_target[None, :])
|
35 |
+
|
36 |
+
d_theta = theta_target - theta_cond
|
37 |
+
d_azimuth = (azimuth_target - azimuth_cond) % (2 * math.pi)
|
38 |
+
d_z = z_target - z_cond
|
39 |
+
|
40 |
+
d_T = torch.tensor([math.degrees(d_theta.item()), math.degrees(d_azimuth.item()), d_z.item()])
|
41 |
+
return d_T
|
42 |
+
|
43 |
+
class RTMV(Dataset):
|
44 |
+
def __init__(self, root_dir='datasets/RTMV/google_scanned',\
|
45 |
+
first_K=64, resolution=256, load_target=False):
|
46 |
+
self.root_dir = root_dir
|
47 |
+
self.scene_list = sorted(next(os.walk(root_dir))[1])
|
48 |
+
self.resolution = resolution
|
49 |
+
self.first_K = first_K
|
50 |
+
self.load_target = load_target
|
51 |
+
|
52 |
+
def __len__(self):
|
53 |
+
return len(self.scene_list)
|
54 |
+
|
55 |
+
def __getitem__(self, idx):
|
56 |
+
scene_dir = os.path.join(self.root_dir, self.scene_list[idx])
|
57 |
+
with open(os.path.join(scene_dir, 'transforms.json'), "r") as f:
|
58 |
+
meta = json.load(f)
|
59 |
+
imgs = []
|
60 |
+
poses = []
|
61 |
+
for i_img in range(self.first_K):
|
62 |
+
meta_img = meta['frames'][i_img]
|
63 |
+
|
64 |
+
if i_img == 0 or self.load_target:
|
65 |
+
img_path = os.path.join(scene_dir, meta_img['file_path'])
|
66 |
+
img = imageio.imread(img_path)
|
67 |
+
img = cv2.resize(img, (self.resolution, self.resolution), interpolation = cv2.INTER_LINEAR)
|
68 |
+
imgs.append(img)
|
69 |
+
|
70 |
+
c2w = meta_img['transform_matrix']
|
71 |
+
poses.append(c2w)
|
72 |
+
|
73 |
+
imgs = (np.array(imgs) / 255.).astype(np.float32) # (RGBA) imgs
|
74 |
+
imgs = torch.tensor(self.blend_rgba(imgs)).permute(0, 3, 1, 2)
|
75 |
+
imgs = imgs * 2 - 1. # convert to stable diffusion range
|
76 |
+
poses = torch.tensor(np.array(poses).astype(np.float32))
|
77 |
+
return imgs, poses
|
78 |
+
|
79 |
+
def blend_rgba(self, img):
|
80 |
+
img = img[..., :3] * img[..., -1:] + (1. - img[..., -1:]) # blend A to RGB
|
81 |
+
return img
|
82 |
+
|
83 |
+
|
84 |
+
class GSO(Dataset):
|
85 |
+
def __init__(self, root_dir='datasets/GoogleScannedObjects',\
|
86 |
+
split='val', first_K=5, resolution=256, load_target=False, name='render_mvs'):
|
87 |
+
self.root_dir = root_dir
|
88 |
+
with open(os.path.join(root_dir, '%s.json' % split), "r") as f:
|
89 |
+
self.scene_list = json.load(f)
|
90 |
+
self.resolution = resolution
|
91 |
+
self.first_K = first_K
|
92 |
+
self.load_target = load_target
|
93 |
+
self.name = name
|
94 |
+
|
95 |
+
def __len__(self):
|
96 |
+
return len(self.scene_list)
|
97 |
+
|
98 |
+
def __getitem__(self, idx):
|
99 |
+
scene_dir = os.path.join(self.root_dir, self.scene_list[idx])
|
100 |
+
with open(os.path.join(scene_dir, 'transforms_%s.json' % self.name), "r") as f:
|
101 |
+
meta = json.load(f)
|
102 |
+
imgs = []
|
103 |
+
poses = []
|
104 |
+
for i_img in range(self.first_K):
|
105 |
+
meta_img = meta['frames'][i_img]
|
106 |
+
|
107 |
+
if i_img == 0 or self.load_target:
|
108 |
+
img_path = os.path.join(scene_dir, meta_img['file_path'])
|
109 |
+
img = imageio.imread(img_path)
|
110 |
+
img = cv2.resize(img, (self.resolution, self.resolution), interpolation = cv2.INTER_LINEAR)
|
111 |
+
imgs.append(img)
|
112 |
+
|
113 |
+
c2w = meta_img['transform_matrix']
|
114 |
+
poses.append(c2w)
|
115 |
+
|
116 |
+
imgs = (np.array(imgs) / 255.).astype(np.float32) # (RGBA) imgs
|
117 |
+
mask = imgs[:, :, :, -1]
|
118 |
+
imgs = torch.tensor(self.blend_rgba(imgs)).permute(0, 3, 1, 2)
|
119 |
+
imgs = imgs * 2 - 1. # convert to stable diffusion range
|
120 |
+
poses = torch.tensor(np.array(poses).astype(np.float32))
|
121 |
+
return imgs, poses
|
122 |
+
|
123 |
+
def blend_rgba(self, img):
|
124 |
+
img = img[..., :3] * img[..., -1:] + (1. - img[..., -1:]) # blend A to RGB
|
125 |
+
return img
|
126 |
+
|
127 |
+
class WILD(Dataset):
|
128 |
+
def __init__(self, root_dir='data/nerf_wild',\
|
129 |
+
first_K=33, resolution=256, load_target=False):
|
130 |
+
self.root_dir = root_dir
|
131 |
+
self.scene_list = sorted(next(os.walk(root_dir))[1])
|
132 |
+
self.resolution = resolution
|
133 |
+
self.first_K = first_K
|
134 |
+
self.load_target = load_target
|
135 |
+
|
136 |
+
def __len__(self):
|
137 |
+
return len(self.scene_list)
|
138 |
+
|
139 |
+
def __getitem__(self, idx):
|
140 |
+
scene_dir = os.path.join(self.root_dir, self.scene_list[idx])
|
141 |
+
with open(os.path.join(scene_dir, 'transforms_train.json'), "r") as f:
|
142 |
+
meta = json.load(f)
|
143 |
+
imgs = []
|
144 |
+
poses = []
|
145 |
+
for i_img in range(self.first_K):
|
146 |
+
meta_img = meta['frames'][i_img]
|
147 |
+
|
148 |
+
if i_img == 0 or self.load_target:
|
149 |
+
img_path = os.path.join(scene_dir, meta_img['file_path'])
|
150 |
+
img = imageio.imread(img_path + '.png')
|
151 |
+
img = cv2.resize(img, (self.resolution, self.resolution), interpolation = cv2.INTER_LINEAR)
|
152 |
+
imgs.append(img)
|
153 |
+
|
154 |
+
c2w = meta_img['transform_matrix']
|
155 |
+
poses.append(c2w)
|
156 |
+
|
157 |
+
imgs = (np.array(imgs) / 255.).astype(np.float32) # (RGBA) imgs
|
158 |
+
imgs = torch.tensor(self.blend_rgba(imgs)).permute(0, 3, 1, 2)
|
159 |
+
imgs = imgs * 2 - 1. # convert to stable diffusion range
|
160 |
+
poses = torch.tensor(np.array(poses).astype(np.float32))
|
161 |
+
return imgs, poses
|
162 |
+
|
163 |
+
def blend_rgba(self, img):
|
164 |
+
img = img[..., :3] * img[..., -1:] + (1. - img[..., -1:]) # blend A to RGB
|
165 |
+
return img
|
ldm/data/simple.py
ADDED
@@ -0,0 +1,526 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from typing import Dict
|
2 |
+
import webdataset as wds
|
3 |
+
import numpy as np
|
4 |
+
from omegaconf import DictConfig, ListConfig
|
5 |
+
import torch
|
6 |
+
from torch.utils.data import Dataset
|
7 |
+
from pathlib import Path
|
8 |
+
import json
|
9 |
+
from PIL import Image
|
10 |
+
from torchvision import transforms
|
11 |
+
import torchvision
|
12 |
+
from einops import rearrange
|
13 |
+
from ldm.util import instantiate_from_config
|
14 |
+
from datasets import load_dataset
|
15 |
+
import pytorch_lightning as pl
|
16 |
+
import copy
|
17 |
+
import csv
|
18 |
+
import cv2
|
19 |
+
import random
|
20 |
+
import matplotlib.pyplot as plt
|
21 |
+
from torch.utils.data import DataLoader
|
22 |
+
import json
|
23 |
+
import os, sys
|
24 |
+
import webdataset as wds
|
25 |
+
import math
|
26 |
+
from torch.utils.data.distributed import DistributedSampler
|
27 |
+
|
28 |
+
# Some hacky things to make experimentation easier
|
29 |
+
def make_transform_multi_folder_data(paths, caption_files=None, **kwargs):
|
30 |
+
ds = make_multi_folder_data(paths, caption_files, **kwargs)
|
31 |
+
return TransformDataset(ds)
|
32 |
+
|
33 |
+
def make_nfp_data(base_path):
|
34 |
+
dirs = list(Path(base_path).glob("*/"))
|
35 |
+
print(f"Found {len(dirs)} folders")
|
36 |
+
print(dirs)
|
37 |
+
tforms = [transforms.Resize(512), transforms.CenterCrop(512)]
|
38 |
+
datasets = [NfpDataset(x, image_transforms=copy.copy(tforms), default_caption="A view from a train window") for x in dirs]
|
39 |
+
return torch.utils.data.ConcatDataset(datasets)
|
40 |
+
|
41 |
+
|
42 |
+
class VideoDataset(Dataset):
|
43 |
+
def __init__(self, root_dir, image_transforms, caption_file, offset=8, n=2):
|
44 |
+
self.root_dir = Path(root_dir)
|
45 |
+
self.caption_file = caption_file
|
46 |
+
self.n = n
|
47 |
+
ext = "mp4"
|
48 |
+
self.paths = sorted(list(self.root_dir.rglob(f"*.{ext}")))
|
49 |
+
self.offset = offset
|
50 |
+
|
51 |
+
if isinstance(image_transforms, ListConfig):
|
52 |
+
image_transforms = [instantiate_from_config(tt) for tt in image_transforms]
|
53 |
+
image_transforms.extend([transforms.ToTensor(),
|
54 |
+
transforms.Lambda(lambda x: rearrange(x * 2. - 1., 'c h w -> h w c'))])
|
55 |
+
image_transforms = transforms.Compose(image_transforms)
|
56 |
+
self.tform = image_transforms
|
57 |
+
with open(self.caption_file) as f:
|
58 |
+
reader = csv.reader(f)
|
59 |
+
rows = [row for row in reader]
|
60 |
+
self.captions = dict(rows)
|
61 |
+
|
62 |
+
def __len__(self):
|
63 |
+
return len(self.paths)
|
64 |
+
|
65 |
+
def __getitem__(self, index):
|
66 |
+
for i in range(10):
|
67 |
+
try:
|
68 |
+
return self._load_sample(index)
|
69 |
+
except Exception:
|
70 |
+
# Not really good enough but...
|
71 |
+
print("uh oh")
|
72 |
+
|
73 |
+
def _load_sample(self, index):
|
74 |
+
n = self.n
|
75 |
+
filename = self.paths[index]
|
76 |
+
min_frame = 2*self.offset + 2
|
77 |
+
vid = cv2.VideoCapture(str(filename))
|
78 |
+
max_frames = int(vid.get(cv2.CAP_PROP_FRAME_COUNT))
|
79 |
+
curr_frame_n = random.randint(min_frame, max_frames)
|
80 |
+
vid.set(cv2.CAP_PROP_POS_FRAMES,curr_frame_n)
|
81 |
+
_, curr_frame = vid.read()
|
82 |
+
|
83 |
+
prev_frames = []
|
84 |
+
for i in range(n):
|
85 |
+
prev_frame_n = curr_frame_n - (i+1)*self.offset
|
86 |
+
vid.set(cv2.CAP_PROP_POS_FRAMES,prev_frame_n)
|
87 |
+
_, prev_frame = vid.read()
|
88 |
+
prev_frame = self.tform(Image.fromarray(prev_frame[...,::-1]))
|
89 |
+
prev_frames.append(prev_frame)
|
90 |
+
|
91 |
+
vid.release()
|
92 |
+
caption = self.captions[filename.name]
|
93 |
+
data = {
|
94 |
+
"image": self.tform(Image.fromarray(curr_frame[...,::-1])),
|
95 |
+
"prev": torch.cat(prev_frames, dim=-1),
|
96 |
+
"txt": caption
|
97 |
+
}
|
98 |
+
return data
|
99 |
+
|
100 |
+
# end hacky things
|
101 |
+
|
102 |
+
|
103 |
+
def make_tranforms(image_transforms):
|
104 |
+
# if isinstance(image_transforms, ListConfig):
|
105 |
+
# image_transforms = [instantiate_from_config(tt) for tt in image_transforms]
|
106 |
+
image_transforms = []
|
107 |
+
image_transforms.extend([transforms.ToTensor(),
|
108 |
+
transforms.Lambda(lambda x: rearrange(x * 2. - 1., 'c h w -> h w c'))])
|
109 |
+
image_transforms = transforms.Compose(image_transforms)
|
110 |
+
return image_transforms
|
111 |
+
|
112 |
+
|
113 |
+
def make_multi_folder_data(paths, caption_files=None, **kwargs):
|
114 |
+
"""Make a concat dataset from multiple folders
|
115 |
+
Don't suport captions yet
|
116 |
+
|
117 |
+
If paths is a list, that's ok, if it's a Dict interpret it as:
|
118 |
+
k=folder v=n_times to repeat that
|
119 |
+
"""
|
120 |
+
list_of_paths = []
|
121 |
+
if isinstance(paths, (Dict, DictConfig)):
|
122 |
+
assert caption_files is None, \
|
123 |
+
"Caption files not yet supported for repeats"
|
124 |
+
for folder_path, repeats in paths.items():
|
125 |
+
list_of_paths.extend([folder_path]*repeats)
|
126 |
+
paths = list_of_paths
|
127 |
+
|
128 |
+
if caption_files is not None:
|
129 |
+
datasets = [FolderData(p, caption_file=c, **kwargs) for (p, c) in zip(paths, caption_files)]
|
130 |
+
else:
|
131 |
+
datasets = [FolderData(p, **kwargs) for p in paths]
|
132 |
+
return torch.utils.data.ConcatDataset(datasets)
|
133 |
+
|
134 |
+
|
135 |
+
|
136 |
+
class NfpDataset(Dataset):
|
137 |
+
def __init__(self,
|
138 |
+
root_dir,
|
139 |
+
image_transforms=[],
|
140 |
+
ext="jpg",
|
141 |
+
default_caption="",
|
142 |
+
) -> None:
|
143 |
+
"""assume sequential frames and a deterministic transform"""
|
144 |
+
|
145 |
+
self.root_dir = Path(root_dir)
|
146 |
+
self.default_caption = default_caption
|
147 |
+
|
148 |
+
self.paths = sorted(list(self.root_dir.rglob(f"*.{ext}")))
|
149 |
+
self.tform = make_tranforms(image_transforms)
|
150 |
+
|
151 |
+
def __len__(self):
|
152 |
+
return len(self.paths) - 1
|
153 |
+
|
154 |
+
|
155 |
+
def __getitem__(self, index):
|
156 |
+
prev = self.paths[index]
|
157 |
+
curr = self.paths[index+1]
|
158 |
+
data = {}
|
159 |
+
data["image"] = self._load_im(curr)
|
160 |
+
data["prev"] = self._load_im(prev)
|
161 |
+
data["txt"] = self.default_caption
|
162 |
+
return data
|
163 |
+
|
164 |
+
def _load_im(self, filename):
|
165 |
+
im = Image.open(filename).convert("RGB")
|
166 |
+
return self.tform(im)
|
167 |
+
|
168 |
+
class ObjaverseDataModuleFromConfig(pl.LightningDataModule):
|
169 |
+
def __init__(self, root_dir, batch_size, total_view, train=None, validation=None,
|
170 |
+
test=None, num_workers=4, **kwargs):
|
171 |
+
super().__init__(self)
|
172 |
+
self.root_dir = root_dir
|
173 |
+
self.batch_size = batch_size
|
174 |
+
self.num_workers = num_workers
|
175 |
+
self.total_view = total_view
|
176 |
+
|
177 |
+
if train is not None:
|
178 |
+
dataset_config = train
|
179 |
+
if validation is not None:
|
180 |
+
dataset_config = validation
|
181 |
+
|
182 |
+
if 'image_transforms' in dataset_config:
|
183 |
+
image_transforms = [torchvision.transforms.Resize(dataset_config.image_transforms.size)]
|
184 |
+
else:
|
185 |
+
image_transforms = []
|
186 |
+
image_transforms.extend([transforms.ToTensor(),
|
187 |
+
transforms.Lambda(lambda x: rearrange(x * 2. - 1., 'c h w -> h w c'))])
|
188 |
+
self.image_transforms = torchvision.transforms.Compose(image_transforms)
|
189 |
+
|
190 |
+
|
191 |
+
def train_dataloader(self):
|
192 |
+
dataset = ObjaverseData(root_dir=self.root_dir, total_view=self.total_view, validation=False, \
|
193 |
+
image_transforms=self.image_transforms)
|
194 |
+
sampler = DistributedSampler(dataset)
|
195 |
+
return wds.WebLoader(dataset, batch_size=self.batch_size, num_workers=self.num_workers, shuffle=False, sampler=sampler)
|
196 |
+
|
197 |
+
def val_dataloader(self):
|
198 |
+
dataset = ObjaverseData(root_dir=self.root_dir, total_view=self.total_view, validation=True, \
|
199 |
+
image_transforms=self.image_transforms)
|
200 |
+
sampler = DistributedSampler(dataset)
|
201 |
+
return wds.WebLoader(dataset, batch_size=self.batch_size, num_workers=self.num_workers, shuffle=False)
|
202 |
+
|
203 |
+
def test_dataloader(self):
|
204 |
+
return wds.WebLoader(ObjaverseData(root_dir=self.root_dir, total_view=self.total_view, validation=self.validation),\
|
205 |
+
batch_size=self.batch_size, num_workers=self.num_workers, shuffle=False)
|
206 |
+
|
207 |
+
|
208 |
+
class ObjaverseData(Dataset):
|
209 |
+
def __init__(self,
|
210 |
+
root_dir='.objaverse/hf-objaverse-v1/views',
|
211 |
+
image_transforms=[],
|
212 |
+
ext="png",
|
213 |
+
default_trans=torch.zeros(3),
|
214 |
+
postprocess=None,
|
215 |
+
return_paths=False,
|
216 |
+
total_view=4,
|
217 |
+
validation=False
|
218 |
+
) -> None:
|
219 |
+
"""Create a dataset from a folder of images.
|
220 |
+
If you pass in a root directory it will be searched for images
|
221 |
+
ending in ext (ext can be a list)
|
222 |
+
"""
|
223 |
+
self.root_dir = Path(root_dir)
|
224 |
+
self.default_trans = default_trans
|
225 |
+
self.return_paths = return_paths
|
226 |
+
if isinstance(postprocess, DictConfig):
|
227 |
+
postprocess = instantiate_from_config(postprocess)
|
228 |
+
self.postprocess = postprocess
|
229 |
+
self.total_view = total_view
|
230 |
+
|
231 |
+
if not isinstance(ext, (tuple, list, ListConfig)):
|
232 |
+
ext = [ext]
|
233 |
+
|
234 |
+
with open(os.path.join(root_dir, 'valid_paths.json')) as f:
|
235 |
+
self.paths = json.load(f)
|
236 |
+
|
237 |
+
total_objects = len(self.paths)
|
238 |
+
if validation:
|
239 |
+
self.paths = self.paths[math.floor(total_objects / 100. * 99.):] # used last 1% as validation
|
240 |
+
else:
|
241 |
+
self.paths = self.paths[:math.floor(total_objects / 100. * 99.)] # used first 99% as training
|
242 |
+
print('============= length of dataset %d =============' % len(self.paths))
|
243 |
+
self.tform = image_transforms
|
244 |
+
|
245 |
+
def __len__(self):
|
246 |
+
return len(self.paths)
|
247 |
+
|
248 |
+
def cartesian_to_spherical(self, xyz):
|
249 |
+
ptsnew = np.hstack((xyz, np.zeros(xyz.shape)))
|
250 |
+
xy = xyz[:,0]**2 + xyz[:,1]**2
|
251 |
+
z = np.sqrt(xy + xyz[:,2]**2)
|
252 |
+
theta = np.arctan2(np.sqrt(xy), xyz[:,2]) # for elevation angle defined from Z-axis down
|
253 |
+
#ptsnew[:,4] = np.arctan2(xyz[:,2], np.sqrt(xy)) # for elevation angle defined from XY-plane up
|
254 |
+
azimuth = np.arctan2(xyz[:,1], xyz[:,0])
|
255 |
+
return np.array([theta, azimuth, z])
|
256 |
+
|
257 |
+
def get_T(self, target_RT, cond_RT):
|
258 |
+
R, T = target_RT[:3, :3], target_RT[:, -1]
|
259 |
+
T_target = -R.T @ T
|
260 |
+
|
261 |
+
R, T = cond_RT[:3, :3], cond_RT[:, -1]
|
262 |
+
T_cond = -R.T @ T
|
263 |
+
|
264 |
+
theta_cond, azimuth_cond, z_cond = self.cartesian_to_spherical(T_cond[None, :])
|
265 |
+
theta_target, azimuth_target, z_target = self.cartesian_to_spherical(T_target[None, :])
|
266 |
+
|
267 |
+
d_theta = theta_target - theta_cond
|
268 |
+
d_azimuth = (azimuth_target - azimuth_cond) % (2 * math.pi)
|
269 |
+
d_z = z_target - z_cond
|
270 |
+
|
271 |
+
d_T = torch.tensor([d_theta.item(), math.sin(d_azimuth.item()), math.cos(d_azimuth.item()), d_z.item()])
|
272 |
+
return d_T
|
273 |
+
|
274 |
+
def load_im(self, path, color):
|
275 |
+
'''
|
276 |
+
replace background pixel with random color in rendering
|
277 |
+
'''
|
278 |
+
try:
|
279 |
+
img = plt.imread(path)
|
280 |
+
except:
|
281 |
+
print(path)
|
282 |
+
sys.exit()
|
283 |
+
img[img[:, :, -1] == 0.] = color
|
284 |
+
img = Image.fromarray(np.uint8(img[:, :, :3] * 255.))
|
285 |
+
return img
|
286 |
+
|
287 |
+
def __getitem__(self, index):
|
288 |
+
|
289 |
+
data = {}
|
290 |
+
if self.paths[index][-2:] == '_1': # dirty fix for rendering dataset twice
|
291 |
+
total_view = 8
|
292 |
+
else:
|
293 |
+
total_view = 4
|
294 |
+
index_target, index_cond = random.sample(range(total_view), 2) # without replacement
|
295 |
+
filename = os.path.join(self.root_dir, self.paths[index])
|
296 |
+
|
297 |
+
# print(self.paths[index])
|
298 |
+
|
299 |
+
if self.return_paths:
|
300 |
+
data["path"] = str(filename)
|
301 |
+
|
302 |
+
color = [1., 1., 1., 1.]
|
303 |
+
|
304 |
+
try:
|
305 |
+
target_im = self.process_im(self.load_im(os.path.join(filename, '%03d.png' % index_target), color))
|
306 |
+
cond_im = self.process_im(self.load_im(os.path.join(filename, '%03d.png' % index_cond), color))
|
307 |
+
target_RT = np.load(os.path.join(filename, '%03d.npy' % index_target))
|
308 |
+
cond_RT = np.load(os.path.join(filename, '%03d.npy' % index_cond))
|
309 |
+
except:
|
310 |
+
# very hacky solution, sorry about this
|
311 |
+
filename = os.path.join(self.root_dir, '692db5f2d3a04bb286cb977a7dba903e_1') # this one we know is valid
|
312 |
+
target_im = self.process_im(self.load_im(os.path.join(filename, '%03d.png' % index_target), color))
|
313 |
+
cond_im = self.process_im(self.load_im(os.path.join(filename, '%03d.png' % index_cond), color))
|
314 |
+
target_RT = np.load(os.path.join(filename, '%03d.npy' % index_target))
|
315 |
+
cond_RT = np.load(os.path.join(filename, '%03d.npy' % index_cond))
|
316 |
+
target_im = torch.zeros_like(target_im)
|
317 |
+
cond_im = torch.zeros_like(cond_im)
|
318 |
+
|
319 |
+
data["image_target"] = target_im
|
320 |
+
data["image_cond"] = cond_im
|
321 |
+
data["T"] = self.get_T(target_RT, cond_RT)
|
322 |
+
|
323 |
+
if self.postprocess is not None:
|
324 |
+
data = self.postprocess(data)
|
325 |
+
|
326 |
+
return data
|
327 |
+
|
328 |
+
def process_im(self, im):
|
329 |
+
im = im.convert("RGB")
|
330 |
+
return self.tform(im)
|
331 |
+
|
332 |
+
class FolderData(Dataset):
|
333 |
+
def __init__(self,
|
334 |
+
root_dir,
|
335 |
+
caption_file=None,
|
336 |
+
image_transforms=[],
|
337 |
+
ext="jpg",
|
338 |
+
default_caption="",
|
339 |
+
postprocess=None,
|
340 |
+
return_paths=False,
|
341 |
+
) -> None:
|
342 |
+
"""Create a dataset from a folder of images.
|
343 |
+
If you pass in a root directory it will be searched for images
|
344 |
+
ending in ext (ext can be a list)
|
345 |
+
"""
|
346 |
+
self.root_dir = Path(root_dir)
|
347 |
+
self.default_caption = default_caption
|
348 |
+
self.return_paths = return_paths
|
349 |
+
if isinstance(postprocess, DictConfig):
|
350 |
+
postprocess = instantiate_from_config(postprocess)
|
351 |
+
self.postprocess = postprocess
|
352 |
+
if caption_file is not None:
|
353 |
+
with open(caption_file, "rt") as f:
|
354 |
+
ext = Path(caption_file).suffix.lower()
|
355 |
+
if ext == ".json":
|
356 |
+
captions = json.load(f)
|
357 |
+
elif ext == ".jsonl":
|
358 |
+
lines = f.readlines()
|
359 |
+
lines = [json.loads(x) for x in lines]
|
360 |
+
captions = {x["file_name"]: x["text"].strip("\n") for x in lines}
|
361 |
+
else:
|
362 |
+
raise ValueError(f"Unrecognised format: {ext}")
|
363 |
+
self.captions = captions
|
364 |
+
else:
|
365 |
+
self.captions = None
|
366 |
+
|
367 |
+
if not isinstance(ext, (tuple, list, ListConfig)):
|
368 |
+
ext = [ext]
|
369 |
+
|
370 |
+
# Only used if there is no caption file
|
371 |
+
self.paths = []
|
372 |
+
for e in ext:
|
373 |
+
self.paths.extend(sorted(list(self.root_dir.rglob(f"*.{e}"))))
|
374 |
+
self.tform = make_tranforms(image_transforms)
|
375 |
+
|
376 |
+
def __len__(self):
|
377 |
+
if self.captions is not None:
|
378 |
+
return len(self.captions.keys())
|
379 |
+
else:
|
380 |
+
return len(self.paths)
|
381 |
+
|
382 |
+
def __getitem__(self, index):
|
383 |
+
data = {}
|
384 |
+
if self.captions is not None:
|
385 |
+
chosen = list(self.captions.keys())[index]
|
386 |
+
caption = self.captions.get(chosen, None)
|
387 |
+
if caption is None:
|
388 |
+
caption = self.default_caption
|
389 |
+
filename = self.root_dir/chosen
|
390 |
+
else:
|
391 |
+
filename = self.paths[index]
|
392 |
+
|
393 |
+
if self.return_paths:
|
394 |
+
data["path"] = str(filename)
|
395 |
+
|
396 |
+
im = Image.open(filename).convert("RGB")
|
397 |
+
im = self.process_im(im)
|
398 |
+
data["image"] = im
|
399 |
+
|
400 |
+
if self.captions is not None:
|
401 |
+
data["txt"] = caption
|
402 |
+
else:
|
403 |
+
data["txt"] = self.default_caption
|
404 |
+
|
405 |
+
if self.postprocess is not None:
|
406 |
+
data = self.postprocess(data)
|
407 |
+
|
408 |
+
return data
|
409 |
+
|
410 |
+
def process_im(self, im):
|
411 |
+
im = im.convert("RGB")
|
412 |
+
return self.tform(im)
|
413 |
+
import random
|
414 |
+
|
415 |
+
class TransformDataset():
|
416 |
+
def __init__(self, ds, extra_label="sksbspic"):
|
417 |
+
self.ds = ds
|
418 |
+
self.extra_label = extra_label
|
419 |
+
self.transforms = {
|
420 |
+
"align": transforms.Resize(768),
|
421 |
+
"centerzoom": transforms.CenterCrop(768),
|
422 |
+
"randzoom": transforms.RandomCrop(768),
|
423 |
+
}
|
424 |
+
|
425 |
+
|
426 |
+
def __getitem__(self, index):
|
427 |
+
data = self.ds[index]
|
428 |
+
|
429 |
+
im = data['image']
|
430 |
+
im = im.permute(2,0,1)
|
431 |
+
# In case data is smaller than expected
|
432 |
+
im = transforms.Resize(1024)(im)
|
433 |
+
|
434 |
+
tform_name = random.choice(list(self.transforms.keys()))
|
435 |
+
im = self.transforms[tform_name](im)
|
436 |
+
|
437 |
+
im = im.permute(1,2,0)
|
438 |
+
|
439 |
+
data['image'] = im
|
440 |
+
data['txt'] = data['txt'] + f" {self.extra_label} {tform_name}"
|
441 |
+
|
442 |
+
return data
|
443 |
+
|
444 |
+
def __len__(self):
|
445 |
+
return len(self.ds)
|
446 |
+
|
447 |
+
def hf_dataset(
|
448 |
+
name,
|
449 |
+
image_transforms=[],
|
450 |
+
image_column="image",
|
451 |
+
text_column="text",
|
452 |
+
split='train',
|
453 |
+
image_key='image',
|
454 |
+
caption_key='txt',
|
455 |
+
):
|
456 |
+
"""Make huggingface dataset with appropriate list of transforms applied
|
457 |
+
"""
|
458 |
+
ds = load_dataset(name, split=split)
|
459 |
+
tform = make_tranforms(image_transforms)
|
460 |
+
|
461 |
+
assert image_column in ds.column_names, f"Didn't find column {image_column} in {ds.column_names}"
|
462 |
+
assert text_column in ds.column_names, f"Didn't find column {text_column} in {ds.column_names}"
|
463 |
+
|
464 |
+
def pre_process(examples):
|
465 |
+
processed = {}
|
466 |
+
processed[image_key] = [tform(im) for im in examples[image_column]]
|
467 |
+
processed[caption_key] = examples[text_column]
|
468 |
+
return processed
|
469 |
+
|
470 |
+
ds.set_transform(pre_process)
|
471 |
+
return ds
|
472 |
+
|
473 |
+
class TextOnly(Dataset):
|
474 |
+
def __init__(self, captions, output_size, image_key="image", caption_key="txt", n_gpus=1):
|
475 |
+
"""Returns only captions with dummy images"""
|
476 |
+
self.output_size = output_size
|
477 |
+
self.image_key = image_key
|
478 |
+
self.caption_key = caption_key
|
479 |
+
if isinstance(captions, Path):
|
480 |
+
self.captions = self._load_caption_file(captions)
|
481 |
+
else:
|
482 |
+
self.captions = captions
|
483 |
+
|
484 |
+
if n_gpus > 1:
|
485 |
+
# hack to make sure that all the captions appear on each gpu
|
486 |
+
repeated = [n_gpus*[x] for x in self.captions]
|
487 |
+
self.captions = []
|
488 |
+
[self.captions.extend(x) for x in repeated]
|
489 |
+
|
490 |
+
def __len__(self):
|
491 |
+
return len(self.captions)
|
492 |
+
|
493 |
+
def __getitem__(self, index):
|
494 |
+
dummy_im = torch.zeros(3, self.output_size, self.output_size)
|
495 |
+
dummy_im = rearrange(dummy_im * 2. - 1., 'c h w -> h w c')
|
496 |
+
return {self.image_key: dummy_im, self.caption_key: self.captions[index]}
|
497 |
+
|
498 |
+
def _load_caption_file(self, filename):
|
499 |
+
with open(filename, 'rt') as f:
|
500 |
+
captions = f.readlines()
|
501 |
+
return [x.strip('\n') for x in captions]
|
502 |
+
|
503 |
+
|
504 |
+
|
505 |
+
import random
|
506 |
+
import json
|
507 |
+
class IdRetreivalDataset(FolderData):
|
508 |
+
def __init__(self, ret_file, *args, **kwargs):
|
509 |
+
super().__init__(*args, **kwargs)
|
510 |
+
with open(ret_file, "rt") as f:
|
511 |
+
self.ret = json.load(f)
|
512 |
+
|
513 |
+
def __getitem__(self, index):
|
514 |
+
data = super().__getitem__(index)
|
515 |
+
key = self.paths[index].name
|
516 |
+
matches = self.ret[key]
|
517 |
+
if len(matches) > 0:
|
518 |
+
retreived = random.choice(matches)
|
519 |
+
else:
|
520 |
+
retreived = key
|
521 |
+
filename = self.root_dir/retreived
|
522 |
+
im = Image.open(filename).convert("RGB")
|
523 |
+
im = self.process_im(im)
|
524 |
+
# data["match"] = im
|
525 |
+
data["match"] = torch.cat((data["image"], im), dim=-1)
|
526 |
+
return data
|
ldm/extras.py
ADDED
@@ -0,0 +1,77 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from pathlib import Path
|
2 |
+
from omegaconf import OmegaConf
|
3 |
+
import torch
|
4 |
+
from ldm.util import instantiate_from_config
|
5 |
+
import logging
|
6 |
+
from contextlib import contextmanager
|
7 |
+
|
8 |
+
from contextlib import contextmanager
|
9 |
+
import logging
|
10 |
+
|
11 |
+
@contextmanager
|
12 |
+
def all_logging_disabled(highest_level=logging.CRITICAL):
|
13 |
+
"""
|
14 |
+
A context manager that will prevent any logging messages
|
15 |
+
triggered during the body from being processed.
|
16 |
+
|
17 |
+
:param highest_level: the maximum logging level in use.
|
18 |
+
This would only need to be changed if a custom level greater than CRITICAL
|
19 |
+
is defined.
|
20 |
+
|
21 |
+
https://gist.github.com/simon-weber/7853144
|
22 |
+
"""
|
23 |
+
# two kind-of hacks here:
|
24 |
+
# * can't get the highest logging level in effect => delegate to the user
|
25 |
+
# * can't get the current module-level override => use an undocumented
|
26 |
+
# (but non-private!) interface
|
27 |
+
|
28 |
+
previous_level = logging.root.manager.disable
|
29 |
+
|
30 |
+
logging.disable(highest_level)
|
31 |
+
|
32 |
+
try:
|
33 |
+
yield
|
34 |
+
finally:
|
35 |
+
logging.disable(previous_level)
|
36 |
+
|
37 |
+
def load_training_dir(train_dir, device, epoch="last"):
|
38 |
+
"""Load a checkpoint and config from training directory"""
|
39 |
+
train_dir = Path(train_dir)
|
40 |
+
ckpt = list(train_dir.rglob(f"*{epoch}.ckpt"))
|
41 |
+
assert len(ckpt) == 1, f"found {len(ckpt)} matching ckpt files"
|
42 |
+
config = list(train_dir.rglob(f"*-project.yaml"))
|
43 |
+
assert len(ckpt) > 0, f"didn't find any config in {train_dir}"
|
44 |
+
if len(config) > 1:
|
45 |
+
print(f"found {len(config)} matching config files")
|
46 |
+
config = sorted(config)[-1]
|
47 |
+
print(f"selecting {config}")
|
48 |
+
else:
|
49 |
+
config = config[0]
|
50 |
+
|
51 |
+
|
52 |
+
config = OmegaConf.load(config)
|
53 |
+
return load_model_from_config(config, ckpt[0], device)
|
54 |
+
|
55 |
+
def load_model_from_config(config, ckpt, device="cpu", verbose=False):
|
56 |
+
"""Loads a model from config and a ckpt
|
57 |
+
if config is a path will use omegaconf to load
|
58 |
+
"""
|
59 |
+
if isinstance(config, (str, Path)):
|
60 |
+
config = OmegaConf.load(config)
|
61 |
+
|
62 |
+
with all_logging_disabled():
|
63 |
+
print(f"Loading model from {ckpt}")
|
64 |
+
pl_sd = torch.load(ckpt, map_location="cpu")
|
65 |
+
global_step = pl_sd["global_step"]
|
66 |
+
sd = pl_sd["state_dict"]
|
67 |
+
model = instantiate_from_config(config.model)
|
68 |
+
m, u = model.load_state_dict(sd, strict=False)
|
69 |
+
if len(m) > 0 and verbose:
|
70 |
+
print("missing keys:")
|
71 |
+
print(m)
|
72 |
+
if len(u) > 0 and verbose:
|
73 |
+
print("unexpected keys:")
|
74 |
+
model.to(device)
|
75 |
+
model.eval()
|
76 |
+
model.cond_stage_model.device = device
|
77 |
+
return model
|
ldm/guidance.py
ADDED
@@ -0,0 +1,96 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from typing import List, Tuple
|
2 |
+
from scipy import interpolate
|
3 |
+
import numpy as np
|
4 |
+
import torch
|
5 |
+
import matplotlib.pyplot as plt
|
6 |
+
from IPython.display import clear_output
|
7 |
+
import abc
|
8 |
+
|
9 |
+
|
10 |
+
class GuideModel(torch.nn.Module, abc.ABC):
|
11 |
+
def __init__(self) -> None:
|
12 |
+
super().__init__()
|
13 |
+
|
14 |
+
@abc.abstractmethod
|
15 |
+
def preprocess(self, x_img):
|
16 |
+
pass
|
17 |
+
|
18 |
+
@abc.abstractmethod
|
19 |
+
def compute_loss(self, inp):
|
20 |
+
pass
|
21 |
+
|
22 |
+
|
23 |
+
class Guider(torch.nn.Module):
|
24 |
+
def __init__(self, sampler, guide_model, scale=1.0, verbose=False):
|
25 |
+
"""Apply classifier guidance
|
26 |
+
|
27 |
+
Specify a guidance scale as either a scalar
|
28 |
+
Or a schedule as a list of tuples t = 0->1 and scale, e.g.
|
29 |
+
[(0, 10), (0.5, 20), (1, 50)]
|
30 |
+
"""
|
31 |
+
super().__init__()
|
32 |
+
self.sampler = sampler
|
33 |
+
self.index = 0
|
34 |
+
self.show = verbose
|
35 |
+
self.guide_model = guide_model
|
36 |
+
self.history = []
|
37 |
+
|
38 |
+
if isinstance(scale, (Tuple, List)):
|
39 |
+
times = np.array([x[0] for x in scale])
|
40 |
+
values = np.array([x[1] for x in scale])
|
41 |
+
self.scale_schedule = {"times": times, "values": values}
|
42 |
+
else:
|
43 |
+
self.scale_schedule = float(scale)
|
44 |
+
|
45 |
+
self.ddim_timesteps = sampler.ddim_timesteps
|
46 |
+
self.ddpm_num_timesteps = sampler.ddpm_num_timesteps
|
47 |
+
|
48 |
+
|
49 |
+
def get_scales(self):
|
50 |
+
if isinstance(self.scale_schedule, float):
|
51 |
+
return len(self.ddim_timesteps)*[self.scale_schedule]
|
52 |
+
|
53 |
+
interpolater = interpolate.interp1d(self.scale_schedule["times"], self.scale_schedule["values"])
|
54 |
+
fractional_steps = np.array(self.ddim_timesteps)/self.ddpm_num_timesteps
|
55 |
+
return interpolater(fractional_steps)
|
56 |
+
|
57 |
+
def modify_score(self, model, e_t, x, t, c):
|
58 |
+
|
59 |
+
# TODO look up index by t
|
60 |
+
scale = self.get_scales()[self.index]
|
61 |
+
|
62 |
+
if (scale == 0):
|
63 |
+
return e_t
|
64 |
+
|
65 |
+
sqrt_1ma = self.sampler.ddim_sqrt_one_minus_alphas[self.index].to(x.device)
|
66 |
+
with torch.enable_grad():
|
67 |
+
x_in = x.detach().requires_grad_(True)
|
68 |
+
pred_x0 = model.predict_start_from_noise(x_in, t=t, noise=e_t)
|
69 |
+
x_img = model.first_stage_model.decode((1/0.18215)*pred_x0)
|
70 |
+
|
71 |
+
inp = self.guide_model.preprocess(x_img)
|
72 |
+
loss = self.guide_model.compute_loss(inp)
|
73 |
+
grads = torch.autograd.grad(loss.sum(), x_in)[0]
|
74 |
+
correction = grads * scale
|
75 |
+
|
76 |
+
if self.show:
|
77 |
+
clear_output(wait=True)
|
78 |
+
print(loss.item(), scale, correction.abs().max().item(), e_t.abs().max().item())
|
79 |
+
self.history.append([loss.item(), scale, correction.min().item(), correction.max().item()])
|
80 |
+
plt.imshow((inp[0].detach().permute(1,2,0).clamp(-1,1).cpu()+1)/2)
|
81 |
+
plt.axis('off')
|
82 |
+
plt.show()
|
83 |
+
plt.imshow(correction[0][0].detach().cpu())
|
84 |
+
plt.axis('off')
|
85 |
+
plt.show()
|
86 |
+
|
87 |
+
|
88 |
+
e_t_mod = e_t - sqrt_1ma*correction
|
89 |
+
if self.show:
|
90 |
+
fig, axs = plt.subplots(1, 3)
|
91 |
+
axs[0].imshow(e_t[0][0].detach().cpu(), vmin=-2, vmax=+2)
|
92 |
+
axs[1].imshow(e_t_mod[0][0].detach().cpu(), vmin=-2, vmax=+2)
|
93 |
+
axs[2].imshow(correction[0][0].detach().cpu(), vmin=-2, vmax=+2)
|
94 |
+
plt.show()
|
95 |
+
self.index += 1
|
96 |
+
return e_t_mod
|
ldm/lr_scheduler.py
ADDED
@@ -0,0 +1,98 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import numpy as np
|
2 |
+
|
3 |
+
|
4 |
+
class LambdaWarmUpCosineScheduler:
|
5 |
+
"""
|
6 |
+
note: use with a base_lr of 1.0
|
7 |
+
"""
|
8 |
+
def __init__(self, warm_up_steps, lr_min, lr_max, lr_start, max_decay_steps, verbosity_interval=0):
|
9 |
+
self.lr_warm_up_steps = warm_up_steps
|
10 |
+
self.lr_start = lr_start
|
11 |
+
self.lr_min = lr_min
|
12 |
+
self.lr_max = lr_max
|
13 |
+
self.lr_max_decay_steps = max_decay_steps
|
14 |
+
self.last_lr = 0.
|
15 |
+
self.verbosity_interval = verbosity_interval
|
16 |
+
|
17 |
+
def schedule(self, n, **kwargs):
|
18 |
+
if self.verbosity_interval > 0:
|
19 |
+
if n % self.verbosity_interval == 0: print(f"current step: {n}, recent lr-multiplier: {self.last_lr}")
|
20 |
+
if n < self.lr_warm_up_steps:
|
21 |
+
lr = (self.lr_max - self.lr_start) / self.lr_warm_up_steps * n + self.lr_start
|
22 |
+
self.last_lr = lr
|
23 |
+
return lr
|
24 |
+
else:
|
25 |
+
t = (n - self.lr_warm_up_steps) / (self.lr_max_decay_steps - self.lr_warm_up_steps)
|
26 |
+
t = min(t, 1.0)
|
27 |
+
lr = self.lr_min + 0.5 * (self.lr_max - self.lr_min) * (
|
28 |
+
1 + np.cos(t * np.pi))
|
29 |
+
self.last_lr = lr
|
30 |
+
return lr
|
31 |
+
|
32 |
+
def __call__(self, n, **kwargs):
|
33 |
+
return self.schedule(n,**kwargs)
|
34 |
+
|
35 |
+
|
36 |
+
class LambdaWarmUpCosineScheduler2:
|
37 |
+
"""
|
38 |
+
supports repeated iterations, configurable via lists
|
39 |
+
note: use with a base_lr of 1.0.
|
40 |
+
"""
|
41 |
+
def __init__(self, warm_up_steps, f_min, f_max, f_start, cycle_lengths, verbosity_interval=0):
|
42 |
+
assert len(warm_up_steps) == len(f_min) == len(f_max) == len(f_start) == len(cycle_lengths)
|
43 |
+
self.lr_warm_up_steps = warm_up_steps
|
44 |
+
self.f_start = f_start
|
45 |
+
self.f_min = f_min
|
46 |
+
self.f_max = f_max
|
47 |
+
self.cycle_lengths = cycle_lengths
|
48 |
+
self.cum_cycles = np.cumsum([0] + list(self.cycle_lengths))
|
49 |
+
self.last_f = 0.
|
50 |
+
self.verbosity_interval = verbosity_interval
|
51 |
+
|
52 |
+
def find_in_interval(self, n):
|
53 |
+
interval = 0
|
54 |
+
for cl in self.cum_cycles[1:]:
|
55 |
+
if n <= cl:
|
56 |
+
return interval
|
57 |
+
interval += 1
|
58 |
+
|
59 |
+
def schedule(self, n, **kwargs):
|
60 |
+
cycle = self.find_in_interval(n)
|
61 |
+
n = n - self.cum_cycles[cycle]
|
62 |
+
if self.verbosity_interval > 0:
|
63 |
+
if n % self.verbosity_interval == 0: print(f"current step: {n}, recent lr-multiplier: {self.last_f}, "
|
64 |
+
f"current cycle {cycle}")
|
65 |
+
if n < self.lr_warm_up_steps[cycle]:
|
66 |
+
f = (self.f_max[cycle] - self.f_start[cycle]) / self.lr_warm_up_steps[cycle] * n + self.f_start[cycle]
|
67 |
+
self.last_f = f
|
68 |
+
return f
|
69 |
+
else:
|
70 |
+
t = (n - self.lr_warm_up_steps[cycle]) / (self.cycle_lengths[cycle] - self.lr_warm_up_steps[cycle])
|
71 |
+
t = min(t, 1.0)
|
72 |
+
f = self.f_min[cycle] + 0.5 * (self.f_max[cycle] - self.f_min[cycle]) * (
|
73 |
+
1 + np.cos(t * np.pi))
|
74 |
+
self.last_f = f
|
75 |
+
return f
|
76 |
+
|
77 |
+
def __call__(self, n, **kwargs):
|
78 |
+
return self.schedule(n, **kwargs)
|
79 |
+
|
80 |
+
|
81 |
+
class LambdaLinearScheduler(LambdaWarmUpCosineScheduler2):
|
82 |
+
|
83 |
+
def schedule(self, n, **kwargs):
|
84 |
+
cycle = self.find_in_interval(n)
|
85 |
+
n = n - self.cum_cycles[cycle]
|
86 |
+
if self.verbosity_interval > 0:
|
87 |
+
if n % self.verbosity_interval == 0: print(f"current step: {n}, recent lr-multiplier: {self.last_f}, "
|
88 |
+
f"current cycle {cycle}")
|
89 |
+
|
90 |
+
if n < self.lr_warm_up_steps[cycle]:
|
91 |
+
f = (self.f_max[cycle] - self.f_start[cycle]) / self.lr_warm_up_steps[cycle] * n + self.f_start[cycle]
|
92 |
+
self.last_f = f
|
93 |
+
return f
|
94 |
+
else:
|
95 |
+
f = self.f_min[cycle] + (self.f_max[cycle] - self.f_min[cycle]) * (self.cycle_lengths[cycle] - n) / (self.cycle_lengths[cycle])
|
96 |
+
self.last_f = f
|
97 |
+
return f
|
98 |
+
|
ldm/models/autoencoder.py
ADDED
@@ -0,0 +1,443 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
import pytorch_lightning as pl
|
3 |
+
import torch.nn.functional as F
|
4 |
+
from contextlib import contextmanager
|
5 |
+
|
6 |
+
from taming.modules.vqvae.quantize import VectorQuantizer2 as VectorQuantizer
|
7 |
+
|
8 |
+
from ldm.modules.diffusionmodules.model import Encoder, Decoder
|
9 |
+
from ldm.modules.distributions.distributions import DiagonalGaussianDistribution
|
10 |
+
|
11 |
+
from ldm.util import instantiate_from_config
|
12 |
+
|
13 |
+
|
14 |
+
class VQModel(pl.LightningModule):
|
15 |
+
def __init__(self,
|
16 |
+
ddconfig,
|
17 |
+
lossconfig,
|
18 |
+
n_embed,
|
19 |
+
embed_dim,
|
20 |
+
ckpt_path=None,
|
21 |
+
ignore_keys=[],
|
22 |
+
image_key="image",
|
23 |
+
colorize_nlabels=None,
|
24 |
+
monitor=None,
|
25 |
+
batch_resize_range=None,
|
26 |
+
scheduler_config=None,
|
27 |
+
lr_g_factor=1.0,
|
28 |
+
remap=None,
|
29 |
+
sane_index_shape=False, # tell vector quantizer to return indices as bhw
|
30 |
+
use_ema=False
|
31 |
+
):
|
32 |
+
super().__init__()
|
33 |
+
self.embed_dim = embed_dim
|
34 |
+
self.n_embed = n_embed
|
35 |
+
self.image_key = image_key
|
36 |
+
self.encoder = Encoder(**ddconfig)
|
37 |
+
self.decoder = Decoder(**ddconfig)
|
38 |
+
self.loss = instantiate_from_config(lossconfig)
|
39 |
+
self.quantize = VectorQuantizer(n_embed, embed_dim, beta=0.25,
|
40 |
+
remap=remap,
|
41 |
+
sane_index_shape=sane_index_shape)
|
42 |
+
self.quant_conv = torch.nn.Conv2d(ddconfig["z_channels"], embed_dim, 1)
|
43 |
+
self.post_quant_conv = torch.nn.Conv2d(embed_dim, ddconfig["z_channels"], 1)
|
44 |
+
if colorize_nlabels is not None:
|
45 |
+
assert type(colorize_nlabels)==int
|
46 |
+
self.register_buffer("colorize", torch.randn(3, colorize_nlabels, 1, 1))
|
47 |
+
if monitor is not None:
|
48 |
+
self.monitor = monitor
|
49 |
+
self.batch_resize_range = batch_resize_range
|
50 |
+
if self.batch_resize_range is not None:
|
51 |
+
print(f"{self.__class__.__name__}: Using per-batch resizing in range {batch_resize_range}.")
|
52 |
+
|
53 |
+
self.use_ema = use_ema
|
54 |
+
if self.use_ema:
|
55 |
+
self.model_ema = LitEma(self)
|
56 |
+
print(f"Keeping EMAs of {len(list(self.model_ema.buffers()))}.")
|
57 |
+
|
58 |
+
if ckpt_path is not None:
|
59 |
+
self.init_from_ckpt(ckpt_path, ignore_keys=ignore_keys)
|
60 |
+
self.scheduler_config = scheduler_config
|
61 |
+
self.lr_g_factor = lr_g_factor
|
62 |
+
|
63 |
+
@contextmanager
|
64 |
+
def ema_scope(self, context=None):
|
65 |
+
if self.use_ema:
|
66 |
+
self.model_ema.store(self.parameters())
|
67 |
+
self.model_ema.copy_to(self)
|
68 |
+
if context is not None:
|
69 |
+
print(f"{context}: Switched to EMA weights")
|
70 |
+
try:
|
71 |
+
yield None
|
72 |
+
finally:
|
73 |
+
if self.use_ema:
|
74 |
+
self.model_ema.restore(self.parameters())
|
75 |
+
if context is not None:
|
76 |
+
print(f"{context}: Restored training weights")
|
77 |
+
|
78 |
+
def init_from_ckpt(self, path, ignore_keys=list()):
|
79 |
+
sd = torch.load(path, map_location="cpu")["state_dict"]
|
80 |
+
keys = list(sd.keys())
|
81 |
+
for k in keys:
|
82 |
+
for ik in ignore_keys:
|
83 |
+
if k.startswith(ik):
|
84 |
+
print("Deleting key {} from state_dict.".format(k))
|
85 |
+
del sd[k]
|
86 |
+
missing, unexpected = self.load_state_dict(sd, strict=False)
|
87 |
+
print(f"Restored from {path} with {len(missing)} missing and {len(unexpected)} unexpected keys")
|
88 |
+
if len(missing) > 0:
|
89 |
+
print(f"Missing Keys: {missing}")
|
90 |
+
print(f"Unexpected Keys: {unexpected}")
|
91 |
+
|
92 |
+
def on_train_batch_end(self, *args, **kwargs):
|
93 |
+
if self.use_ema:
|
94 |
+
self.model_ema(self)
|
95 |
+
|
96 |
+
def encode(self, x):
|
97 |
+
h = self.encoder(x)
|
98 |
+
h = self.quant_conv(h)
|
99 |
+
quant, emb_loss, info = self.quantize(h)
|
100 |
+
return quant, emb_loss, info
|
101 |
+
|
102 |
+
def encode_to_prequant(self, x):
|
103 |
+
h = self.encoder(x)
|
104 |
+
h = self.quant_conv(h)
|
105 |
+
return h
|
106 |
+
|
107 |
+
def decode(self, quant):
|
108 |
+
quant = self.post_quant_conv(quant)
|
109 |
+
dec = self.decoder(quant)
|
110 |
+
return dec
|
111 |
+
|
112 |
+
def decode_code(self, code_b):
|
113 |
+
quant_b = self.quantize.embed_code(code_b)
|
114 |
+
dec = self.decode(quant_b)
|
115 |
+
return dec
|
116 |
+
|
117 |
+
def forward(self, input, return_pred_indices=False):
|
118 |
+
quant, diff, (_,_,ind) = self.encode(input)
|
119 |
+
dec = self.decode(quant)
|
120 |
+
if return_pred_indices:
|
121 |
+
return dec, diff, ind
|
122 |
+
return dec, diff
|
123 |
+
|
124 |
+
def get_input(self, batch, k):
|
125 |
+
x = batch[k]
|
126 |
+
if len(x.shape) == 3:
|
127 |
+
x = x[..., None]
|
128 |
+
x = x.permute(0, 3, 1, 2).to(memory_format=torch.contiguous_format).float()
|
129 |
+
if self.batch_resize_range is not None:
|
130 |
+
lower_size = self.batch_resize_range[0]
|
131 |
+
upper_size = self.batch_resize_range[1]
|
132 |
+
if self.global_step <= 4:
|
133 |
+
# do the first few batches with max size to avoid later oom
|
134 |
+
new_resize = upper_size
|
135 |
+
else:
|
136 |
+
new_resize = np.random.choice(np.arange(lower_size, upper_size+16, 16))
|
137 |
+
if new_resize != x.shape[2]:
|
138 |
+
x = F.interpolate(x, size=new_resize, mode="bicubic")
|
139 |
+
x = x.detach()
|
140 |
+
return x
|
141 |
+
|
142 |
+
def training_step(self, batch, batch_idx, optimizer_idx):
|
143 |
+
# https://github.com/pytorch/pytorch/issues/37142
|
144 |
+
# try not to fool the heuristics
|
145 |
+
x = self.get_input(batch, self.image_key)
|
146 |
+
xrec, qloss, ind = self(x, return_pred_indices=True)
|
147 |
+
|
148 |
+
if optimizer_idx == 0:
|
149 |
+
# autoencode
|
150 |
+
aeloss, log_dict_ae = self.loss(qloss, x, xrec, optimizer_idx, self.global_step,
|
151 |
+
last_layer=self.get_last_layer(), split="train",
|
152 |
+
predicted_indices=ind)
|
153 |
+
|
154 |
+
self.log_dict(log_dict_ae, prog_bar=False, logger=True, on_step=True, on_epoch=True)
|
155 |
+
return aeloss
|
156 |
+
|
157 |
+
if optimizer_idx == 1:
|
158 |
+
# discriminator
|
159 |
+
discloss, log_dict_disc = self.loss(qloss, x, xrec, optimizer_idx, self.global_step,
|
160 |
+
last_layer=self.get_last_layer(), split="train")
|
161 |
+
self.log_dict(log_dict_disc, prog_bar=False, logger=True, on_step=True, on_epoch=True)
|
162 |
+
return discloss
|
163 |
+
|
164 |
+
def validation_step(self, batch, batch_idx):
|
165 |
+
log_dict = self._validation_step(batch, batch_idx)
|
166 |
+
with self.ema_scope():
|
167 |
+
log_dict_ema = self._validation_step(batch, batch_idx, suffix="_ema")
|
168 |
+
return log_dict
|
169 |
+
|
170 |
+
def _validation_step(self, batch, batch_idx, suffix=""):
|
171 |
+
x = self.get_input(batch, self.image_key)
|
172 |
+
xrec, qloss, ind = self(x, return_pred_indices=True)
|
173 |
+
aeloss, log_dict_ae = self.loss(qloss, x, xrec, 0,
|
174 |
+
self.global_step,
|
175 |
+
last_layer=self.get_last_layer(),
|
176 |
+
split="val"+suffix,
|
177 |
+
predicted_indices=ind
|
178 |
+
)
|
179 |
+
|
180 |
+
discloss, log_dict_disc = self.loss(qloss, x, xrec, 1,
|
181 |
+
self.global_step,
|
182 |
+
last_layer=self.get_last_layer(),
|
183 |
+
split="val"+suffix,
|
184 |
+
predicted_indices=ind
|
185 |
+
)
|
186 |
+
rec_loss = log_dict_ae[f"val{suffix}/rec_loss"]
|
187 |
+
self.log(f"val{suffix}/rec_loss", rec_loss,
|
188 |
+
prog_bar=True, logger=True, on_step=False, on_epoch=True, sync_dist=True)
|
189 |
+
self.log(f"val{suffix}/aeloss", aeloss,
|
190 |
+
prog_bar=True, logger=True, on_step=False, on_epoch=True, sync_dist=True)
|
191 |
+
if version.parse(pl.__version__) >= version.parse('1.4.0'):
|
192 |
+
del log_dict_ae[f"val{suffix}/rec_loss"]
|
193 |
+
self.log_dict(log_dict_ae)
|
194 |
+
self.log_dict(log_dict_disc)
|
195 |
+
return self.log_dict
|
196 |
+
|
197 |
+
def configure_optimizers(self):
|
198 |
+
lr_d = self.learning_rate
|
199 |
+
lr_g = self.lr_g_factor*self.learning_rate
|
200 |
+
print("lr_d", lr_d)
|
201 |
+
print("lr_g", lr_g)
|
202 |
+
opt_ae = torch.optim.Adam(list(self.encoder.parameters())+
|
203 |
+
list(self.decoder.parameters())+
|
204 |
+
list(self.quantize.parameters())+
|
205 |
+
list(self.quant_conv.parameters())+
|
206 |
+
list(self.post_quant_conv.parameters()),
|
207 |
+
lr=lr_g, betas=(0.5, 0.9))
|
208 |
+
opt_disc = torch.optim.Adam(self.loss.discriminator.parameters(),
|
209 |
+
lr=lr_d, betas=(0.5, 0.9))
|
210 |
+
|
211 |
+
if self.scheduler_config is not None:
|
212 |
+
scheduler = instantiate_from_config(self.scheduler_config)
|
213 |
+
|
214 |
+
print("Setting up LambdaLR scheduler...")
|
215 |
+
scheduler = [
|
216 |
+
{
|
217 |
+
'scheduler': LambdaLR(opt_ae, lr_lambda=scheduler.schedule),
|
218 |
+
'interval': 'step',
|
219 |
+
'frequency': 1
|
220 |
+
},
|
221 |
+
{
|
222 |
+
'scheduler': LambdaLR(opt_disc, lr_lambda=scheduler.schedule),
|
223 |
+
'interval': 'step',
|
224 |
+
'frequency': 1
|
225 |
+
},
|
226 |
+
]
|
227 |
+
return [opt_ae, opt_disc], scheduler
|
228 |
+
return [opt_ae, opt_disc], []
|
229 |
+
|
230 |
+
def get_last_layer(self):
|
231 |
+
return self.decoder.conv_out.weight
|
232 |
+
|
233 |
+
def log_images(self, batch, only_inputs=False, plot_ema=False, **kwargs):
|
234 |
+
log = dict()
|
235 |
+
x = self.get_input(batch, self.image_key)
|
236 |
+
x = x.to(self.device)
|
237 |
+
if only_inputs:
|
238 |
+
log["inputs"] = x
|
239 |
+
return log
|
240 |
+
xrec, _ = self(x)
|
241 |
+
if x.shape[1] > 3:
|
242 |
+
# colorize with random projection
|
243 |
+
assert xrec.shape[1] > 3
|
244 |
+
x = self.to_rgb(x)
|
245 |
+
xrec = self.to_rgb(xrec)
|
246 |
+
log["inputs"] = x
|
247 |
+
log["reconstructions"] = xrec
|
248 |
+
if plot_ema:
|
249 |
+
with self.ema_scope():
|
250 |
+
xrec_ema, _ = self(x)
|
251 |
+
if x.shape[1] > 3: xrec_ema = self.to_rgb(xrec_ema)
|
252 |
+
log["reconstructions_ema"] = xrec_ema
|
253 |
+
return log
|
254 |
+
|
255 |
+
def to_rgb(self, x):
|
256 |
+
assert self.image_key == "segmentation"
|
257 |
+
if not hasattr(self, "colorize"):
|
258 |
+
self.register_buffer("colorize", torch.randn(3, x.shape[1], 1, 1).to(x))
|
259 |
+
x = F.conv2d(x, weight=self.colorize)
|
260 |
+
x = 2.*(x-x.min())/(x.max()-x.min()) - 1.
|
261 |
+
return x
|
262 |
+
|
263 |
+
|
264 |
+
class VQModelInterface(VQModel):
|
265 |
+
def __init__(self, embed_dim, *args, **kwargs):
|
266 |
+
super().__init__(embed_dim=embed_dim, *args, **kwargs)
|
267 |
+
self.embed_dim = embed_dim
|
268 |
+
|
269 |
+
def encode(self, x):
|
270 |
+
h = self.encoder(x)
|
271 |
+
h = self.quant_conv(h)
|
272 |
+
return h
|
273 |
+
|
274 |
+
def decode(self, h, force_not_quantize=False):
|
275 |
+
# also go through quantization layer
|
276 |
+
if not force_not_quantize:
|
277 |
+
quant, emb_loss, info = self.quantize(h)
|
278 |
+
else:
|
279 |
+
quant = h
|
280 |
+
quant = self.post_quant_conv(quant)
|
281 |
+
dec = self.decoder(quant)
|
282 |
+
return dec
|
283 |
+
|
284 |
+
|
285 |
+
class AutoencoderKL(pl.LightningModule):
|
286 |
+
def __init__(self,
|
287 |
+
ddconfig,
|
288 |
+
lossconfig,
|
289 |
+
embed_dim,
|
290 |
+
ckpt_path=None,
|
291 |
+
ignore_keys=[],
|
292 |
+
image_key="image",
|
293 |
+
colorize_nlabels=None,
|
294 |
+
monitor=None,
|
295 |
+
):
|
296 |
+
super().__init__()
|
297 |
+
self.image_key = image_key
|
298 |
+
self.encoder = Encoder(**ddconfig)
|
299 |
+
self.decoder = Decoder(**ddconfig)
|
300 |
+
self.loss = instantiate_from_config(lossconfig)
|
301 |
+
assert ddconfig["double_z"]
|
302 |
+
self.quant_conv = torch.nn.Conv2d(2*ddconfig["z_channels"], 2*embed_dim, 1)
|
303 |
+
self.post_quant_conv = torch.nn.Conv2d(embed_dim, ddconfig["z_channels"], 1)
|
304 |
+
self.embed_dim = embed_dim
|
305 |
+
if colorize_nlabels is not None:
|
306 |
+
assert type(colorize_nlabels)==int
|
307 |
+
self.register_buffer("colorize", torch.randn(3, colorize_nlabels, 1, 1))
|
308 |
+
if monitor is not None:
|
309 |
+
self.monitor = monitor
|
310 |
+
if ckpt_path is not None:
|
311 |
+
self.init_from_ckpt(ckpt_path, ignore_keys=ignore_keys)
|
312 |
+
|
313 |
+
def init_from_ckpt(self, path, ignore_keys=list()):
|
314 |
+
sd = torch.load(path, map_location="cpu")["state_dict"]
|
315 |
+
keys = list(sd.keys())
|
316 |
+
for k in keys:
|
317 |
+
for ik in ignore_keys:
|
318 |
+
if k.startswith(ik):
|
319 |
+
print("Deleting key {} from state_dict.".format(k))
|
320 |
+
del sd[k]
|
321 |
+
self.load_state_dict(sd, strict=False)
|
322 |
+
print(f"Restored from {path}")
|
323 |
+
|
324 |
+
def encode(self, x):
|
325 |
+
h = self.encoder(x)
|
326 |
+
moments = self.quant_conv(h)
|
327 |
+
posterior = DiagonalGaussianDistribution(moments)
|
328 |
+
return posterior
|
329 |
+
|
330 |
+
def decode(self, z):
|
331 |
+
z = self.post_quant_conv(z)
|
332 |
+
dec = self.decoder(z)
|
333 |
+
return dec
|
334 |
+
|
335 |
+
def forward(self, input, sample_posterior=True):
|
336 |
+
posterior = self.encode(input)
|
337 |
+
if sample_posterior:
|
338 |
+
z = posterior.sample()
|
339 |
+
else:
|
340 |
+
z = posterior.mode()
|
341 |
+
dec = self.decode(z)
|
342 |
+
return dec, posterior
|
343 |
+
|
344 |
+
def get_input(self, batch, k):
|
345 |
+
x = batch[k]
|
346 |
+
if len(x.shape) == 3:
|
347 |
+
x = x[..., None]
|
348 |
+
x = x.permute(0, 3, 1, 2).to(memory_format=torch.contiguous_format).float()
|
349 |
+
return x
|
350 |
+
|
351 |
+
def training_step(self, batch, batch_idx, optimizer_idx):
|
352 |
+
inputs = self.get_input(batch, self.image_key)
|
353 |
+
reconstructions, posterior = self(inputs)
|
354 |
+
|
355 |
+
if optimizer_idx == 0:
|
356 |
+
# train encoder+decoder+logvar
|
357 |
+
aeloss, log_dict_ae = self.loss(inputs, reconstructions, posterior, optimizer_idx, self.global_step,
|
358 |
+
last_layer=self.get_last_layer(), split="train")
|
359 |
+
self.log("aeloss", aeloss, prog_bar=True, logger=True, on_step=True, on_epoch=True)
|
360 |
+
self.log_dict(log_dict_ae, prog_bar=False, logger=True, on_step=True, on_epoch=False)
|
361 |
+
return aeloss
|
362 |
+
|
363 |
+
if optimizer_idx == 1:
|
364 |
+
# train the discriminator
|
365 |
+
discloss, log_dict_disc = self.loss(inputs, reconstructions, posterior, optimizer_idx, self.global_step,
|
366 |
+
last_layer=self.get_last_layer(), split="train")
|
367 |
+
|
368 |
+
self.log("discloss", discloss, prog_bar=True, logger=True, on_step=True, on_epoch=True)
|
369 |
+
self.log_dict(log_dict_disc, prog_bar=False, logger=True, on_step=True, on_epoch=False)
|
370 |
+
return discloss
|
371 |
+
|
372 |
+
def validation_step(self, batch, batch_idx):
|
373 |
+
inputs = self.get_input(batch, self.image_key)
|
374 |
+
reconstructions, posterior = self(inputs)
|
375 |
+
aeloss, log_dict_ae = self.loss(inputs, reconstructions, posterior, 0, self.global_step,
|
376 |
+
last_layer=self.get_last_layer(), split="val")
|
377 |
+
|
378 |
+
discloss, log_dict_disc = self.loss(inputs, reconstructions, posterior, 1, self.global_step,
|
379 |
+
last_layer=self.get_last_layer(), split="val")
|
380 |
+
|
381 |
+
self.log("val/rec_loss", log_dict_ae["val/rec_loss"])
|
382 |
+
self.log_dict(log_dict_ae)
|
383 |
+
self.log_dict(log_dict_disc)
|
384 |
+
return self.log_dict
|
385 |
+
|
386 |
+
def configure_optimizers(self):
|
387 |
+
lr = self.learning_rate
|
388 |
+
opt_ae = torch.optim.Adam(list(self.encoder.parameters())+
|
389 |
+
list(self.decoder.parameters())+
|
390 |
+
list(self.quant_conv.parameters())+
|
391 |
+
list(self.post_quant_conv.parameters()),
|
392 |
+
lr=lr, betas=(0.5, 0.9))
|
393 |
+
opt_disc = torch.optim.Adam(self.loss.discriminator.parameters(),
|
394 |
+
lr=lr, betas=(0.5, 0.9))
|
395 |
+
return [opt_ae, opt_disc], []
|
396 |
+
|
397 |
+
def get_last_layer(self):
|
398 |
+
return self.decoder.conv_out.weight
|
399 |
+
|
400 |
+
@torch.no_grad()
|
401 |
+
def log_images(self, batch, only_inputs=False, **kwargs):
|
402 |
+
log = dict()
|
403 |
+
x = self.get_input(batch, self.image_key)
|
404 |
+
x = x.to(self.device)
|
405 |
+
if not only_inputs:
|
406 |
+
xrec, posterior = self(x)
|
407 |
+
if x.shape[1] > 3:
|
408 |
+
# colorize with random projection
|
409 |
+
assert xrec.shape[1] > 3
|
410 |
+
x = self.to_rgb(x)
|
411 |
+
xrec = self.to_rgb(xrec)
|
412 |
+
log["samples"] = self.decode(torch.randn_like(posterior.sample()))
|
413 |
+
log["reconstructions"] = xrec
|
414 |
+
log["inputs"] = x
|
415 |
+
return log
|
416 |
+
|
417 |
+
def to_rgb(self, x):
|
418 |
+
assert self.image_key == "segmentation"
|
419 |
+
if not hasattr(self, "colorize"):
|
420 |
+
self.register_buffer("colorize", torch.randn(3, x.shape[1], 1, 1).to(x))
|
421 |
+
x = F.conv2d(x, weight=self.colorize)
|
422 |
+
x = 2.*(x-x.min())/(x.max()-x.min()) - 1.
|
423 |
+
return x
|
424 |
+
|
425 |
+
|
426 |
+
class IdentityFirstStage(torch.nn.Module):
|
427 |
+
def __init__(self, *args, vq_interface=False, **kwargs):
|
428 |
+
self.vq_interface = vq_interface # TODO: Should be true by default but check to not break older stuff
|
429 |
+
super().__init__()
|
430 |
+
|
431 |
+
def encode(self, x, *args, **kwargs):
|
432 |
+
return x
|
433 |
+
|
434 |
+
def decode(self, x, *args, **kwargs):
|
435 |
+
return x
|
436 |
+
|
437 |
+
def quantize(self, x, *args, **kwargs):
|
438 |
+
if self.vq_interface:
|
439 |
+
return x, None, [None, None, None]
|
440 |
+
return x
|
441 |
+
|
442 |
+
def forward(self, x, *args, **kwargs):
|
443 |
+
return x
|
ldm/models/diffusion/__init__.py
ADDED
File without changes
|
ldm/models/diffusion/classifier.py
ADDED
@@ -0,0 +1,267 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import torch
|
3 |
+
import pytorch_lightning as pl
|
4 |
+
from omegaconf import OmegaConf
|
5 |
+
from torch.nn import functional as F
|
6 |
+
from torch.optim import AdamW
|
7 |
+
from torch.optim.lr_scheduler import LambdaLR
|
8 |
+
from copy import deepcopy
|
9 |
+
from einops import rearrange
|
10 |
+
from glob import glob
|
11 |
+
from natsort import natsorted
|
12 |
+
|
13 |
+
from ldm.modules.diffusionmodules.openaimodel import EncoderUNetModel, UNetModel
|
14 |
+
from ldm.util import log_txt_as_img, default, ismap, instantiate_from_config
|
15 |
+
|
16 |
+
__models__ = {
|
17 |
+
'class_label': EncoderUNetModel,
|
18 |
+
'segmentation': UNetModel
|
19 |
+
}
|
20 |
+
|
21 |
+
|
22 |
+
def disabled_train(self, mode=True):
|
23 |
+
"""Overwrite model.train with this function to make sure train/eval mode
|
24 |
+
does not change anymore."""
|
25 |
+
return self
|
26 |
+
|
27 |
+
|
28 |
+
class NoisyLatentImageClassifier(pl.LightningModule):
|
29 |
+
|
30 |
+
def __init__(self,
|
31 |
+
diffusion_path,
|
32 |
+
num_classes,
|
33 |
+
ckpt_path=None,
|
34 |
+
pool='attention',
|
35 |
+
label_key=None,
|
36 |
+
diffusion_ckpt_path=None,
|
37 |
+
scheduler_config=None,
|
38 |
+
weight_decay=1.e-2,
|
39 |
+
log_steps=10,
|
40 |
+
monitor='val/loss',
|
41 |
+
*args,
|
42 |
+
**kwargs):
|
43 |
+
super().__init__(*args, **kwargs)
|
44 |
+
self.num_classes = num_classes
|
45 |
+
# get latest config of diffusion model
|
46 |
+
diffusion_config = natsorted(glob(os.path.join(diffusion_path, 'configs', '*-project.yaml')))[-1]
|
47 |
+
self.diffusion_config = OmegaConf.load(diffusion_config).model
|
48 |
+
self.diffusion_config.params.ckpt_path = diffusion_ckpt_path
|
49 |
+
self.load_diffusion()
|
50 |
+
|
51 |
+
self.monitor = monitor
|
52 |
+
self.numd = self.diffusion_model.first_stage_model.encoder.num_resolutions - 1
|
53 |
+
self.log_time_interval = self.diffusion_model.num_timesteps // log_steps
|
54 |
+
self.log_steps = log_steps
|
55 |
+
|
56 |
+
self.label_key = label_key if not hasattr(self.diffusion_model, 'cond_stage_key') \
|
57 |
+
else self.diffusion_model.cond_stage_key
|
58 |
+
|
59 |
+
assert self.label_key is not None, 'label_key neither in diffusion model nor in model.params'
|
60 |
+
|
61 |
+
if self.label_key not in __models__:
|
62 |
+
raise NotImplementedError()
|
63 |
+
|
64 |
+
self.load_classifier(ckpt_path, pool)
|
65 |
+
|
66 |
+
self.scheduler_config = scheduler_config
|
67 |
+
self.use_scheduler = self.scheduler_config is not None
|
68 |
+
self.weight_decay = weight_decay
|
69 |
+
|
70 |
+
def init_from_ckpt(self, path, ignore_keys=list(), only_model=False):
|
71 |
+
sd = torch.load(path, map_location="cpu")
|
72 |
+
if "state_dict" in list(sd.keys()):
|
73 |
+
sd = sd["state_dict"]
|
74 |
+
keys = list(sd.keys())
|
75 |
+
for k in keys:
|
76 |
+
for ik in ignore_keys:
|
77 |
+
if k.startswith(ik):
|
78 |
+
print("Deleting key {} from state_dict.".format(k))
|
79 |
+
del sd[k]
|
80 |
+
missing, unexpected = self.load_state_dict(sd, strict=False) if not only_model else self.model.load_state_dict(
|
81 |
+
sd, strict=False)
|
82 |
+
print(f"Restored from {path} with {len(missing)} missing and {len(unexpected)} unexpected keys")
|
83 |
+
if len(missing) > 0:
|
84 |
+
print(f"Missing Keys: {missing}")
|
85 |
+
if len(unexpected) > 0:
|
86 |
+
print(f"Unexpected Keys: {unexpected}")
|
87 |
+
|
88 |
+
def load_diffusion(self):
|
89 |
+
model = instantiate_from_config(self.diffusion_config)
|
90 |
+
self.diffusion_model = model.eval()
|
91 |
+
self.diffusion_model.train = disabled_train
|
92 |
+
for param in self.diffusion_model.parameters():
|
93 |
+
param.requires_grad = False
|
94 |
+
|
95 |
+
def load_classifier(self, ckpt_path, pool):
|
96 |
+
model_config = deepcopy(self.diffusion_config.params.unet_config.params)
|
97 |
+
model_config.in_channels = self.diffusion_config.params.unet_config.params.out_channels
|
98 |
+
model_config.out_channels = self.num_classes
|
99 |
+
if self.label_key == 'class_label':
|
100 |
+
model_config.pool = pool
|
101 |
+
|
102 |
+
self.model = __models__[self.label_key](**model_config)
|
103 |
+
if ckpt_path is not None:
|
104 |
+
print('#####################################################################')
|
105 |
+
print(f'load from ckpt "{ckpt_path}"')
|
106 |
+
print('#####################################################################')
|
107 |
+
self.init_from_ckpt(ckpt_path)
|
108 |
+
|
109 |
+
@torch.no_grad()
|
110 |
+
def get_x_noisy(self, x, t, noise=None):
|
111 |
+
noise = default(noise, lambda: torch.randn_like(x))
|
112 |
+
continuous_sqrt_alpha_cumprod = None
|
113 |
+
if self.diffusion_model.use_continuous_noise:
|
114 |
+
continuous_sqrt_alpha_cumprod = self.diffusion_model.sample_continuous_noise_level(x.shape[0], t + 1)
|
115 |
+
# todo: make sure t+1 is correct here
|
116 |
+
|
117 |
+
return self.diffusion_model.q_sample(x_start=x, t=t, noise=noise,
|
118 |
+
continuous_sqrt_alpha_cumprod=continuous_sqrt_alpha_cumprod)
|
119 |
+
|
120 |
+
def forward(self, x_noisy, t, *args, **kwargs):
|
121 |
+
return self.model(x_noisy, t)
|
122 |
+
|
123 |
+
@torch.no_grad()
|
124 |
+
def get_input(self, batch, k):
|
125 |
+
x = batch[k]
|
126 |
+
if len(x.shape) == 3:
|
127 |
+
x = x[..., None]
|
128 |
+
x = rearrange(x, 'b h w c -> b c h w')
|
129 |
+
x = x.to(memory_format=torch.contiguous_format).float()
|
130 |
+
return x
|
131 |
+
|
132 |
+
@torch.no_grad()
|
133 |
+
def get_conditioning(self, batch, k=None):
|
134 |
+
if k is None:
|
135 |
+
k = self.label_key
|
136 |
+
assert k is not None, 'Needs to provide label key'
|
137 |
+
|
138 |
+
targets = batch[k].to(self.device)
|
139 |
+
|
140 |
+
if self.label_key == 'segmentation':
|
141 |
+
targets = rearrange(targets, 'b h w c -> b c h w')
|
142 |
+
for down in range(self.numd):
|
143 |
+
h, w = targets.shape[-2:]
|
144 |
+
targets = F.interpolate(targets, size=(h // 2, w // 2), mode='nearest')
|
145 |
+
|
146 |
+
# targets = rearrange(targets,'b c h w -> b h w c')
|
147 |
+
|
148 |
+
return targets
|
149 |
+
|
150 |
+
def compute_top_k(self, logits, labels, k, reduction="mean"):
|
151 |
+
_, top_ks = torch.topk(logits, k, dim=1)
|
152 |
+
if reduction == "mean":
|
153 |
+
return (top_ks == labels[:, None]).float().sum(dim=-1).mean().item()
|
154 |
+
elif reduction == "none":
|
155 |
+
return (top_ks == labels[:, None]).float().sum(dim=-1)
|
156 |
+
|
157 |
+
def on_train_epoch_start(self):
|
158 |
+
# save some memory
|
159 |
+
self.diffusion_model.model.to('cpu')
|
160 |
+
|
161 |
+
@torch.no_grad()
|
162 |
+
def write_logs(self, loss, logits, targets):
|
163 |
+
log_prefix = 'train' if self.training else 'val'
|
164 |
+
log = {}
|
165 |
+
log[f"{log_prefix}/loss"] = loss.mean()
|
166 |
+
log[f"{log_prefix}/acc@1"] = self.compute_top_k(
|
167 |
+
logits, targets, k=1, reduction="mean"
|
168 |
+
)
|
169 |
+
log[f"{log_prefix}/acc@5"] = self.compute_top_k(
|
170 |
+
logits, targets, k=5, reduction="mean"
|
171 |
+
)
|
172 |
+
|
173 |
+
self.log_dict(log, prog_bar=False, logger=True, on_step=self.training, on_epoch=True)
|
174 |
+
self.log('loss', log[f"{log_prefix}/loss"], prog_bar=True, logger=False)
|
175 |
+
self.log('global_step', self.global_step, logger=False, on_epoch=False, prog_bar=True)
|
176 |
+
lr = self.optimizers().param_groups[0]['lr']
|
177 |
+
self.log('lr_abs', lr, on_step=True, logger=True, on_epoch=False, prog_bar=True)
|
178 |
+
|
179 |
+
def shared_step(self, batch, t=None):
|
180 |
+
x, *_ = self.diffusion_model.get_input(batch, k=self.diffusion_model.first_stage_key)
|
181 |
+
targets = self.get_conditioning(batch)
|
182 |
+
if targets.dim() == 4:
|
183 |
+
targets = targets.argmax(dim=1)
|
184 |
+
if t is None:
|
185 |
+
t = torch.randint(0, self.diffusion_model.num_timesteps, (x.shape[0],), device=self.device).long()
|
186 |
+
else:
|
187 |
+
t = torch.full(size=(x.shape[0],), fill_value=t, device=self.device).long()
|
188 |
+
x_noisy = self.get_x_noisy(x, t)
|
189 |
+
logits = self(x_noisy, t)
|
190 |
+
|
191 |
+
loss = F.cross_entropy(logits, targets, reduction='none')
|
192 |
+
|
193 |
+
self.write_logs(loss.detach(), logits.detach(), targets.detach())
|
194 |
+
|
195 |
+
loss = loss.mean()
|
196 |
+
return loss, logits, x_noisy, targets
|
197 |
+
|
198 |
+
def training_step(self, batch, batch_idx):
|
199 |
+
loss, *_ = self.shared_step(batch)
|
200 |
+
return loss
|
201 |
+
|
202 |
+
def reset_noise_accs(self):
|
203 |
+
self.noisy_acc = {t: {'acc@1': [], 'acc@5': []} for t in
|
204 |
+
range(0, self.diffusion_model.num_timesteps, self.diffusion_model.log_every_t)}
|
205 |
+
|
206 |
+
def on_validation_start(self):
|
207 |
+
self.reset_noise_accs()
|
208 |
+
|
209 |
+
@torch.no_grad()
|
210 |
+
def validation_step(self, batch, batch_idx):
|
211 |
+
loss, *_ = self.shared_step(batch)
|
212 |
+
|
213 |
+
for t in self.noisy_acc:
|
214 |
+
_, logits, _, targets = self.shared_step(batch, t)
|
215 |
+
self.noisy_acc[t]['acc@1'].append(self.compute_top_k(logits, targets, k=1, reduction='mean'))
|
216 |
+
self.noisy_acc[t]['acc@5'].append(self.compute_top_k(logits, targets, k=5, reduction='mean'))
|
217 |
+
|
218 |
+
return loss
|
219 |
+
|
220 |
+
def configure_optimizers(self):
|
221 |
+
optimizer = AdamW(self.model.parameters(), lr=self.learning_rate, weight_decay=self.weight_decay)
|
222 |
+
|
223 |
+
if self.use_scheduler:
|
224 |
+
scheduler = instantiate_from_config(self.scheduler_config)
|
225 |
+
|
226 |
+
print("Setting up LambdaLR scheduler...")
|
227 |
+
scheduler = [
|
228 |
+
{
|
229 |
+
'scheduler': LambdaLR(optimizer, lr_lambda=scheduler.schedule),
|
230 |
+
'interval': 'step',
|
231 |
+
'frequency': 1
|
232 |
+
}]
|
233 |
+
return [optimizer], scheduler
|
234 |
+
|
235 |
+
return optimizer
|
236 |
+
|
237 |
+
@torch.no_grad()
|
238 |
+
def log_images(self, batch, N=8, *args, **kwargs):
|
239 |
+
log = dict()
|
240 |
+
x = self.get_input(batch, self.diffusion_model.first_stage_key)
|
241 |
+
log['inputs'] = x
|
242 |
+
|
243 |
+
y = self.get_conditioning(batch)
|
244 |
+
|
245 |
+
if self.label_key == 'class_label':
|
246 |
+
y = log_txt_as_img((x.shape[2], x.shape[3]), batch["human_label"])
|
247 |
+
log['labels'] = y
|
248 |
+
|
249 |
+
if ismap(y):
|
250 |
+
log['labels'] = self.diffusion_model.to_rgb(y)
|
251 |
+
|
252 |
+
for step in range(self.log_steps):
|
253 |
+
current_time = step * self.log_time_interval
|
254 |
+
|
255 |
+
_, logits, x_noisy, _ = self.shared_step(batch, t=current_time)
|
256 |
+
|
257 |
+
log[f'inputs@t{current_time}'] = x_noisy
|
258 |
+
|
259 |
+
pred = F.one_hot(logits.argmax(dim=1), num_classes=self.num_classes)
|
260 |
+
pred = rearrange(pred, 'b h w c -> b c h w')
|
261 |
+
|
262 |
+
log[f'pred@t{current_time}'] = self.diffusion_model.to_rgb(pred)
|
263 |
+
|
264 |
+
for key in log:
|
265 |
+
log[key] = log[key][:N]
|
266 |
+
|
267 |
+
return log
|
ldm/models/diffusion/ddim.py
ADDED
@@ -0,0 +1,326 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""SAMPLING ONLY."""
|
2 |
+
|
3 |
+
import torch
|
4 |
+
import numpy as np
|
5 |
+
from tqdm import tqdm
|
6 |
+
from functools import partial
|
7 |
+
from einops import rearrange
|
8 |
+
|
9 |
+
from ldm.modules.diffusionmodules.util import make_ddim_sampling_parameters, make_ddim_timesteps, noise_like, extract_into_tensor
|
10 |
+
from ldm.models.diffusion.sampling_util import renorm_thresholding, norm_thresholding, spatial_norm_thresholding
|
11 |
+
|
12 |
+
|
13 |
+
class DDIMSampler(object):
|
14 |
+
def __init__(self, model, schedule="linear", **kwargs):
|
15 |
+
super().__init__()
|
16 |
+
self.model = model
|
17 |
+
self.ddpm_num_timesteps = model.num_timesteps
|
18 |
+
self.schedule = schedule
|
19 |
+
self.device = model.device
|
20 |
+
|
21 |
+
def to(self, device):
|
22 |
+
"""Same as to in torch module
|
23 |
+
Don't really underestand why this isn't a module in the first place"""
|
24 |
+
for k, v in self.__dict__.items():
|
25 |
+
if isinstance(v, torch.Tensor):
|
26 |
+
new_v = getattr(self, k).to(device)
|
27 |
+
setattr(self, k, new_v)
|
28 |
+
|
29 |
+
|
30 |
+
def register_buffer(self, name, attr, device=None):
|
31 |
+
if type(attr) == torch.Tensor:
|
32 |
+
attr = attr.to(device)
|
33 |
+
# if attr.device != torch.device("cuda"):
|
34 |
+
# attr = attr.to(torch.device("cuda"))
|
35 |
+
setattr(self, name, attr)
|
36 |
+
|
37 |
+
def make_schedule(self, ddim_num_steps, ddim_discretize="uniform", ddim_eta=0., verbose=True):
|
38 |
+
self.ddim_timesteps = make_ddim_timesteps(ddim_discr_method=ddim_discretize, num_ddim_timesteps=ddim_num_steps,
|
39 |
+
num_ddpm_timesteps=self.ddpm_num_timesteps,verbose=verbose)
|
40 |
+
alphas_cumprod = self.model.alphas_cumprod
|
41 |
+
assert alphas_cumprod.shape[0] == self.ddpm_num_timesteps, 'alphas have to be defined for each timestep'
|
42 |
+
to_torch = lambda x: x.clone().detach().to(torch.float32).to(self.model.device)
|
43 |
+
|
44 |
+
self.register_buffer('betas', to_torch(self.model.betas), self.device)
|
45 |
+
self.register_buffer('alphas_cumprod', to_torch(alphas_cumprod), self.device)
|
46 |
+
self.register_buffer('alphas_cumprod_prev', to_torch(self.model.alphas_cumprod_prev), self.device)
|
47 |
+
|
48 |
+
# calculations for diffusion q(x_t | x_{t-1}) and others
|
49 |
+
self.register_buffer('sqrt_alphas_cumprod', to_torch(np.sqrt(alphas_cumprod.cpu())), self.device)
|
50 |
+
self.register_buffer('sqrt_one_minus_alphas_cumprod', to_torch(np.sqrt(1. - alphas_cumprod.cpu())), self.device)
|
51 |
+
self.register_buffer('log_one_minus_alphas_cumprod', to_torch(np.log(1. - alphas_cumprod.cpu())), self.device)
|
52 |
+
self.register_buffer('sqrt_recip_alphas_cumprod', to_torch(np.sqrt(1. / alphas_cumprod.cpu())), self.device)
|
53 |
+
self.register_buffer('sqrt_recipm1_alphas_cumprod', to_torch(np.sqrt(1. / alphas_cumprod.cpu() - 1)), self.device)
|
54 |
+
|
55 |
+
# ddim sampling parameters
|
56 |
+
ddim_sigmas, ddim_alphas, ddim_alphas_prev = make_ddim_sampling_parameters(alphacums=alphas_cumprod.cpu(),
|
57 |
+
ddim_timesteps=self.ddim_timesteps,
|
58 |
+
eta=ddim_eta,verbose=verbose)
|
59 |
+
self.register_buffer('ddim_sigmas', ddim_sigmas, self.device)
|
60 |
+
self.register_buffer('ddim_alphas', ddim_alphas, self.device)
|
61 |
+
self.register_buffer('ddim_alphas_prev', ddim_alphas_prev, self.device)
|
62 |
+
self.register_buffer('ddim_sqrt_one_minus_alphas', np.sqrt(1. - ddim_alphas), self.device)
|
63 |
+
sigmas_for_original_sampling_steps = ddim_eta * torch.sqrt(
|
64 |
+
(1 - self.alphas_cumprod_prev) / (1 - self.alphas_cumprod) * (
|
65 |
+
1 - self.alphas_cumprod / self.alphas_cumprod_prev))
|
66 |
+
self.register_buffer('ddim_sigmas_for_original_num_steps', sigmas_for_original_sampling_steps, self.device)
|
67 |
+
|
68 |
+
@torch.no_grad()
|
69 |
+
def sample(self,
|
70 |
+
S,
|
71 |
+
batch_size,
|
72 |
+
shape,
|
73 |
+
conditioning=None,
|
74 |
+
callback=None,
|
75 |
+
normals_sequence=None,
|
76 |
+
img_callback=None,
|
77 |
+
quantize_x0=False,
|
78 |
+
eta=0.,
|
79 |
+
mask=None,
|
80 |
+
x0=None,
|
81 |
+
temperature=1.,
|
82 |
+
noise_dropout=0.,
|
83 |
+
score_corrector=None,
|
84 |
+
corrector_kwargs=None,
|
85 |
+
verbose=True,
|
86 |
+
x_T=None,
|
87 |
+
log_every_t=100,
|
88 |
+
unconditional_guidance_scale=1.,
|
89 |
+
unconditional_conditioning=None, # this has to come in the same format as the conditioning, # e.g. as encoded tokens, ...
|
90 |
+
dynamic_threshold=None,
|
91 |
+
**kwargs
|
92 |
+
):
|
93 |
+
if conditioning is not None:
|
94 |
+
if isinstance(conditioning, dict):
|
95 |
+
ctmp = conditioning[list(conditioning.keys())[0]]
|
96 |
+
while isinstance(ctmp, list): ctmp = ctmp[0]
|
97 |
+
cbs = ctmp.shape[0]
|
98 |
+
if cbs != batch_size:
|
99 |
+
print(f"Warning: Got {cbs} conditionings but batch-size is {batch_size}")
|
100 |
+
|
101 |
+
else:
|
102 |
+
if conditioning.shape[0] != batch_size:
|
103 |
+
print(f"Warning: Got {conditioning.shape[0]} conditionings but batch-size is {batch_size}")
|
104 |
+
|
105 |
+
self.make_schedule(ddim_num_steps=S, ddim_eta=eta, verbose=verbose)
|
106 |
+
# sampling
|
107 |
+
C, H, W = shape
|
108 |
+
size = (batch_size, C, H, W)
|
109 |
+
print(f'Data shape for DDIM sampling is {size}, eta {eta}')
|
110 |
+
|
111 |
+
samples, intermediates = self.ddim_sampling(conditioning, size,
|
112 |
+
callback=callback,
|
113 |
+
img_callback=img_callback,
|
114 |
+
quantize_denoised=quantize_x0,
|
115 |
+
mask=mask, x0=x0,
|
116 |
+
ddim_use_original_steps=False,
|
117 |
+
noise_dropout=noise_dropout,
|
118 |
+
temperature=temperature,
|
119 |
+
score_corrector=score_corrector,
|
120 |
+
corrector_kwargs=corrector_kwargs,
|
121 |
+
x_T=x_T,
|
122 |
+
log_every_t=log_every_t,
|
123 |
+
unconditional_guidance_scale=unconditional_guidance_scale,
|
124 |
+
unconditional_conditioning=unconditional_conditioning,
|
125 |
+
dynamic_threshold=dynamic_threshold,
|
126 |
+
)
|
127 |
+
return samples, intermediates
|
128 |
+
|
129 |
+
@torch.no_grad()
|
130 |
+
def ddim_sampling(self, cond, shape,
|
131 |
+
x_T=None, ddim_use_original_steps=False,
|
132 |
+
callback=None, timesteps=None, quantize_denoised=False,
|
133 |
+
mask=None, x0=None, img_callback=None, log_every_t=100,
|
134 |
+
temperature=1., noise_dropout=0., score_corrector=None, corrector_kwargs=None,
|
135 |
+
unconditional_guidance_scale=1., unconditional_conditioning=None, dynamic_threshold=None,
|
136 |
+
t_start=-1):
|
137 |
+
device = self.model.betas.device
|
138 |
+
b = shape[0]
|
139 |
+
if x_T is None:
|
140 |
+
img = torch.randn(shape, device=device)
|
141 |
+
else:
|
142 |
+
img = x_T
|
143 |
+
|
144 |
+
if timesteps is None:
|
145 |
+
timesteps = self.ddpm_num_timesteps if ddim_use_original_steps else self.ddim_timesteps
|
146 |
+
elif timesteps is not None and not ddim_use_original_steps:
|
147 |
+
subset_end = int(min(timesteps / self.ddim_timesteps.shape[0], 1) * self.ddim_timesteps.shape[0]) - 1
|
148 |
+
timesteps = self.ddim_timesteps[:subset_end]
|
149 |
+
|
150 |
+
timesteps = timesteps[:t_start]
|
151 |
+
|
152 |
+
intermediates = {'x_inter': [img], 'pred_x0': [img]}
|
153 |
+
time_range = reversed(range(0,timesteps)) if ddim_use_original_steps else np.flip(timesteps)
|
154 |
+
total_steps = timesteps if ddim_use_original_steps else timesteps.shape[0]
|
155 |
+
print(f"Running DDIM Sampling with {total_steps} timesteps")
|
156 |
+
|
157 |
+
iterator = tqdm(time_range, desc='DDIM Sampler', total=total_steps)
|
158 |
+
|
159 |
+
for i, step in enumerate(iterator):
|
160 |
+
index = total_steps - i - 1
|
161 |
+
ts = torch.full((b,), step, device=device, dtype=torch.long)
|
162 |
+
|
163 |
+
if mask is not None:
|
164 |
+
assert x0 is not None
|
165 |
+
img_orig = self.model.q_sample(x0, ts) # TODO: deterministic forward pass?
|
166 |
+
img = img_orig * mask + (1. - mask) * img
|
167 |
+
|
168 |
+
outs = self.p_sample_ddim(img, cond, ts, index=index, use_original_steps=ddim_use_original_steps,
|
169 |
+
quantize_denoised=quantize_denoised, temperature=temperature,
|
170 |
+
noise_dropout=noise_dropout, score_corrector=score_corrector,
|
171 |
+
corrector_kwargs=corrector_kwargs,
|
172 |
+
unconditional_guidance_scale=unconditional_guidance_scale,
|
173 |
+
unconditional_conditioning=unconditional_conditioning,
|
174 |
+
dynamic_threshold=dynamic_threshold)
|
175 |
+
img, pred_x0 = outs
|
176 |
+
if callback:
|
177 |
+
img = callback(i, img, pred_x0)
|
178 |
+
if img_callback: img_callback(pred_x0, i)
|
179 |
+
|
180 |
+
if index % log_every_t == 0 or index == total_steps - 1:
|
181 |
+
intermediates['x_inter'].append(img)
|
182 |
+
intermediates['pred_x0'].append(pred_x0)
|
183 |
+
|
184 |
+
return img, intermediates
|
185 |
+
|
186 |
+
@torch.no_grad()
|
187 |
+
def p_sample_ddim(self, x, c, t, index, repeat_noise=False, use_original_steps=False, quantize_denoised=False,
|
188 |
+
temperature=1., noise_dropout=0., score_corrector=None, corrector_kwargs=None,
|
189 |
+
unconditional_guidance_scale=1., unconditional_conditioning=None,
|
190 |
+
dynamic_threshold=None):
|
191 |
+
b, *_, device = *x.shape, x.device
|
192 |
+
|
193 |
+
if unconditional_conditioning is None or unconditional_guidance_scale == 1.:
|
194 |
+
e_t = self.model.apply_model(x, t, c)
|
195 |
+
else:
|
196 |
+
x_in = torch.cat([x] * 2)
|
197 |
+
t_in = torch.cat([t] * 2)
|
198 |
+
if isinstance(c, dict):
|
199 |
+
assert isinstance(unconditional_conditioning, dict)
|
200 |
+
c_in = dict()
|
201 |
+
for k in c:
|
202 |
+
if isinstance(c[k], list):
|
203 |
+
c_in[k] = [torch.cat([
|
204 |
+
unconditional_conditioning[k][i],
|
205 |
+
c[k][i]]) for i in range(len(c[k]))]
|
206 |
+
else:
|
207 |
+
c_in[k] = torch.cat([
|
208 |
+
unconditional_conditioning[k],
|
209 |
+
c[k]])
|
210 |
+
else:
|
211 |
+
c_in = torch.cat([unconditional_conditioning, c])
|
212 |
+
e_t_uncond, e_t = self.model.apply_model(x_in, t_in, c_in).chunk(2)
|
213 |
+
e_t = e_t_uncond + unconditional_guidance_scale * (e_t - e_t_uncond)
|
214 |
+
|
215 |
+
if score_corrector is not None:
|
216 |
+
assert self.model.parameterization == "eps"
|
217 |
+
e_t = score_corrector.modify_score(self.model, e_t, x, t, c, **corrector_kwargs)
|
218 |
+
|
219 |
+
alphas = self.model.alphas_cumprod if use_original_steps else self.ddim_alphas
|
220 |
+
alphas_prev = self.model.alphas_cumprod_prev if use_original_steps else self.ddim_alphas_prev
|
221 |
+
sqrt_one_minus_alphas = self.model.sqrt_one_minus_alphas_cumprod if use_original_steps else self.ddim_sqrt_one_minus_alphas
|
222 |
+
sigmas = self.model.ddim_sigmas_for_original_num_steps if use_original_steps else self.ddim_sigmas
|
223 |
+
# select parameters corresponding to the currently considered timestep
|
224 |
+
a_t = torch.full((b, 1, 1, 1), alphas[index], device=device)
|
225 |
+
a_prev = torch.full((b, 1, 1, 1), alphas_prev[index], device=device)
|
226 |
+
sigma_t = torch.full((b, 1, 1, 1), sigmas[index], device=device)
|
227 |
+
sqrt_one_minus_at = torch.full((b, 1, 1, 1), sqrt_one_minus_alphas[index],device=device)
|
228 |
+
|
229 |
+
# current prediction for x_0
|
230 |
+
pred_x0 = (x - sqrt_one_minus_at * e_t) / a_t.sqrt()
|
231 |
+
if quantize_denoised:
|
232 |
+
pred_x0, _, *_ = self.model.first_stage_model.quantize(pred_x0)
|
233 |
+
|
234 |
+
if dynamic_threshold is not None:
|
235 |
+
pred_x0 = norm_thresholding(pred_x0, dynamic_threshold)
|
236 |
+
|
237 |
+
# direction pointing to x_t
|
238 |
+
dir_xt = (1. - a_prev - sigma_t**2).sqrt() * e_t
|
239 |
+
noise = sigma_t * noise_like(x.shape, device, repeat_noise) * temperature
|
240 |
+
if noise_dropout > 0.:
|
241 |
+
noise = torch.nn.functional.dropout(noise, p=noise_dropout)
|
242 |
+
x_prev = a_prev.sqrt() * pred_x0 + dir_xt + noise
|
243 |
+
return x_prev, pred_x0
|
244 |
+
|
245 |
+
@torch.no_grad()
|
246 |
+
def encode(self, x0, c, t_enc, use_original_steps=False, return_intermediates=None,
|
247 |
+
unconditional_guidance_scale=1.0, unconditional_conditioning=None):
|
248 |
+
num_reference_steps = self.ddpm_num_timesteps if use_original_steps else self.ddim_timesteps.shape[0]
|
249 |
+
|
250 |
+
assert t_enc <= num_reference_steps
|
251 |
+
num_steps = t_enc
|
252 |
+
|
253 |
+
if use_original_steps:
|
254 |
+
alphas_next = self.alphas_cumprod[:num_steps]
|
255 |
+
alphas = self.alphas_cumprod_prev[:num_steps]
|
256 |
+
else:
|
257 |
+
alphas_next = self.ddim_alphas[:num_steps]
|
258 |
+
alphas = torch.tensor(self.ddim_alphas_prev[:num_steps])
|
259 |
+
|
260 |
+
x_next = x0
|
261 |
+
intermediates = []
|
262 |
+
inter_steps = []
|
263 |
+
for i in tqdm(range(num_steps), desc='Encoding Image'):
|
264 |
+
t = torch.full((x0.shape[0],), i, device=self.model.device, dtype=torch.long)
|
265 |
+
if unconditional_guidance_scale == 1.:
|
266 |
+
noise_pred = self.model.apply_model(x_next, t, c)
|
267 |
+
else:
|
268 |
+
assert unconditional_conditioning is not None
|
269 |
+
e_t_uncond, noise_pred = torch.chunk(
|
270 |
+
self.model.apply_model(torch.cat((x_next, x_next)), torch.cat((t, t)),
|
271 |
+
torch.cat((unconditional_conditioning, c))), 2)
|
272 |
+
noise_pred = e_t_uncond + unconditional_guidance_scale * (noise_pred - e_t_uncond)
|
273 |
+
|
274 |
+
xt_weighted = (alphas_next[i] / alphas[i]).sqrt() * x_next
|
275 |
+
weighted_noise_pred = alphas_next[i].sqrt() * (
|
276 |
+
(1 / alphas_next[i] - 1).sqrt() - (1 / alphas[i] - 1).sqrt()) * noise_pred
|
277 |
+
x_next = xt_weighted + weighted_noise_pred
|
278 |
+
if return_intermediates and i % (
|
279 |
+
num_steps // return_intermediates) == 0 and i < num_steps - 1:
|
280 |
+
intermediates.append(x_next)
|
281 |
+
inter_steps.append(i)
|
282 |
+
elif return_intermediates and i >= num_steps - 2:
|
283 |
+
intermediates.append(x_next)
|
284 |
+
inter_steps.append(i)
|
285 |
+
|
286 |
+
out = {'x_encoded': x_next, 'intermediate_steps': inter_steps}
|
287 |
+
if return_intermediates:
|
288 |
+
out.update({'intermediates': intermediates})
|
289 |
+
return x_next, out
|
290 |
+
|
291 |
+
@torch.no_grad()
|
292 |
+
def stochastic_encode(self, x0, t, use_original_steps=False, noise=None):
|
293 |
+
# fast, but does not allow for exact reconstruction
|
294 |
+
# t serves as an index to gather the correct alphas
|
295 |
+
if use_original_steps:
|
296 |
+
sqrt_alphas_cumprod = self.sqrt_alphas_cumprod
|
297 |
+
sqrt_one_minus_alphas_cumprod = self.sqrt_one_minus_alphas_cumprod
|
298 |
+
else:
|
299 |
+
sqrt_alphas_cumprod = torch.sqrt(self.ddim_alphas)
|
300 |
+
sqrt_one_minus_alphas_cumprod = self.ddim_sqrt_one_minus_alphas
|
301 |
+
|
302 |
+
if noise is None:
|
303 |
+
noise = torch.randn_like(x0)
|
304 |
+
return (extract_into_tensor(sqrt_alphas_cumprod, t, x0.shape) * x0 +
|
305 |
+
extract_into_tensor(sqrt_one_minus_alphas_cumprod, t, x0.shape) * noise)
|
306 |
+
|
307 |
+
@torch.no_grad()
|
308 |
+
def decode(self, x_latent, cond, t_start, unconditional_guidance_scale=1.0, unconditional_conditioning=None,
|
309 |
+
use_original_steps=False):
|
310 |
+
|
311 |
+
timesteps = np.arange(self.ddpm_num_timesteps) if use_original_steps else self.ddim_timesteps
|
312 |
+
timesteps = timesteps[:t_start]
|
313 |
+
|
314 |
+
time_range = np.flip(timesteps)
|
315 |
+
total_steps = timesteps.shape[0]
|
316 |
+
print(f"Running DDIM Sampling with {total_steps} timesteps")
|
317 |
+
|
318 |
+
iterator = tqdm(time_range, desc='Decoding image', total=total_steps)
|
319 |
+
x_dec = x_latent
|
320 |
+
for i, step in enumerate(iterator):
|
321 |
+
index = total_steps - i - 1
|
322 |
+
ts = torch.full((x_latent.shape[0],), step, device=x_latent.device, dtype=torch.long)
|
323 |
+
x_dec, _ = self.p_sample_ddim(x_dec, cond, ts, index=index, use_original_steps=use_original_steps,
|
324 |
+
unconditional_guidance_scale=unconditional_guidance_scale,
|
325 |
+
unconditional_conditioning=unconditional_conditioning)
|
326 |
+
return x_dec
|
ldm/models/diffusion/ddpm.py
ADDED
@@ -0,0 +1,1994 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""
|
2 |
+
wild mixture of
|
3 |
+
https://github.com/lucidrains/denoising-diffusion-pytorch/blob/7706bdfc6f527f58d33f84b7b522e61e6e3164b3/denoising_diffusion_pytorch/denoising_diffusion_pytorch.py
|
4 |
+
https://github.com/openai/improved-diffusion/blob/e94489283bb876ac1477d5dd7709bbbd2d9902ce/improved_diffusion/gaussian_diffusion.py
|
5 |
+
https://github.com/CompVis/taming-transformers
|
6 |
+
-- merci
|
7 |
+
"""
|
8 |
+
|
9 |
+
import torch
|
10 |
+
import torch.nn as nn
|
11 |
+
import numpy as np
|
12 |
+
import pytorch_lightning as pl
|
13 |
+
from torch.optim.lr_scheduler import LambdaLR
|
14 |
+
from einops import rearrange, repeat
|
15 |
+
from contextlib import contextmanager, nullcontext
|
16 |
+
from functools import partial
|
17 |
+
import itertools
|
18 |
+
from tqdm import tqdm
|
19 |
+
from torchvision.utils import make_grid
|
20 |
+
from pytorch_lightning.utilities.rank_zero import rank_zero_only
|
21 |
+
from omegaconf import ListConfig
|
22 |
+
|
23 |
+
from ldm.util import log_txt_as_img, exists, default, ismap, isimage, mean_flat, count_params, instantiate_from_config
|
24 |
+
from ldm.modules.ema import LitEma
|
25 |
+
from ldm.modules.distributions.distributions import normal_kl, DiagonalGaussianDistribution
|
26 |
+
from ldm.models.autoencoder import VQModelInterface, IdentityFirstStage, AutoencoderKL
|
27 |
+
from ldm.modules.diffusionmodules.util import make_beta_schedule, extract_into_tensor, noise_like
|
28 |
+
from ldm.models.diffusion.ddim import DDIMSampler
|
29 |
+
from ldm.modules.attention import CrossAttention
|
30 |
+
|
31 |
+
|
32 |
+
__conditioning_keys__ = {'concat': 'c_concat',
|
33 |
+
'crossattn': 'c_crossattn',
|
34 |
+
'adm': 'y'}
|
35 |
+
|
36 |
+
|
37 |
+
def disabled_train(self, mode=True):
|
38 |
+
"""Overwrite model.train with this function to make sure train/eval mode
|
39 |
+
does not change anymore."""
|
40 |
+
return self
|
41 |
+
|
42 |
+
|
43 |
+
def uniform_on_device(r1, r2, shape, device):
|
44 |
+
return (r1 - r2) * torch.rand(*shape, device=device) + r2
|
45 |
+
|
46 |
+
|
47 |
+
class DDPM(pl.LightningModule):
|
48 |
+
# classic DDPM with Gaussian diffusion, in image space
|
49 |
+
def __init__(self,
|
50 |
+
unet_config,
|
51 |
+
timesteps=1000,
|
52 |
+
beta_schedule="linear",
|
53 |
+
loss_type="l2",
|
54 |
+
ckpt_path=None,
|
55 |
+
ignore_keys=[],
|
56 |
+
load_only_unet=False,
|
57 |
+
monitor="val/loss",
|
58 |
+
use_ema=True,
|
59 |
+
first_stage_key="image",
|
60 |
+
image_size=256,
|
61 |
+
channels=3,
|
62 |
+
log_every_t=100,
|
63 |
+
clip_denoised=True,
|
64 |
+
linear_start=1e-4,
|
65 |
+
linear_end=2e-2,
|
66 |
+
cosine_s=8e-3,
|
67 |
+
given_betas=None,
|
68 |
+
original_elbo_weight=0.,
|
69 |
+
v_posterior=0., # weight for choosing posterior variance as sigma = (1-v) * beta_tilde + v * beta
|
70 |
+
l_simple_weight=1.,
|
71 |
+
conditioning_key=None,
|
72 |
+
parameterization="eps", # all assuming fixed variance schedules
|
73 |
+
scheduler_config=None,
|
74 |
+
use_positional_encodings=False,
|
75 |
+
learn_logvar=False,
|
76 |
+
logvar_init=0.,
|
77 |
+
make_it_fit=False,
|
78 |
+
ucg_training=None,
|
79 |
+
):
|
80 |
+
super().__init__()
|
81 |
+
assert parameterization in ["eps", "x0"], 'currently only supporting "eps" and "x0"'
|
82 |
+
self.parameterization = parameterization
|
83 |
+
print(f"{self.__class__.__name__}: Running in {self.parameterization}-prediction mode")
|
84 |
+
self.cond_stage_model = None
|
85 |
+
self.clip_denoised = clip_denoised
|
86 |
+
self.log_every_t = log_every_t
|
87 |
+
self.first_stage_key = first_stage_key
|
88 |
+
self.image_size = image_size # try conv?
|
89 |
+
self.channels = channels
|
90 |
+
self.use_positional_encodings = use_positional_encodings
|
91 |
+
self.model = DiffusionWrapper(unet_config, conditioning_key)
|
92 |
+
count_params(self.model, verbose=True)
|
93 |
+
self.use_ema = use_ema
|
94 |
+
if self.use_ema:
|
95 |
+
self.model_ema = LitEma(self.model)
|
96 |
+
print(f"Keeping EMAs of {len(list(self.model_ema.buffers()))}.")
|
97 |
+
|
98 |
+
self.use_scheduler = scheduler_config is not None
|
99 |
+
if self.use_scheduler:
|
100 |
+
self.scheduler_config = scheduler_config
|
101 |
+
|
102 |
+
self.v_posterior = v_posterior
|
103 |
+
self.original_elbo_weight = original_elbo_weight
|
104 |
+
self.l_simple_weight = l_simple_weight
|
105 |
+
|
106 |
+
if monitor is not None:
|
107 |
+
self.monitor = monitor
|
108 |
+
self.make_it_fit = make_it_fit
|
109 |
+
if ckpt_path is not None:
|
110 |
+
self.init_from_ckpt(ckpt_path, ignore_keys=ignore_keys, only_model=load_only_unet)
|
111 |
+
|
112 |
+
self.register_schedule(given_betas=given_betas, beta_schedule=beta_schedule, timesteps=timesteps,
|
113 |
+
linear_start=linear_start, linear_end=linear_end, cosine_s=cosine_s)
|
114 |
+
|
115 |
+
self.loss_type = loss_type
|
116 |
+
|
117 |
+
self.learn_logvar = learn_logvar
|
118 |
+
self.logvar = torch.full(fill_value=logvar_init, size=(self.num_timesteps,))
|
119 |
+
if self.learn_logvar:
|
120 |
+
self.logvar = nn.Parameter(self.logvar, requires_grad=True)
|
121 |
+
|
122 |
+
self.ucg_training = ucg_training or dict()
|
123 |
+
if self.ucg_training:
|
124 |
+
self.ucg_prng = np.random.RandomState()
|
125 |
+
|
126 |
+
def register_schedule(self, given_betas=None, beta_schedule="linear", timesteps=1000,
|
127 |
+
linear_start=1e-4, linear_end=2e-2, cosine_s=8e-3):
|
128 |
+
if exists(given_betas):
|
129 |
+
betas = given_betas
|
130 |
+
else:
|
131 |
+
betas = make_beta_schedule(beta_schedule, timesteps, linear_start=linear_start, linear_end=linear_end,
|
132 |
+
cosine_s=cosine_s)
|
133 |
+
alphas = 1. - betas
|
134 |
+
alphas_cumprod = np.cumprod(alphas, axis=0)
|
135 |
+
alphas_cumprod_prev = np.append(1., alphas_cumprod[:-1])
|
136 |
+
|
137 |
+
timesteps, = betas.shape
|
138 |
+
self.num_timesteps = int(timesteps)
|
139 |
+
self.linear_start = linear_start
|
140 |
+
self.linear_end = linear_end
|
141 |
+
assert alphas_cumprod.shape[0] == self.num_timesteps, 'alphas have to be defined for each timestep'
|
142 |
+
|
143 |
+
to_torch = partial(torch.tensor, dtype=torch.float32)
|
144 |
+
|
145 |
+
self.register_buffer('betas', to_torch(betas))
|
146 |
+
self.register_buffer('alphas_cumprod', to_torch(alphas_cumprod))
|
147 |
+
self.register_buffer('alphas_cumprod_prev', to_torch(alphas_cumprod_prev))
|
148 |
+
|
149 |
+
# calculations for diffusion q(x_t | x_{t-1}) and others
|
150 |
+
self.register_buffer('sqrt_alphas_cumprod', to_torch(np.sqrt(alphas_cumprod)))
|
151 |
+
self.register_buffer('sqrt_one_minus_alphas_cumprod', to_torch(np.sqrt(1. - alphas_cumprod)))
|
152 |
+
self.register_buffer('log_one_minus_alphas_cumprod', to_torch(np.log(1. - alphas_cumprod)))
|
153 |
+
self.register_buffer('sqrt_recip_alphas_cumprod', to_torch(np.sqrt(1. / alphas_cumprod)))
|
154 |
+
self.register_buffer('sqrt_recipm1_alphas_cumprod', to_torch(np.sqrt(1. / alphas_cumprod - 1)))
|
155 |
+
|
156 |
+
# calculations for posterior q(x_{t-1} | x_t, x_0)
|
157 |
+
posterior_variance = (1 - self.v_posterior) * betas * (1. - alphas_cumprod_prev) / (
|
158 |
+
1. - alphas_cumprod) + self.v_posterior * betas
|
159 |
+
# above: equal to 1. / (1. / (1. - alpha_cumprod_tm1) + alpha_t / beta_t)
|
160 |
+
self.register_buffer('posterior_variance', to_torch(posterior_variance))
|
161 |
+
# below: log calculation clipped because the posterior variance is 0 at the beginning of the diffusion chain
|
162 |
+
self.register_buffer('posterior_log_variance_clipped', to_torch(np.log(np.maximum(posterior_variance, 1e-20))))
|
163 |
+
self.register_buffer('posterior_mean_coef1', to_torch(
|
164 |
+
betas * np.sqrt(alphas_cumprod_prev) / (1. - alphas_cumprod)))
|
165 |
+
self.register_buffer('posterior_mean_coef2', to_torch(
|
166 |
+
(1. - alphas_cumprod_prev) * np.sqrt(alphas) / (1. - alphas_cumprod)))
|
167 |
+
|
168 |
+
if self.parameterization == "eps":
|
169 |
+
lvlb_weights = self.betas ** 2 / (
|
170 |
+
2 * self.posterior_variance * to_torch(alphas) * (1 - self.alphas_cumprod))
|
171 |
+
elif self.parameterization == "x0":
|
172 |
+
lvlb_weights = 0.5 * np.sqrt(torch.Tensor(alphas_cumprod)) / (2. * 1 - torch.Tensor(alphas_cumprod))
|
173 |
+
else:
|
174 |
+
raise NotImplementedError("mu not supported")
|
175 |
+
# TODO how to choose this term
|
176 |
+
lvlb_weights[0] = lvlb_weights[1]
|
177 |
+
self.register_buffer('lvlb_weights', lvlb_weights, persistent=False)
|
178 |
+
assert not torch.isnan(self.lvlb_weights).all()
|
179 |
+
|
180 |
+
@contextmanager
|
181 |
+
def ema_scope(self, context=None):
|
182 |
+
if self.use_ema:
|
183 |
+
self.model_ema.store(self.model.parameters())
|
184 |
+
self.model_ema.copy_to(self.model)
|
185 |
+
if context is not None:
|
186 |
+
print(f"{context}: Switched to EMA weights")
|
187 |
+
try:
|
188 |
+
yield None
|
189 |
+
finally:
|
190 |
+
if self.use_ema:
|
191 |
+
self.model_ema.restore(self.model.parameters())
|
192 |
+
if context is not None:
|
193 |
+
print(f"{context}: Restored training weights")
|
194 |
+
|
195 |
+
@torch.no_grad()
|
196 |
+
def init_from_ckpt(self, path, ignore_keys=list(), only_model=False):
|
197 |
+
sd = torch.load(path, map_location="cpu")
|
198 |
+
if "state_dict" in list(sd.keys()):
|
199 |
+
sd = sd["state_dict"]
|
200 |
+
keys = list(sd.keys())
|
201 |
+
|
202 |
+
if self.make_it_fit:
|
203 |
+
n_params = len([name for name, _ in
|
204 |
+
itertools.chain(self.named_parameters(),
|
205 |
+
self.named_buffers())])
|
206 |
+
for name, param in tqdm(
|
207 |
+
itertools.chain(self.named_parameters(),
|
208 |
+
self.named_buffers()),
|
209 |
+
desc="Fitting old weights to new weights",
|
210 |
+
total=n_params
|
211 |
+
):
|
212 |
+
if not name in sd:
|
213 |
+
continue
|
214 |
+
old_shape = sd[name].shape
|
215 |
+
new_shape = param.shape
|
216 |
+
assert len(old_shape)==len(new_shape)
|
217 |
+
if len(new_shape) > 2:
|
218 |
+
# we only modify first two axes
|
219 |
+
assert new_shape[2:] == old_shape[2:]
|
220 |
+
# assumes first axis corresponds to output dim
|
221 |
+
if not new_shape == old_shape:
|
222 |
+
new_param = param.clone()
|
223 |
+
old_param = sd[name]
|
224 |
+
if len(new_shape) == 1:
|
225 |
+
for i in range(new_param.shape[0]):
|
226 |
+
new_param[i] = old_param[i % old_shape[0]]
|
227 |
+
elif len(new_shape) >= 2:
|
228 |
+
for i in range(new_param.shape[0]):
|
229 |
+
for j in range(new_param.shape[1]):
|
230 |
+
new_param[i, j] = old_param[i % old_shape[0], j % old_shape[1]]
|
231 |
+
|
232 |
+
n_used_old = torch.ones(old_shape[1])
|
233 |
+
for j in range(new_param.shape[1]):
|
234 |
+
n_used_old[j % old_shape[1]] += 1
|
235 |
+
n_used_new = torch.zeros(new_shape[1])
|
236 |
+
for j in range(new_param.shape[1]):
|
237 |
+
n_used_new[j] = n_used_old[j % old_shape[1]]
|
238 |
+
|
239 |
+
n_used_new = n_used_new[None, :]
|
240 |
+
while len(n_used_new.shape) < len(new_shape):
|
241 |
+
n_used_new = n_used_new.unsqueeze(-1)
|
242 |
+
new_param /= n_used_new
|
243 |
+
|
244 |
+
sd[name] = new_param
|
245 |
+
|
246 |
+
missing, unexpected = self.load_state_dict(sd, strict=False) if not only_model else self.model.load_state_dict(
|
247 |
+
sd, strict=False)
|
248 |
+
print(f"Restored from {path} with {len(missing)} missing and {len(unexpected)} unexpected keys")
|
249 |
+
if len(missing) > 0:
|
250 |
+
print(f"Missing Keys: {missing}")
|
251 |
+
if len(unexpected) > 0:
|
252 |
+
print(f"Unexpected Keys: {unexpected}")
|
253 |
+
|
254 |
+
def q_mean_variance(self, x_start, t):
|
255 |
+
"""
|
256 |
+
Get the distribution q(x_t | x_0).
|
257 |
+
:param x_start: the [N x C x ...] tensor of noiseless inputs.
|
258 |
+
:param t: the number of diffusion steps (minus 1). Here, 0 means one step.
|
259 |
+
:return: A tuple (mean, variance, log_variance), all of x_start's shape.
|
260 |
+
"""
|
261 |
+
mean = (extract_into_tensor(self.sqrt_alphas_cumprod, t, x_start.shape) * x_start)
|
262 |
+
variance = extract_into_tensor(1.0 - self.alphas_cumprod, t, x_start.shape)
|
263 |
+
log_variance = extract_into_tensor(self.log_one_minus_alphas_cumprod, t, x_start.shape)
|
264 |
+
return mean, variance, log_variance
|
265 |
+
|
266 |
+
def predict_start_from_noise(self, x_t, t, noise):
|
267 |
+
return (
|
268 |
+
extract_into_tensor(self.sqrt_recip_alphas_cumprod, t, x_t.shape) * x_t -
|
269 |
+
extract_into_tensor(self.sqrt_recipm1_alphas_cumprod, t, x_t.shape) * noise
|
270 |
+
)
|
271 |
+
|
272 |
+
def q_posterior(self, x_start, x_t, t):
|
273 |
+
posterior_mean = (
|
274 |
+
extract_into_tensor(self.posterior_mean_coef1, t, x_t.shape) * x_start +
|
275 |
+
extract_into_tensor(self.posterior_mean_coef2, t, x_t.shape) * x_t
|
276 |
+
)
|
277 |
+
posterior_variance = extract_into_tensor(self.posterior_variance, t, x_t.shape)
|
278 |
+
posterior_log_variance_clipped = extract_into_tensor(self.posterior_log_variance_clipped, t, x_t.shape)
|
279 |
+
return posterior_mean, posterior_variance, posterior_log_variance_clipped
|
280 |
+
|
281 |
+
def p_mean_variance(self, x, t, clip_denoised: bool):
|
282 |
+
model_out = self.model(x, t)
|
283 |
+
if self.parameterization == "eps":
|
284 |
+
x_recon = self.predict_start_from_noise(x, t=t, noise=model_out)
|
285 |
+
elif self.parameterization == "x0":
|
286 |
+
x_recon = model_out
|
287 |
+
if clip_denoised:
|
288 |
+
x_recon.clamp_(-1., 1.)
|
289 |
+
|
290 |
+
model_mean, posterior_variance, posterior_log_variance = self.q_posterior(x_start=x_recon, x_t=x, t=t)
|
291 |
+
return model_mean, posterior_variance, posterior_log_variance
|
292 |
+
|
293 |
+
@torch.no_grad()
|
294 |
+
def p_sample(self, x, t, clip_denoised=True, repeat_noise=False):
|
295 |
+
b, *_, device = *x.shape, x.device
|
296 |
+
model_mean, _, model_log_variance = self.p_mean_variance(x=x, t=t, clip_denoised=clip_denoised)
|
297 |
+
noise = noise_like(x.shape, device, repeat_noise)
|
298 |
+
# no noise when t == 0
|
299 |
+
nonzero_mask = (1 - (t == 0).float()).reshape(b, *((1,) * (len(x.shape) - 1)))
|
300 |
+
return model_mean + nonzero_mask * (0.5 * model_log_variance).exp() * noise
|
301 |
+
|
302 |
+
@torch.no_grad()
|
303 |
+
def p_sample_loop(self, shape, return_intermediates=False):
|
304 |
+
device = self.betas.device
|
305 |
+
b = shape[0]
|
306 |
+
img = torch.randn(shape, device=device)
|
307 |
+
intermediates = [img]
|
308 |
+
for i in tqdm(reversed(range(0, self.num_timesteps)), desc='Sampling t', total=self.num_timesteps):
|
309 |
+
img = self.p_sample(img, torch.full((b,), i, device=device, dtype=torch.long),
|
310 |
+
clip_denoised=self.clip_denoised)
|
311 |
+
if i % self.log_every_t == 0 or i == self.num_timesteps - 1:
|
312 |
+
intermediates.append(img)
|
313 |
+
if return_intermediates:
|
314 |
+
return img, intermediates
|
315 |
+
return img
|
316 |
+
|
317 |
+
@torch.no_grad()
|
318 |
+
def sample(self, batch_size=16, return_intermediates=False):
|
319 |
+
image_size = self.image_size
|
320 |
+
channels = self.channels
|
321 |
+
return self.p_sample_loop((batch_size, channels, image_size, image_size),
|
322 |
+
return_intermediates=return_intermediates)
|
323 |
+
|
324 |
+
def q_sample(self, x_start, t, noise=None):
|
325 |
+
noise = default(noise, lambda: torch.randn_like(x_start))
|
326 |
+
return (extract_into_tensor(self.sqrt_alphas_cumprod, t, x_start.shape) * x_start +
|
327 |
+
extract_into_tensor(self.sqrt_one_minus_alphas_cumprod, t, x_start.shape) * noise)
|
328 |
+
|
329 |
+
def get_loss(self, pred, target, mean=True):
|
330 |
+
if self.loss_type == 'l1':
|
331 |
+
loss = (target - pred).abs()
|
332 |
+
if mean:
|
333 |
+
loss = loss.mean()
|
334 |
+
elif self.loss_type == 'l2':
|
335 |
+
if mean:
|
336 |
+
loss = torch.nn.functional.mse_loss(target, pred)
|
337 |
+
else:
|
338 |
+
loss = torch.nn.functional.mse_loss(target, pred, reduction='none')
|
339 |
+
else:
|
340 |
+
raise NotImplementedError("unknown loss type '{loss_type}'")
|
341 |
+
|
342 |
+
return loss
|
343 |
+
|
344 |
+
def p_losses(self, x_start, t, noise=None):
|
345 |
+
noise = default(noise, lambda: torch.randn_like(x_start))
|
346 |
+
x_noisy = self.q_sample(x_start=x_start, t=t, noise=noise)
|
347 |
+
model_out = self.model(x_noisy, t)
|
348 |
+
|
349 |
+
loss_dict = {}
|
350 |
+
if self.parameterization == "eps":
|
351 |
+
target = noise
|
352 |
+
elif self.parameterization == "x0":
|
353 |
+
target = x_start
|
354 |
+
else:
|
355 |
+
raise NotImplementedError(f"Paramterization {self.parameterization} not yet supported")
|
356 |
+
|
357 |
+
loss = self.get_loss(model_out, target, mean=False).mean(dim=[1, 2, 3])
|
358 |
+
|
359 |
+
log_prefix = 'train' if self.training else 'val'
|
360 |
+
|
361 |
+
loss_dict.update({f'{log_prefix}/loss_simple': loss.mean()})
|
362 |
+
loss_simple = loss.mean() * self.l_simple_weight
|
363 |
+
|
364 |
+
loss_vlb = (self.lvlb_weights[t] * loss).mean()
|
365 |
+
loss_dict.update({f'{log_prefix}/loss_vlb': loss_vlb})
|
366 |
+
|
367 |
+
loss = loss_simple + self.original_elbo_weight * loss_vlb
|
368 |
+
|
369 |
+
loss_dict.update({f'{log_prefix}/loss': loss})
|
370 |
+
|
371 |
+
return loss, loss_dict
|
372 |
+
|
373 |
+
def forward(self, x, *args, **kwargs):
|
374 |
+
# b, c, h, w, device, img_size, = *x.shape, x.device, self.image_size
|
375 |
+
# assert h == img_size and w == img_size, f'height and width of image must be {img_size}'
|
376 |
+
t = torch.randint(0, self.num_timesteps, (x.shape[0],), device=self.device).long()
|
377 |
+
return self.p_losses(x, t, *args, **kwargs)
|
378 |
+
|
379 |
+
def get_input(self, batch, k):
|
380 |
+
x = batch[k]
|
381 |
+
if len(x.shape) == 3:
|
382 |
+
x = x[..., None]
|
383 |
+
x = rearrange(x, 'b h w c -> b c h w')
|
384 |
+
x = x.to(memory_format=torch.contiguous_format).float()
|
385 |
+
return x
|
386 |
+
|
387 |
+
def shared_step(self, batch):
|
388 |
+
x = self.get_input(batch, self.first_stage_key)
|
389 |
+
loss, loss_dict = self(x)
|
390 |
+
return loss, loss_dict
|
391 |
+
|
392 |
+
def training_step(self, batch, batch_idx):
|
393 |
+
for k in self.ucg_training:
|
394 |
+
p = self.ucg_training[k]["p"]
|
395 |
+
val = self.ucg_training[k]["val"]
|
396 |
+
if val is None:
|
397 |
+
val = ""
|
398 |
+
for i in range(len(batch[k])):
|
399 |
+
if self.ucg_prng.choice(2, p=[1-p, p]):
|
400 |
+
batch[k][i] = val
|
401 |
+
|
402 |
+
loss, loss_dict = self.shared_step(batch)
|
403 |
+
|
404 |
+
self.log_dict(loss_dict, prog_bar=True,
|
405 |
+
logger=True, on_step=True, on_epoch=True)
|
406 |
+
|
407 |
+
self.log("global_step", self.global_step,
|
408 |
+
prog_bar=True, logger=True, on_step=True, on_epoch=False)
|
409 |
+
|
410 |
+
if self.use_scheduler:
|
411 |
+
lr = self.optimizers().param_groups[0]['lr']
|
412 |
+
self.log('lr_abs', lr, prog_bar=True, logger=True, on_step=True, on_epoch=False)
|
413 |
+
|
414 |
+
return loss
|
415 |
+
|
416 |
+
@torch.no_grad()
|
417 |
+
def validation_step(self, batch, batch_idx):
|
418 |
+
_, loss_dict_no_ema = self.shared_step(batch)
|
419 |
+
with self.ema_scope():
|
420 |
+
_, loss_dict_ema = self.shared_step(batch)
|
421 |
+
loss_dict_ema = {key + '_ema': loss_dict_ema[key] for key in loss_dict_ema}
|
422 |
+
self.log_dict(loss_dict_no_ema, prog_bar=False, logger=True, on_step=False, on_epoch=True)
|
423 |
+
self.log_dict(loss_dict_ema, prog_bar=False, logger=True, on_step=False, on_epoch=True)
|
424 |
+
|
425 |
+
def on_train_batch_end(self, *args, **kwargs):
|
426 |
+
if self.use_ema:
|
427 |
+
self.model_ema(self.model)
|
428 |
+
|
429 |
+
def _get_rows_from_list(self, samples):
|
430 |
+
n_imgs_per_row = len(samples)
|
431 |
+
denoise_grid = rearrange(samples, 'n b c h w -> b n c h w')
|
432 |
+
denoise_grid = rearrange(denoise_grid, 'b n c h w -> (b n) c h w')
|
433 |
+
denoise_grid = make_grid(denoise_grid, nrow=n_imgs_per_row)
|
434 |
+
return denoise_grid
|
435 |
+
|
436 |
+
@torch.no_grad()
|
437 |
+
def log_images(self, batch, N=8, n_row=2, sample=True, return_keys=None, **kwargs):
|
438 |
+
log = dict()
|
439 |
+
x = self.get_input(batch, self.first_stage_key)
|
440 |
+
N = min(x.shape[0], N)
|
441 |
+
n_row = min(x.shape[0], n_row)
|
442 |
+
x = x.to(self.device)[:N]
|
443 |
+
log["inputs"] = x
|
444 |
+
|
445 |
+
# get diffusion row
|
446 |
+
diffusion_row = list()
|
447 |
+
x_start = x[:n_row]
|
448 |
+
|
449 |
+
for t in range(self.num_timesteps):
|
450 |
+
if t % self.log_every_t == 0 or t == self.num_timesteps - 1:
|
451 |
+
t = repeat(torch.tensor([t]), '1 -> b', b=n_row)
|
452 |
+
t = t.to(self.device).long()
|
453 |
+
noise = torch.randn_like(x_start)
|
454 |
+
x_noisy = self.q_sample(x_start=x_start, t=t, noise=noise)
|
455 |
+
diffusion_row.append(x_noisy)
|
456 |
+
|
457 |
+
log["diffusion_row"] = self._get_rows_from_list(diffusion_row)
|
458 |
+
|
459 |
+
if sample:
|
460 |
+
# get denoise row
|
461 |
+
with self.ema_scope("Plotting"):
|
462 |
+
samples, denoise_row = self.sample(batch_size=N, return_intermediates=True)
|
463 |
+
|
464 |
+
log["samples"] = samples
|
465 |
+
log["denoise_row"] = self._get_rows_from_list(denoise_row)
|
466 |
+
|
467 |
+
if return_keys:
|
468 |
+
if np.intersect1d(list(log.keys()), return_keys).shape[0] == 0:
|
469 |
+
return log
|
470 |
+
else:
|
471 |
+
return {key: log[key] for key in return_keys}
|
472 |
+
return log
|
473 |
+
|
474 |
+
def configure_optimizers(self):
|
475 |
+
lr = self.learning_rate
|
476 |
+
params = list(self.model.parameters())
|
477 |
+
if self.learn_logvar:
|
478 |
+
params = params + [self.logvar]
|
479 |
+
opt = torch.optim.AdamW(params, lr=lr)
|
480 |
+
return opt
|
481 |
+
|
482 |
+
|
483 |
+
class LatentDiffusion(DDPM):
|
484 |
+
"""main class"""
|
485 |
+
def __init__(self,
|
486 |
+
first_stage_config,
|
487 |
+
cond_stage_config,
|
488 |
+
num_timesteps_cond=None,
|
489 |
+
cond_stage_key="image",
|
490 |
+
cond_stage_trainable=False,
|
491 |
+
concat_mode=True,
|
492 |
+
cond_stage_forward=None,
|
493 |
+
conditioning_key=None,
|
494 |
+
scale_factor=1.0,
|
495 |
+
scale_by_std=False,
|
496 |
+
unet_trainable=True,
|
497 |
+
*args, **kwargs):
|
498 |
+
self.num_timesteps_cond = default(num_timesteps_cond, 1)
|
499 |
+
self.scale_by_std = scale_by_std
|
500 |
+
assert self.num_timesteps_cond <= kwargs['timesteps']
|
501 |
+
# for backwards compatibility after implementation of DiffusionWrapper
|
502 |
+
if conditioning_key is None:
|
503 |
+
conditioning_key = 'concat' if concat_mode else 'crossattn'
|
504 |
+
if cond_stage_config == '__is_unconditional__':
|
505 |
+
conditioning_key = None
|
506 |
+
ckpt_path = kwargs.pop("ckpt_path", None)
|
507 |
+
ignore_keys = kwargs.pop("ignore_keys", [])
|
508 |
+
super().__init__(conditioning_key=conditioning_key, *args, **kwargs)
|
509 |
+
self.concat_mode = concat_mode
|
510 |
+
self.cond_stage_trainable = cond_stage_trainable
|
511 |
+
self.unet_trainable = unet_trainable
|
512 |
+
self.cond_stage_key = cond_stage_key
|
513 |
+
try:
|
514 |
+
self.num_downs = len(first_stage_config.params.ddconfig.ch_mult) - 1
|
515 |
+
except:
|
516 |
+
self.num_downs = 0
|
517 |
+
if not scale_by_std:
|
518 |
+
self.scale_factor = scale_factor
|
519 |
+
else:
|
520 |
+
self.register_buffer('scale_factor', torch.tensor(scale_factor))
|
521 |
+
self.instantiate_first_stage(first_stage_config)
|
522 |
+
self.instantiate_cond_stage(cond_stage_config)
|
523 |
+
self.cond_stage_forward = cond_stage_forward
|
524 |
+
|
525 |
+
# construct linear projection layer for concatenating image CLIP embedding and RT
|
526 |
+
self.cc_projection = nn.Linear(772, 768)
|
527 |
+
nn.init.eye_(list(self.cc_projection.parameters())[0][:768, :768])
|
528 |
+
nn.init.zeros_(list(self.cc_projection.parameters())[1])
|
529 |
+
self.cc_projection.requires_grad_(True)
|
530 |
+
|
531 |
+
self.clip_denoised = False
|
532 |
+
self.bbox_tokenizer = None
|
533 |
+
|
534 |
+
self.restarted_from_ckpt = False
|
535 |
+
if ckpt_path is not None:
|
536 |
+
self.init_from_ckpt(ckpt_path, ignore_keys)
|
537 |
+
self.restarted_from_ckpt = True
|
538 |
+
|
539 |
+
def make_cond_schedule(self, ):
|
540 |
+
self.cond_ids = torch.full(size=(self.num_timesteps,), fill_value=self.num_timesteps - 1, dtype=torch.long)
|
541 |
+
ids = torch.round(torch.linspace(0, self.num_timesteps - 1, self.num_timesteps_cond)).long()
|
542 |
+
self.cond_ids[:self.num_timesteps_cond] = ids
|
543 |
+
|
544 |
+
@rank_zero_only
|
545 |
+
@torch.no_grad()
|
546 |
+
def on_train_batch_start(self, batch, batch_idx, dataloader_idx):
|
547 |
+
# only for very first batch
|
548 |
+
if self.scale_by_std and self.current_epoch == 0 and self.global_step == 0 and batch_idx == 0 and not self.restarted_from_ckpt:
|
549 |
+
assert self.scale_factor == 1., 'rather not use custom rescaling and std-rescaling simultaneously'
|
550 |
+
# set rescale weight to 1./std of encodings
|
551 |
+
print("### USING STD-RESCALING ###")
|
552 |
+
x = super().get_input(batch, self.first_stage_key)
|
553 |
+
x = x.to(self.device)
|
554 |
+
encoder_posterior = self.encode_first_stage(x)
|
555 |
+
z = self.get_first_stage_encoding(encoder_posterior).detach()
|
556 |
+
del self.scale_factor
|
557 |
+
self.register_buffer('scale_factor', 1. / z.flatten().std())
|
558 |
+
print(f"setting self.scale_factor to {self.scale_factor}")
|
559 |
+
print("### USING STD-RESCALING ###")
|
560 |
+
|
561 |
+
def register_schedule(self,
|
562 |
+
given_betas=None, beta_schedule="linear", timesteps=1000,
|
563 |
+
linear_start=1e-4, linear_end=2e-2, cosine_s=8e-3):
|
564 |
+
super().register_schedule(given_betas, beta_schedule, timesteps, linear_start, linear_end, cosine_s)
|
565 |
+
|
566 |
+
self.shorten_cond_schedule = self.num_timesteps_cond > 1
|
567 |
+
if self.shorten_cond_schedule:
|
568 |
+
self.make_cond_schedule()
|
569 |
+
|
570 |
+
def instantiate_first_stage(self, config):
|
571 |
+
model = instantiate_from_config(config)
|
572 |
+
self.first_stage_model = model.eval()
|
573 |
+
self.first_stage_model.train = disabled_train
|
574 |
+
for param in self.first_stage_model.parameters():
|
575 |
+
param.requires_grad = False
|
576 |
+
|
577 |
+
def instantiate_cond_stage(self, config):
|
578 |
+
if not self.cond_stage_trainable:
|
579 |
+
if config == "__is_first_stage__":
|
580 |
+
print("Using first stage also as cond stage.")
|
581 |
+
self.cond_stage_model = self.first_stage_model
|
582 |
+
elif config == "__is_unconditional__":
|
583 |
+
print(f"Training {self.__class__.__name__} as an unconditional model.")
|
584 |
+
self.cond_stage_model = None
|
585 |
+
# self.be_unconditional = True
|
586 |
+
else:
|
587 |
+
model = instantiate_from_config(config)
|
588 |
+
self.cond_stage_model = model.eval()
|
589 |
+
self.cond_stage_model.train = disabled_train
|
590 |
+
for param in self.cond_stage_model.parameters():
|
591 |
+
param.requires_grad = False
|
592 |
+
else:
|
593 |
+
assert config != '__is_first_stage__'
|
594 |
+
assert config != '__is_unconditional__'
|
595 |
+
model = instantiate_from_config(config)
|
596 |
+
self.cond_stage_model = model
|
597 |
+
|
598 |
+
def _get_denoise_row_from_list(self, samples, desc='', force_no_decoder_quantization=False):
|
599 |
+
denoise_row = []
|
600 |
+
for zd in tqdm(samples, desc=desc):
|
601 |
+
denoise_row.append(self.decode_first_stage(zd.to(self.device),
|
602 |
+
force_not_quantize=force_no_decoder_quantization))
|
603 |
+
n_imgs_per_row = len(denoise_row)
|
604 |
+
denoise_row = torch.stack(denoise_row) # n_log_step, n_row, C, H, W
|
605 |
+
denoise_grid = rearrange(denoise_row, 'n b c h w -> b n c h w')
|
606 |
+
denoise_grid = rearrange(denoise_grid, 'b n c h w -> (b n) c h w')
|
607 |
+
denoise_grid = make_grid(denoise_grid, nrow=n_imgs_per_row)
|
608 |
+
return denoise_grid
|
609 |
+
|
610 |
+
def get_first_stage_encoding(self, encoder_posterior):
|
611 |
+
if isinstance(encoder_posterior, DiagonalGaussianDistribution):
|
612 |
+
z = encoder_posterior.sample()
|
613 |
+
elif isinstance(encoder_posterior, torch.Tensor):
|
614 |
+
z = encoder_posterior
|
615 |
+
else:
|
616 |
+
raise NotImplementedError(f"encoder_posterior of type '{type(encoder_posterior)}' not yet implemented")
|
617 |
+
return self.scale_factor * z
|
618 |
+
|
619 |
+
def get_learned_conditioning(self, c):
|
620 |
+
if self.cond_stage_forward is None:
|
621 |
+
if hasattr(self.cond_stage_model, 'encode') and callable(self.cond_stage_model.encode):
|
622 |
+
c = self.cond_stage_model.encode(c)
|
623 |
+
if isinstance(c, DiagonalGaussianDistribution):
|
624 |
+
c = c.mode()
|
625 |
+
else:
|
626 |
+
c = self.cond_stage_model(c)
|
627 |
+
else:
|
628 |
+
assert hasattr(self.cond_stage_model, self.cond_stage_forward)
|
629 |
+
c = getattr(self.cond_stage_model, self.cond_stage_forward)(c)
|
630 |
+
return c
|
631 |
+
|
632 |
+
def meshgrid(self, h, w):
|
633 |
+
y = torch.arange(0, h).view(h, 1, 1).repeat(1, w, 1)
|
634 |
+
x = torch.arange(0, w).view(1, w, 1).repeat(h, 1, 1)
|
635 |
+
|
636 |
+
arr = torch.cat([y, x], dim=-1)
|
637 |
+
return arr
|
638 |
+
|
639 |
+
def delta_border(self, h, w):
|
640 |
+
"""
|
641 |
+
:param h: height
|
642 |
+
:param w: width
|
643 |
+
:return: normalized distance to image border,
|
644 |
+
wtith min distance = 0 at border and max dist = 0.5 at image center
|
645 |
+
"""
|
646 |
+
lower_right_corner = torch.tensor([h - 1, w - 1]).view(1, 1, 2)
|
647 |
+
arr = self.meshgrid(h, w) / lower_right_corner
|
648 |
+
dist_left_up = torch.min(arr, dim=-1, keepdims=True)[0]
|
649 |
+
dist_right_down = torch.min(1 - arr, dim=-1, keepdims=True)[0]
|
650 |
+
edge_dist = torch.min(torch.cat([dist_left_up, dist_right_down], dim=-1), dim=-1)[0]
|
651 |
+
return edge_dist
|
652 |
+
|
653 |
+
def get_weighting(self, h, w, Ly, Lx, device):
|
654 |
+
weighting = self.delta_border(h, w)
|
655 |
+
weighting = torch.clip(weighting, self.split_input_params["clip_min_weight"],
|
656 |
+
self.split_input_params["clip_max_weight"], )
|
657 |
+
weighting = weighting.view(1, h * w, 1).repeat(1, 1, Ly * Lx).to(device)
|
658 |
+
|
659 |
+
if self.split_input_params["tie_braker"]:
|
660 |
+
L_weighting = self.delta_border(Ly, Lx)
|
661 |
+
L_weighting = torch.clip(L_weighting,
|
662 |
+
self.split_input_params["clip_min_tie_weight"],
|
663 |
+
self.split_input_params["clip_max_tie_weight"])
|
664 |
+
|
665 |
+
L_weighting = L_weighting.view(1, 1, Ly * Lx).to(device)
|
666 |
+
weighting = weighting * L_weighting
|
667 |
+
return weighting
|
668 |
+
|
669 |
+
def get_fold_unfold(self, x, kernel_size, stride, uf=1, df=1): # todo load once not every time, shorten code
|
670 |
+
"""
|
671 |
+
:param x: img of size (bs, c, h, w)
|
672 |
+
:return: n img crops of size (n, bs, c, kernel_size[0], kernel_size[1])
|
673 |
+
"""
|
674 |
+
bs, nc, h, w = x.shape
|
675 |
+
|
676 |
+
# number of crops in image
|
677 |
+
Ly = (h - kernel_size[0]) // stride[0] + 1
|
678 |
+
Lx = (w - kernel_size[1]) // stride[1] + 1
|
679 |
+
|
680 |
+
if uf == 1 and df == 1:
|
681 |
+
fold_params = dict(kernel_size=kernel_size, dilation=1, padding=0, stride=stride)
|
682 |
+
unfold = torch.nn.Unfold(**fold_params)
|
683 |
+
|
684 |
+
fold = torch.nn.Fold(output_size=x.shape[2:], **fold_params)
|
685 |
+
|
686 |
+
weighting = self.get_weighting(kernel_size[0], kernel_size[1], Ly, Lx, x.device).to(x.dtype)
|
687 |
+
normalization = fold(weighting).view(1, 1, h, w) # normalizes the overlap
|
688 |
+
weighting = weighting.view((1, 1, kernel_size[0], kernel_size[1], Ly * Lx))
|
689 |
+
|
690 |
+
elif uf > 1 and df == 1:
|
691 |
+
fold_params = dict(kernel_size=kernel_size, dilation=1, padding=0, stride=stride)
|
692 |
+
unfold = torch.nn.Unfold(**fold_params)
|
693 |
+
|
694 |
+
fold_params2 = dict(kernel_size=(kernel_size[0] * uf, kernel_size[0] * uf),
|
695 |
+
dilation=1, padding=0,
|
696 |
+
stride=(stride[0] * uf, stride[1] * uf))
|
697 |
+
fold = torch.nn.Fold(output_size=(x.shape[2] * uf, x.shape[3] * uf), **fold_params2)
|
698 |
+
|
699 |
+
weighting = self.get_weighting(kernel_size[0] * uf, kernel_size[1] * uf, Ly, Lx, x.device).to(x.dtype)
|
700 |
+
normalization = fold(weighting).view(1, 1, h * uf, w * uf) # normalizes the overlap
|
701 |
+
weighting = weighting.view((1, 1, kernel_size[0] * uf, kernel_size[1] * uf, Ly * Lx))
|
702 |
+
|
703 |
+
elif df > 1 and uf == 1:
|
704 |
+
fold_params = dict(kernel_size=kernel_size, dilation=1, padding=0, stride=stride)
|
705 |
+
unfold = torch.nn.Unfold(**fold_params)
|
706 |
+
|
707 |
+
fold_params2 = dict(kernel_size=(kernel_size[0] // df, kernel_size[0] // df),
|
708 |
+
dilation=1, padding=0,
|
709 |
+
stride=(stride[0] // df, stride[1] // df))
|
710 |
+
fold = torch.nn.Fold(output_size=(x.shape[2] // df, x.shape[3] // df), **fold_params2)
|
711 |
+
|
712 |
+
weighting = self.get_weighting(kernel_size[0] // df, kernel_size[1] // df, Ly, Lx, x.device).to(x.dtype)
|
713 |
+
normalization = fold(weighting).view(1, 1, h // df, w // df) # normalizes the overlap
|
714 |
+
weighting = weighting.view((1, 1, kernel_size[0] // df, kernel_size[1] // df, Ly * Lx))
|
715 |
+
|
716 |
+
else:
|
717 |
+
raise NotImplementedError
|
718 |
+
|
719 |
+
return fold, unfold, normalization, weighting
|
720 |
+
|
721 |
+
|
722 |
+
@torch.no_grad()
|
723 |
+
def get_input(self, batch, k, return_first_stage_outputs=False, force_c_encode=False,
|
724 |
+
cond_key=None, return_original_cond=False, bs=None, uncond=0.05):
|
725 |
+
x = super().get_input(batch, k)
|
726 |
+
T = batch['T'].to(memory_format=torch.contiguous_format).float()
|
727 |
+
|
728 |
+
if bs is not None:
|
729 |
+
x = x[:bs]
|
730 |
+
T = T[:bs].to(self.device)
|
731 |
+
|
732 |
+
x = x.to(self.device)
|
733 |
+
encoder_posterior = self.encode_first_stage(x)
|
734 |
+
z = self.get_first_stage_encoding(encoder_posterior).detach()
|
735 |
+
cond_key = cond_key or self.cond_stage_key
|
736 |
+
xc = super().get_input(batch, cond_key).to(self.device)
|
737 |
+
if bs is not None:
|
738 |
+
xc = xc[:bs]
|
739 |
+
cond = {}
|
740 |
+
|
741 |
+
# To support classifier-free guidance, randomly drop out only text conditioning 5%, only image conditioning 5%, and both 5%.
|
742 |
+
random = torch.rand(x.size(0), device=x.device)
|
743 |
+
prompt_mask = rearrange(random < 2 * uncond, "n -> n 1 1")
|
744 |
+
input_mask = 1 - rearrange((random >= uncond).float() * (random < 3 * uncond).float(), "n -> n 1 1 1")
|
745 |
+
null_prompt = self.get_learned_conditioning([""])
|
746 |
+
|
747 |
+
# z.shape: [8, 4, 64, 64]; c.shape: [8, 1, 768]
|
748 |
+
# print('=========== xc shape ===========', xc.shape)
|
749 |
+
with torch.enable_grad():
|
750 |
+
clip_emb = self.get_learned_conditioning(xc).detach()
|
751 |
+
null_prompt = self.get_learned_conditioning([""]).detach()
|
752 |
+
cond["c_crossattn"] = [self.cc_projection(torch.cat([torch.where(prompt_mask, null_prompt, clip_emb), T[:, None, :]], dim=-1))]
|
753 |
+
cond["c_concat"] = [input_mask * self.encode_first_stage((xc.to(self.device))).mode().detach()]
|
754 |
+
out = [z, cond]
|
755 |
+
if return_first_stage_outputs:
|
756 |
+
xrec = self.decode_first_stage(z)
|
757 |
+
out.extend([x, xrec])
|
758 |
+
if return_original_cond:
|
759 |
+
out.append(xc)
|
760 |
+
return out
|
761 |
+
|
762 |
+
# @torch.no_grad()
|
763 |
+
def decode_first_stage(self, z, predict_cids=False, force_not_quantize=False):
|
764 |
+
if predict_cids:
|
765 |
+
if z.dim() == 4:
|
766 |
+
z = torch.argmax(z.exp(), dim=1).long()
|
767 |
+
z = self.first_stage_model.quantize.get_codebook_entry(z, shape=None)
|
768 |
+
z = rearrange(z, 'b h w c -> b c h w').contiguous()
|
769 |
+
|
770 |
+
z = 1. / self.scale_factor * z
|
771 |
+
|
772 |
+
if hasattr(self, "split_input_params"):
|
773 |
+
if self.split_input_params["patch_distributed_vq"]:
|
774 |
+
ks = self.split_input_params["ks"] # eg. (128, 128)
|
775 |
+
stride = self.split_input_params["stride"] # eg. (64, 64)
|
776 |
+
uf = self.split_input_params["vqf"]
|
777 |
+
bs, nc, h, w = z.shape
|
778 |
+
if ks[0] > h or ks[1] > w:
|
779 |
+
ks = (min(ks[0], h), min(ks[1], w))
|
780 |
+
print("reducing Kernel")
|
781 |
+
|
782 |
+
if stride[0] > h or stride[1] > w:
|
783 |
+
stride = (min(stride[0], h), min(stride[1], w))
|
784 |
+
print("reducing stride")
|
785 |
+
|
786 |
+
fold, unfold, normalization, weighting = self.get_fold_unfold(z, ks, stride, uf=uf)
|
787 |
+
|
788 |
+
z = unfold(z) # (bn, nc * prod(**ks), L)
|
789 |
+
# 1. Reshape to img shape
|
790 |
+
z = z.view((z.shape[0], -1, ks[0], ks[1], z.shape[-1])) # (bn, nc, ks[0], ks[1], L )
|
791 |
+
|
792 |
+
# 2. apply model loop over last dim
|
793 |
+
if isinstance(self.first_stage_model, VQModelInterface):
|
794 |
+
output_list = [self.first_stage_model.decode(z[:, :, :, :, i],
|
795 |
+
force_not_quantize=predict_cids or force_not_quantize)
|
796 |
+
for i in range(z.shape[-1])]
|
797 |
+
else:
|
798 |
+
|
799 |
+
output_list = [self.first_stage_model.decode(z[:, :, :, :, i])
|
800 |
+
for i in range(z.shape[-1])]
|
801 |
+
|
802 |
+
o = torch.stack(output_list, axis=-1) # # (bn, nc, ks[0], ks[1], L)
|
803 |
+
o = o * weighting
|
804 |
+
# Reverse 1. reshape to img shape
|
805 |
+
o = o.view((o.shape[0], -1, o.shape[-1])) # (bn, nc * ks[0] * ks[1], L)
|
806 |
+
# stitch crops together
|
807 |
+
decoded = fold(o)
|
808 |
+
decoded = decoded / normalization # norm is shape (1, 1, h, w)
|
809 |
+
return decoded
|
810 |
+
else:
|
811 |
+
if isinstance(self.first_stage_model, VQModelInterface):
|
812 |
+
return self.first_stage_model.decode(z, force_not_quantize=predict_cids or force_not_quantize)
|
813 |
+
else:
|
814 |
+
return self.first_stage_model.decode(z)
|
815 |
+
|
816 |
+
else:
|
817 |
+
if isinstance(self.first_stage_model, VQModelInterface):
|
818 |
+
return self.first_stage_model.decode(z, force_not_quantize=predict_cids or force_not_quantize)
|
819 |
+
else:
|
820 |
+
return self.first_stage_model.decode(z)
|
821 |
+
|
822 |
+
@torch.no_grad()
|
823 |
+
def encode_first_stage(self, x):
|
824 |
+
if hasattr(self, "split_input_params"):
|
825 |
+
if self.split_input_params["patch_distributed_vq"]:
|
826 |
+
ks = self.split_input_params["ks"] # eg. (128, 128)
|
827 |
+
stride = self.split_input_params["stride"] # eg. (64, 64)
|
828 |
+
df = self.split_input_params["vqf"]
|
829 |
+
self.split_input_params['original_image_size'] = x.shape[-2:]
|
830 |
+
bs, nc, h, w = x.shape
|
831 |
+
if ks[0] > h or ks[1] > w:
|
832 |
+
ks = (min(ks[0], h), min(ks[1], w))
|
833 |
+
print("reducing Kernel")
|
834 |
+
|
835 |
+
if stride[0] > h or stride[1] > w:
|
836 |
+
stride = (min(stride[0], h), min(stride[1], w))
|
837 |
+
print("reducing stride")
|
838 |
+
|
839 |
+
fold, unfold, normalization, weighting = self.get_fold_unfold(x, ks, stride, df=df)
|
840 |
+
z = unfold(x) # (bn, nc * prod(**ks), L)
|
841 |
+
# Reshape to img shape
|
842 |
+
z = z.view((z.shape[0], -1, ks[0], ks[1], z.shape[-1])) # (bn, nc, ks[0], ks[1], L )
|
843 |
+
|
844 |
+
output_list = [self.first_stage_model.encode(z[:, :, :, :, i])
|
845 |
+
for i in range(z.shape[-1])]
|
846 |
+
|
847 |
+
o = torch.stack(output_list, axis=-1)
|
848 |
+
o = o * weighting
|
849 |
+
|
850 |
+
# Reverse reshape to img shape
|
851 |
+
o = o.view((o.shape[0], -1, o.shape[-1])) # (bn, nc * ks[0] * ks[1], L)
|
852 |
+
# stitch crops together
|
853 |
+
decoded = fold(o)
|
854 |
+
decoded = decoded / normalization
|
855 |
+
return decoded
|
856 |
+
|
857 |
+
else:
|
858 |
+
return self.first_stage_model.encode(x)
|
859 |
+
else:
|
860 |
+
return self.first_stage_model.encode(x)
|
861 |
+
|
862 |
+
def shared_step(self, batch, **kwargs):
|
863 |
+
x, c = self.get_input(batch, self.first_stage_key)
|
864 |
+
loss = self(x, c)
|
865 |
+
return loss
|
866 |
+
|
867 |
+
def forward(self, x, c, *args, **kwargs):
|
868 |
+
t = torch.randint(0, self.num_timesteps, (x.shape[0],), device=self.device).long()
|
869 |
+
if self.model.conditioning_key is not None:
|
870 |
+
assert c is not None
|
871 |
+
# if self.cond_stage_trainable:
|
872 |
+
# c = self.get_learned_conditioning(c)
|
873 |
+
if self.shorten_cond_schedule: # TODO: drop this option
|
874 |
+
tc = self.cond_ids[t].to(self.device)
|
875 |
+
c = self.q_sample(x_start=c, t=tc, noise=torch.randn_like(c.float()))
|
876 |
+
return self.p_losses(x, c, t, *args, **kwargs)
|
877 |
+
|
878 |
+
def _rescale_annotations(self, bboxes, crop_coordinates): # TODO: move to dataset
|
879 |
+
def rescale_bbox(bbox):
|
880 |
+
x0 = clamp((bbox[0] - crop_coordinates[0]) / crop_coordinates[2])
|
881 |
+
y0 = clamp((bbox[1] - crop_coordinates[1]) / crop_coordinates[3])
|
882 |
+
w = min(bbox[2] / crop_coordinates[2], 1 - x0)
|
883 |
+
h = min(bbox[3] / crop_coordinates[3], 1 - y0)
|
884 |
+
return x0, y0, w, h
|
885 |
+
|
886 |
+
return [rescale_bbox(b) for b in bboxes]
|
887 |
+
|
888 |
+
def apply_model(self, x_noisy, t, cond, return_ids=False):
|
889 |
+
|
890 |
+
if isinstance(cond, dict):
|
891 |
+
# hybrid case, cond is exptected to be a dict
|
892 |
+
pass
|
893 |
+
else:
|
894 |
+
if not isinstance(cond, list):
|
895 |
+
cond = [cond]
|
896 |
+
key = 'c_concat' if self.model.conditioning_key == 'concat' else 'c_crossattn'
|
897 |
+
cond = {key: cond}
|
898 |
+
|
899 |
+
if hasattr(self, "split_input_params"):
|
900 |
+
assert len(cond) == 1 # todo can only deal with one conditioning atm
|
901 |
+
assert not return_ids
|
902 |
+
ks = self.split_input_params["ks"] # eg. (128, 128)
|
903 |
+
stride = self.split_input_params["stride"] # eg. (64, 64)
|
904 |
+
|
905 |
+
h, w = x_noisy.shape[-2:]
|
906 |
+
|
907 |
+
fold, unfold, normalization, weighting = self.get_fold_unfold(x_noisy, ks, stride)
|
908 |
+
|
909 |
+
z = unfold(x_noisy) # (bn, nc * prod(**ks), L)
|
910 |
+
# Reshape to img shape
|
911 |
+
z = z.view((z.shape[0], -1, ks[0], ks[1], z.shape[-1])) # (bn, nc, ks[0], ks[1], L )
|
912 |
+
z_list = [z[:, :, :, :, i] for i in range(z.shape[-1])]
|
913 |
+
|
914 |
+
if self.cond_stage_key in ["image", "LR_image", "segmentation",
|
915 |
+
'bbox_img'] and self.model.conditioning_key: # todo check for completeness
|
916 |
+
c_key = next(iter(cond.keys())) # get key
|
917 |
+
c = next(iter(cond.values())) # get value
|
918 |
+
assert (len(c) == 1) # todo extend to list with more than one elem
|
919 |
+
c = c[0] # get element
|
920 |
+
|
921 |
+
c = unfold(c)
|
922 |
+
c = c.view((c.shape[0], -1, ks[0], ks[1], c.shape[-1])) # (bn, nc, ks[0], ks[1], L )
|
923 |
+
|
924 |
+
cond_list = [{c_key: [c[:, :, :, :, i]]} for i in range(c.shape[-1])]
|
925 |
+
|
926 |
+
elif self.cond_stage_key == 'coordinates_bbox':
|
927 |
+
assert 'original_image_size' in self.split_input_params, 'BoudingBoxRescaling is missing original_image_size'
|
928 |
+
|
929 |
+
# assuming padding of unfold is always 0 and its dilation is always 1
|
930 |
+
n_patches_per_row = int((w - ks[0]) / stride[0] + 1)
|
931 |
+
full_img_h, full_img_w = self.split_input_params['original_image_size']
|
932 |
+
# as we are operating on latents, we need the factor from the original image size to the
|
933 |
+
# spatial latent size to properly rescale the crops for regenerating the bbox annotations
|
934 |
+
num_downs = self.first_stage_model.encoder.num_resolutions - 1
|
935 |
+
rescale_latent = 2 ** (num_downs)
|
936 |
+
|
937 |
+
# get top left postions of patches as conforming for the bbbox tokenizer, therefore we
|
938 |
+
# need to rescale the tl patch coordinates to be in between (0,1)
|
939 |
+
tl_patch_coordinates = [(rescale_latent * stride[0] * (patch_nr % n_patches_per_row) / full_img_w,
|
940 |
+
rescale_latent * stride[1] * (patch_nr // n_patches_per_row) / full_img_h)
|
941 |
+
for patch_nr in range(z.shape[-1])]
|
942 |
+
|
943 |
+
# patch_limits are tl_coord, width and height coordinates as (x_tl, y_tl, h, w)
|
944 |
+
patch_limits = [(x_tl, y_tl,
|
945 |
+
rescale_latent * ks[0] / full_img_w,
|
946 |
+
rescale_latent * ks[1] / full_img_h) for x_tl, y_tl in tl_patch_coordinates]
|
947 |
+
# patch_values = [(np.arange(x_tl,min(x_tl+ks, 1.)),np.arange(y_tl,min(y_tl+ks, 1.))) for x_tl, y_tl in tl_patch_coordinates]
|
948 |
+
|
949 |
+
# tokenize crop coordinates for the bounding boxes of the respective patches
|
950 |
+
patch_limits_tknzd = [torch.LongTensor(self.bbox_tokenizer._crop_encoder(bbox))[None].to(self.device)
|
951 |
+
for bbox in patch_limits] # list of length l with tensors of shape (1, 2)
|
952 |
+
# cut tknzd crop position from conditioning
|
953 |
+
assert isinstance(cond, dict), 'cond must be dict to be fed into model'
|
954 |
+
cut_cond = cond['c_crossattn'][0][..., :-2].to(self.device)
|
955 |
+
|
956 |
+
adapted_cond = torch.stack([torch.cat([cut_cond, p], dim=1) for p in patch_limits_tknzd])
|
957 |
+
adapted_cond = rearrange(adapted_cond, 'l b n -> (l b) n')
|
958 |
+
adapted_cond = self.get_learned_conditioning(adapted_cond)
|
959 |
+
adapted_cond = rearrange(adapted_cond, '(l b) n d -> l b n d', l=z.shape[-1])
|
960 |
+
|
961 |
+
cond_list = [{'c_crossattn': [e]} for e in adapted_cond]
|
962 |
+
|
963 |
+
else:
|
964 |
+
cond_list = [cond for i in range(z.shape[-1])] # Todo make this more efficient
|
965 |
+
|
966 |
+
# apply model by loop over crops
|
967 |
+
output_list = [self.model(z_list[i], t, **cond_list[i]) for i in range(z.shape[-1])]
|
968 |
+
assert not isinstance(output_list[0],
|
969 |
+
tuple) # todo cant deal with multiple model outputs check this never happens
|
970 |
+
|
971 |
+
o = torch.stack(output_list, axis=-1)
|
972 |
+
o = o * weighting
|
973 |
+
# Reverse reshape to img shape
|
974 |
+
o = o.view((o.shape[0], -1, o.shape[-1])) # (bn, nc * ks[0] * ks[1], L)
|
975 |
+
# stitch crops together
|
976 |
+
x_recon = fold(o) / normalization
|
977 |
+
|
978 |
+
else:
|
979 |
+
x_recon = self.model(x_noisy, t, **cond)
|
980 |
+
|
981 |
+
if isinstance(x_recon, tuple) and not return_ids:
|
982 |
+
return x_recon[0]
|
983 |
+
else:
|
984 |
+
return x_recon
|
985 |
+
|
986 |
+
def _predict_eps_from_xstart(self, x_t, t, pred_xstart):
|
987 |
+
return (extract_into_tensor(self.sqrt_recip_alphas_cumprod, t, x_t.shape) * x_t - pred_xstart) / \
|
988 |
+
extract_into_tensor(self.sqrt_recipm1_alphas_cumprod, t, x_t.shape)
|
989 |
+
|
990 |
+
def _prior_bpd(self, x_start):
|
991 |
+
"""
|
992 |
+
Get the prior KL term for the variational lower-bound, measured in
|
993 |
+
bits-per-dim.
|
994 |
+
This term can't be optimized, as it only depends on the encoder.
|
995 |
+
:param x_start: the [N x C x ...] tensor of inputs.
|
996 |
+
:return: a batch of [N] KL values (in bits), one per batch element.
|
997 |
+
"""
|
998 |
+
batch_size = x_start.shape[0]
|
999 |
+
t = torch.tensor([self.num_timesteps - 1] * batch_size, device=x_start.device)
|
1000 |
+
qt_mean, _, qt_log_variance = self.q_mean_variance(x_start, t)
|
1001 |
+
kl_prior = normal_kl(mean1=qt_mean, logvar1=qt_log_variance, mean2=0.0, logvar2=0.0)
|
1002 |
+
return mean_flat(kl_prior) / np.log(2.0)
|
1003 |
+
|
1004 |
+
def p_losses(self, x_start, cond, t, noise=None):
|
1005 |
+
noise = default(noise, lambda: torch.randn_like(x_start))
|
1006 |
+
x_noisy = self.q_sample(x_start=x_start, t=t, noise=noise)
|
1007 |
+
model_output = self.apply_model(x_noisy, t, cond)
|
1008 |
+
|
1009 |
+
loss_dict = {}
|
1010 |
+
prefix = 'train' if self.training else 'val'
|
1011 |
+
|
1012 |
+
if self.parameterization == "x0":
|
1013 |
+
target = x_start
|
1014 |
+
elif self.parameterization == "eps":
|
1015 |
+
target = noise
|
1016 |
+
else:
|
1017 |
+
raise NotImplementedError()
|
1018 |
+
|
1019 |
+
loss_simple = self.get_loss(model_output, target, mean=False).mean([1, 2, 3])
|
1020 |
+
loss_dict.update({f'{prefix}/loss_simple': loss_simple.mean()})
|
1021 |
+
|
1022 |
+
logvar_t = self.logvar[t].to(self.device)
|
1023 |
+
loss = loss_simple / torch.exp(logvar_t) + logvar_t
|
1024 |
+
# loss = loss_simple / torch.exp(self.logvar) + self.logvar
|
1025 |
+
if self.learn_logvar:
|
1026 |
+
loss_dict.update({f'{prefix}/loss_gamma': loss.mean()})
|
1027 |
+
loss_dict.update({'logvar': self.logvar.data.mean()})
|
1028 |
+
|
1029 |
+
loss = self.l_simple_weight * loss.mean()
|
1030 |
+
|
1031 |
+
loss_vlb = self.get_loss(model_output, target, mean=False).mean(dim=(1, 2, 3))
|
1032 |
+
loss_vlb = (self.lvlb_weights[t] * loss_vlb).mean()
|
1033 |
+
loss_dict.update({f'{prefix}/loss_vlb': loss_vlb})
|
1034 |
+
loss += (self.original_elbo_weight * loss_vlb)
|
1035 |
+
loss_dict.update({f'{prefix}/loss': loss})
|
1036 |
+
|
1037 |
+
return loss, loss_dict
|
1038 |
+
|
1039 |
+
def p_mean_variance(self, x, c, t, clip_denoised: bool, return_codebook_ids=False, quantize_denoised=False,
|
1040 |
+
return_x0=False, score_corrector=None, corrector_kwargs=None):
|
1041 |
+
t_in = t
|
1042 |
+
model_out = self.apply_model(x, t_in, c, return_ids=return_codebook_ids)
|
1043 |
+
|
1044 |
+
if score_corrector is not None:
|
1045 |
+
assert self.parameterization == "eps"
|
1046 |
+
model_out = score_corrector.modify_score(self, model_out, x, t, c, **corrector_kwargs)
|
1047 |
+
|
1048 |
+
if return_codebook_ids:
|
1049 |
+
model_out, logits = model_out
|
1050 |
+
|
1051 |
+
if self.parameterization == "eps":
|
1052 |
+
x_recon = self.predict_start_from_noise(x, t=t, noise=model_out)
|
1053 |
+
elif self.parameterization == "x0":
|
1054 |
+
x_recon = model_out
|
1055 |
+
else:
|
1056 |
+
raise NotImplementedError()
|
1057 |
+
|
1058 |
+
if clip_denoised:
|
1059 |
+
x_recon.clamp_(-1., 1.)
|
1060 |
+
if quantize_denoised:
|
1061 |
+
x_recon, _, [_, _, indices] = self.first_stage_model.quantize(x_recon)
|
1062 |
+
model_mean, posterior_variance, posterior_log_variance = self.q_posterior(x_start=x_recon, x_t=x, t=t)
|
1063 |
+
if return_codebook_ids:
|
1064 |
+
return model_mean, posterior_variance, posterior_log_variance, logits
|
1065 |
+
elif return_x0:
|
1066 |
+
return model_mean, posterior_variance, posterior_log_variance, x_recon
|
1067 |
+
else:
|
1068 |
+
return model_mean, posterior_variance, posterior_log_variance
|
1069 |
+
|
1070 |
+
@torch.no_grad()
|
1071 |
+
def p_sample(self, x, c, t, clip_denoised=False, repeat_noise=False,
|
1072 |
+
return_codebook_ids=False, quantize_denoised=False, return_x0=False,
|
1073 |
+
temperature=1., noise_dropout=0., score_corrector=None, corrector_kwargs=None):
|
1074 |
+
b, *_, device = *x.shape, x.device
|
1075 |
+
outputs = self.p_mean_variance(x=x, c=c, t=t, clip_denoised=clip_denoised,
|
1076 |
+
return_codebook_ids=return_codebook_ids,
|
1077 |
+
quantize_denoised=quantize_denoised,
|
1078 |
+
return_x0=return_x0,
|
1079 |
+
score_corrector=score_corrector, corrector_kwargs=corrector_kwargs)
|
1080 |
+
if return_codebook_ids:
|
1081 |
+
raise DeprecationWarning("Support dropped.")
|
1082 |
+
model_mean, _, model_log_variance, logits = outputs
|
1083 |
+
elif return_x0:
|
1084 |
+
model_mean, _, model_log_variance, x0 = outputs
|
1085 |
+
else:
|
1086 |
+
model_mean, _, model_log_variance = outputs
|
1087 |
+
|
1088 |
+
noise = noise_like(x.shape, device, repeat_noise) * temperature
|
1089 |
+
if noise_dropout > 0.:
|
1090 |
+
noise = torch.nn.functional.dropout(noise, p=noise_dropout)
|
1091 |
+
# no noise when t == 0
|
1092 |
+
nonzero_mask = (1 - (t == 0).float()).reshape(b, *((1,) * (len(x.shape) - 1)))
|
1093 |
+
|
1094 |
+
if return_codebook_ids:
|
1095 |
+
return model_mean + nonzero_mask * (0.5 * model_log_variance).exp() * noise, logits.argmax(dim=1)
|
1096 |
+
if return_x0:
|
1097 |
+
return model_mean + nonzero_mask * (0.5 * model_log_variance).exp() * noise, x0
|
1098 |
+
else:
|
1099 |
+
return model_mean + nonzero_mask * (0.5 * model_log_variance).exp() * noise
|
1100 |
+
|
1101 |
+
@torch.no_grad()
|
1102 |
+
def progressive_denoising(self, cond, shape, verbose=True, callback=None, quantize_denoised=False,
|
1103 |
+
img_callback=None, mask=None, x0=None, temperature=1., noise_dropout=0.,
|
1104 |
+
score_corrector=None, corrector_kwargs=None, batch_size=None, x_T=None, start_T=None,
|
1105 |
+
log_every_t=None):
|
1106 |
+
if not log_every_t:
|
1107 |
+
log_every_t = self.log_every_t
|
1108 |
+
timesteps = self.num_timesteps
|
1109 |
+
if batch_size is not None:
|
1110 |
+
b = batch_size if batch_size is not None else shape[0]
|
1111 |
+
shape = [batch_size] + list(shape)
|
1112 |
+
else:
|
1113 |
+
b = batch_size = shape[0]
|
1114 |
+
if x_T is None:
|
1115 |
+
img = torch.randn(shape, device=self.device)
|
1116 |
+
else:
|
1117 |
+
img = x_T
|
1118 |
+
intermediates = []
|
1119 |
+
if cond is not None:
|
1120 |
+
if isinstance(cond, dict):
|
1121 |
+
cond = {key: cond[key][:batch_size] if not isinstance(cond[key], list) else
|
1122 |
+
list(map(lambda x: x[:batch_size], cond[key])) for key in cond}
|
1123 |
+
else:
|
1124 |
+
cond = [c[:batch_size] for c in cond] if isinstance(cond, list) else cond[:batch_size]
|
1125 |
+
|
1126 |
+
if start_T is not None:
|
1127 |
+
timesteps = min(timesteps, start_T)
|
1128 |
+
iterator = tqdm(reversed(range(0, timesteps)), desc='Progressive Generation',
|
1129 |
+
total=timesteps) if verbose else reversed(
|
1130 |
+
range(0, timesteps))
|
1131 |
+
if type(temperature) == float:
|
1132 |
+
temperature = [temperature] * timesteps
|
1133 |
+
|
1134 |
+
for i in iterator:
|
1135 |
+
ts = torch.full((b,), i, device=self.device, dtype=torch.long)
|
1136 |
+
if self.shorten_cond_schedule:
|
1137 |
+
assert self.model.conditioning_key != 'hybrid'
|
1138 |
+
tc = self.cond_ids[ts].to(cond.device)
|
1139 |
+
cond = self.q_sample(x_start=cond, t=tc, noise=torch.randn_like(cond))
|
1140 |
+
|
1141 |
+
img, x0_partial = self.p_sample(img, cond, ts,
|
1142 |
+
clip_denoised=self.clip_denoised,
|
1143 |
+
quantize_denoised=quantize_denoised, return_x0=True,
|
1144 |
+
temperature=temperature[i], noise_dropout=noise_dropout,
|
1145 |
+
score_corrector=score_corrector, corrector_kwargs=corrector_kwargs)
|
1146 |
+
if mask is not None:
|
1147 |
+
assert x0 is not None
|
1148 |
+
img_orig = self.q_sample(x0, ts)
|
1149 |
+
img = img_orig * mask + (1. - mask) * img
|
1150 |
+
|
1151 |
+
if i % log_every_t == 0 or i == timesteps - 1:
|
1152 |
+
intermediates.append(x0_partial)
|
1153 |
+
if callback: callback(i)
|
1154 |
+
if img_callback: img_callback(img, i)
|
1155 |
+
return img, intermediates
|
1156 |
+
|
1157 |
+
@torch.no_grad()
|
1158 |
+
def p_sample_loop(self, cond, shape, return_intermediates=False,
|
1159 |
+
x_T=None, verbose=True, callback=None, timesteps=None, quantize_denoised=False,
|
1160 |
+
mask=None, x0=None, img_callback=None, start_T=None,
|
1161 |
+
log_every_t=None):
|
1162 |
+
|
1163 |
+
if not log_every_t:
|
1164 |
+
log_every_t = self.log_every_t
|
1165 |
+
device = self.betas.device
|
1166 |
+
b = shape[0]
|
1167 |
+
if x_T is None:
|
1168 |
+
img = torch.randn(shape, device=device)
|
1169 |
+
else:
|
1170 |
+
img = x_T
|
1171 |
+
|
1172 |
+
intermediates = [img]
|
1173 |
+
if timesteps is None:
|
1174 |
+
timesteps = self.num_timesteps
|
1175 |
+
|
1176 |
+
if start_T is not None:
|
1177 |
+
timesteps = min(timesteps, start_T)
|
1178 |
+
iterator = tqdm(reversed(range(0, timesteps)), desc='Sampling t', total=timesteps) if verbose else reversed(
|
1179 |
+
range(0, timesteps))
|
1180 |
+
|
1181 |
+
if mask is not None:
|
1182 |
+
assert x0 is not None
|
1183 |
+
assert x0.shape[2:3] == mask.shape[2:3] # spatial size has to match
|
1184 |
+
|
1185 |
+
for i in iterator:
|
1186 |
+
ts = torch.full((b,), i, device=device, dtype=torch.long)
|
1187 |
+
if self.shorten_cond_schedule:
|
1188 |
+
assert self.model.conditioning_key != 'hybrid'
|
1189 |
+
tc = self.cond_ids[ts].to(cond.device)
|
1190 |
+
cond = self.q_sample(x_start=cond, t=tc, noise=torch.randn_like(cond))
|
1191 |
+
|
1192 |
+
img = self.p_sample(img, cond, ts,
|
1193 |
+
clip_denoised=self.clip_denoised,
|
1194 |
+
quantize_denoised=quantize_denoised)
|
1195 |
+
if mask is not None:
|
1196 |
+
img_orig = self.q_sample(x0, ts)
|
1197 |
+
img = img_orig * mask + (1. - mask) * img
|
1198 |
+
|
1199 |
+
if i % log_every_t == 0 or i == timesteps - 1:
|
1200 |
+
intermediates.append(img)
|
1201 |
+
if callback: callback(i)
|
1202 |
+
if img_callback: img_callback(img, i)
|
1203 |
+
|
1204 |
+
if return_intermediates:
|
1205 |
+
return img, intermediates
|
1206 |
+
return img
|
1207 |
+
|
1208 |
+
@torch.no_grad()
|
1209 |
+
def sample(self, cond, batch_size=16, return_intermediates=False, x_T=None,
|
1210 |
+
verbose=True, timesteps=None, quantize_denoised=False,
|
1211 |
+
mask=None, x0=None, shape=None,**kwargs):
|
1212 |
+
if shape is None:
|
1213 |
+
shape = (batch_size, self.channels, self.image_size, self.image_size)
|
1214 |
+
if cond is not None:
|
1215 |
+
if isinstance(cond, dict):
|
1216 |
+
cond = {key: cond[key][:batch_size] if not isinstance(cond[key], list) else
|
1217 |
+
list(map(lambda x: x[:batch_size], cond[key])) for key in cond}
|
1218 |
+
else:
|
1219 |
+
cond = [c[:batch_size] for c in cond] if isinstance(cond, list) else cond[:batch_size]
|
1220 |
+
return self.p_sample_loop(cond,
|
1221 |
+
shape,
|
1222 |
+
return_intermediates=return_intermediates, x_T=x_T,
|
1223 |
+
verbose=verbose, timesteps=timesteps, quantize_denoised=quantize_denoised,
|
1224 |
+
mask=mask, x0=x0)
|
1225 |
+
|
1226 |
+
@torch.no_grad()
|
1227 |
+
def sample_log(self, cond, batch_size, ddim, ddim_steps, **kwargs):
|
1228 |
+
if ddim:
|
1229 |
+
ddim_sampler = DDIMSampler(self)
|
1230 |
+
shape = (self.channels, self.image_size, self.image_size)
|
1231 |
+
samples, intermediates = ddim_sampler.sample(ddim_steps, batch_size,
|
1232 |
+
shape, cond, verbose=False, **kwargs)
|
1233 |
+
|
1234 |
+
else:
|
1235 |
+
samples, intermediates = self.sample(cond=cond, batch_size=batch_size,
|
1236 |
+
return_intermediates=True, **kwargs)
|
1237 |
+
|
1238 |
+
return samples, intermediates
|
1239 |
+
|
1240 |
+
@torch.no_grad()
|
1241 |
+
def get_unconditional_conditioning(self, batch_size, null_label=None, image_size=512):
|
1242 |
+
if null_label is not None:
|
1243 |
+
xc = null_label
|
1244 |
+
if isinstance(xc, ListConfig):
|
1245 |
+
xc = list(xc)
|
1246 |
+
if isinstance(xc, dict) or isinstance(xc, list):
|
1247 |
+
c = self.get_learned_conditioning(xc)
|
1248 |
+
else:
|
1249 |
+
if hasattr(xc, "to"):
|
1250 |
+
xc = xc.to(self.device)
|
1251 |
+
c = self.get_learned_conditioning(xc)
|
1252 |
+
else:
|
1253 |
+
# todo: get null label from cond_stage_model
|
1254 |
+
raise NotImplementedError()
|
1255 |
+
c = repeat(c, '1 ... -> b ...', b=batch_size).to(self.device)
|
1256 |
+
cond = {}
|
1257 |
+
cond["c_crossattn"] = [c]
|
1258 |
+
cond["c_concat"] = [torch.zeros([batch_size, 4, image_size // 8, image_size // 8]).to(self.device)]
|
1259 |
+
return cond
|
1260 |
+
|
1261 |
+
@torch.no_grad()
|
1262 |
+
def log_images(self, batch, N=8, n_row=4, sample=True, ddim_steps=200, ddim_eta=1., return_keys=None,
|
1263 |
+
quantize_denoised=True, inpaint=True, plot_denoise_rows=False, plot_progressive_rows=True,
|
1264 |
+
plot_diffusion_rows=True, unconditional_guidance_scale=1., unconditional_guidance_label=None,
|
1265 |
+
use_ema_scope=True,
|
1266 |
+
**kwargs):
|
1267 |
+
ema_scope = self.ema_scope if use_ema_scope else nullcontext
|
1268 |
+
use_ddim = ddim_steps is not None
|
1269 |
+
|
1270 |
+
log = dict()
|
1271 |
+
z, c, x, xrec, xc = self.get_input(batch, self.first_stage_key,
|
1272 |
+
return_first_stage_outputs=True,
|
1273 |
+
force_c_encode=True,
|
1274 |
+
return_original_cond=True,
|
1275 |
+
bs=N)
|
1276 |
+
N = min(x.shape[0], N)
|
1277 |
+
n_row = min(x.shape[0], n_row)
|
1278 |
+
log["inputs"] = x
|
1279 |
+
log["reconstruction"] = xrec
|
1280 |
+
if self.model.conditioning_key is not None:
|
1281 |
+
if hasattr(self.cond_stage_model, "decode"):
|
1282 |
+
xc = self.cond_stage_model.decode(c)
|
1283 |
+
log["conditioning"] = xc
|
1284 |
+
elif self.cond_stage_key in ["caption", "txt"]:
|
1285 |
+
xc = log_txt_as_img((x.shape[2], x.shape[3]), batch[self.cond_stage_key], size=x.shape[2]//25)
|
1286 |
+
log["conditioning"] = xc
|
1287 |
+
elif self.cond_stage_key == 'class_label':
|
1288 |
+
xc = log_txt_as_img((x.shape[2], x.shape[3]), batch["human_label"], size=x.shape[2]//25)
|
1289 |
+
log['conditioning'] = xc
|
1290 |
+
elif isimage(xc):
|
1291 |
+
log["conditioning"] = xc
|
1292 |
+
if ismap(xc):
|
1293 |
+
log["original_conditioning"] = self.to_rgb(xc)
|
1294 |
+
|
1295 |
+
if plot_diffusion_rows:
|
1296 |
+
# get diffusion row
|
1297 |
+
diffusion_row = list()
|
1298 |
+
z_start = z[:n_row]
|
1299 |
+
for t in range(self.num_timesteps):
|
1300 |
+
if t % self.log_every_t == 0 or t == self.num_timesteps - 1:
|
1301 |
+
t = repeat(torch.tensor([t]), '1 -> b', b=n_row)
|
1302 |
+
t = t.to(self.device).long()
|
1303 |
+
noise = torch.randn_like(z_start)
|
1304 |
+
z_noisy = self.q_sample(x_start=z_start, t=t, noise=noise)
|
1305 |
+
diffusion_row.append(self.decode_first_stage(z_noisy))
|
1306 |
+
|
1307 |
+
diffusion_row = torch.stack(diffusion_row) # n_log_step, n_row, C, H, W
|
1308 |
+
diffusion_grid = rearrange(diffusion_row, 'n b c h w -> b n c h w')
|
1309 |
+
diffusion_grid = rearrange(diffusion_grid, 'b n c h w -> (b n) c h w')
|
1310 |
+
diffusion_grid = make_grid(diffusion_grid, nrow=diffusion_row.shape[0])
|
1311 |
+
log["diffusion_row"] = diffusion_grid
|
1312 |
+
|
1313 |
+
if sample:
|
1314 |
+
# get denoise row
|
1315 |
+
with ema_scope("Sampling"):
|
1316 |
+
samples, z_denoise_row = self.sample_log(cond=c,batch_size=N,ddim=use_ddim,
|
1317 |
+
ddim_steps=ddim_steps,eta=ddim_eta)
|
1318 |
+
# samples, z_denoise_row = self.sample(cond=c, batch_size=N, return_intermediates=True)
|
1319 |
+
x_samples = self.decode_first_stage(samples)
|
1320 |
+
log["samples"] = x_samples
|
1321 |
+
if plot_denoise_rows:
|
1322 |
+
denoise_grid = self._get_denoise_row_from_list(z_denoise_row)
|
1323 |
+
log["denoise_row"] = denoise_grid
|
1324 |
+
|
1325 |
+
if quantize_denoised and not isinstance(self.first_stage_model, AutoencoderKL) and not isinstance(
|
1326 |
+
self.first_stage_model, IdentityFirstStage):
|
1327 |
+
# also display when quantizing x0 while sampling
|
1328 |
+
with ema_scope("Plotting Quantized Denoised"):
|
1329 |
+
samples, z_denoise_row = self.sample_log(cond=c,batch_size=N,ddim=use_ddim,
|
1330 |
+
ddim_steps=ddim_steps,eta=ddim_eta,
|
1331 |
+
quantize_denoised=True)
|
1332 |
+
# samples, z_denoise_row = self.sample(cond=c, batch_size=N, return_intermediates=True,
|
1333 |
+
# quantize_denoised=True)
|
1334 |
+
x_samples = self.decode_first_stage(samples.to(self.device))
|
1335 |
+
log["samples_x0_quantized"] = x_samples
|
1336 |
+
|
1337 |
+
if unconditional_guidance_scale > 1.0:
|
1338 |
+
uc = self.get_unconditional_conditioning(N, unconditional_guidance_label, image_size=x.shape[-1])
|
1339 |
+
# uc = torch.zeros_like(c)
|
1340 |
+
with ema_scope("Sampling with classifier-free guidance"):
|
1341 |
+
samples_cfg, _ = self.sample_log(cond=c, batch_size=N, ddim=use_ddim,
|
1342 |
+
ddim_steps=ddim_steps, eta=ddim_eta,
|
1343 |
+
unconditional_guidance_scale=unconditional_guidance_scale,
|
1344 |
+
unconditional_conditioning=uc,
|
1345 |
+
)
|
1346 |
+
x_samples_cfg = self.decode_first_stage(samples_cfg)
|
1347 |
+
log[f"samples_cfg_scale_{unconditional_guidance_scale:.2f}"] = x_samples_cfg
|
1348 |
+
|
1349 |
+
if inpaint:
|
1350 |
+
# make a simple center square
|
1351 |
+
b, h, w = z.shape[0], z.shape[2], z.shape[3]
|
1352 |
+
mask = torch.ones(N, h, w).to(self.device)
|
1353 |
+
# zeros will be filled in
|
1354 |
+
mask[:, h // 4:3 * h // 4, w // 4:3 * w // 4] = 0.
|
1355 |
+
mask = mask[:, None, ...]
|
1356 |
+
with ema_scope("Plotting Inpaint"):
|
1357 |
+
|
1358 |
+
samples, _ = self.sample_log(cond=c,batch_size=N,ddim=use_ddim, eta=ddim_eta,
|
1359 |
+
ddim_steps=ddim_steps, x0=z[:N], mask=mask)
|
1360 |
+
x_samples = self.decode_first_stage(samples.to(self.device))
|
1361 |
+
log["samples_inpainting"] = x_samples
|
1362 |
+
log["mask"] = mask
|
1363 |
+
|
1364 |
+
# outpaint
|
1365 |
+
mask = 1. - mask
|
1366 |
+
with ema_scope("Plotting Outpaint"):
|
1367 |
+
samples, _ = self.sample_log(cond=c, batch_size=N, ddim=use_ddim,eta=ddim_eta,
|
1368 |
+
ddim_steps=ddim_steps, x0=z[:N], mask=mask)
|
1369 |
+
x_samples = self.decode_first_stage(samples.to(self.device))
|
1370 |
+
log["samples_outpainting"] = x_samples
|
1371 |
+
|
1372 |
+
if plot_progressive_rows:
|
1373 |
+
with ema_scope("Plotting Progressives"):
|
1374 |
+
img, progressives = self.progressive_denoising(c,
|
1375 |
+
shape=(self.channels, self.image_size, self.image_size),
|
1376 |
+
batch_size=N)
|
1377 |
+
prog_row = self._get_denoise_row_from_list(progressives, desc="Progressive Generation")
|
1378 |
+
log["progressive_row"] = prog_row
|
1379 |
+
|
1380 |
+
if return_keys:
|
1381 |
+
if np.intersect1d(list(log.keys()), return_keys).shape[0] == 0:
|
1382 |
+
return log
|
1383 |
+
else:
|
1384 |
+
return {key: log[key] for key in return_keys}
|
1385 |
+
return log
|
1386 |
+
|
1387 |
+
def configure_optimizers(self):
|
1388 |
+
lr = self.learning_rate
|
1389 |
+
params = []
|
1390 |
+
if self.unet_trainable == "attn":
|
1391 |
+
print("Training only unet attention layers")
|
1392 |
+
for n, m in self.model.named_modules():
|
1393 |
+
if isinstance(m, CrossAttention) and n.endswith('attn2'):
|
1394 |
+
params.extend(m.parameters())
|
1395 |
+
if self.unet_trainable == "conv_in":
|
1396 |
+
print("Training only unet input conv layers")
|
1397 |
+
params = list(self.model.diffusion_model.input_blocks[0][0].parameters())
|
1398 |
+
elif self.unet_trainable is True or self.unet_trainable == "all":
|
1399 |
+
print("Training the full unet")
|
1400 |
+
params = list(self.model.parameters())
|
1401 |
+
else:
|
1402 |
+
raise ValueError(f"Unrecognised setting for unet_trainable: {self.unet_trainable}")
|
1403 |
+
|
1404 |
+
if self.cond_stage_trainable:
|
1405 |
+
print(f"{self.__class__.__name__}: Also optimizing conditioner params!")
|
1406 |
+
params = params + list(self.cond_stage_model.parameters())
|
1407 |
+
if self.learn_logvar:
|
1408 |
+
print('Diffusion model optimizing logvar')
|
1409 |
+
params.append(self.logvar)
|
1410 |
+
|
1411 |
+
if self.cc_projection is not None:
|
1412 |
+
params = params + list(self.cc_projection.parameters())
|
1413 |
+
print('========== optimizing for cc projection weight ==========')
|
1414 |
+
|
1415 |
+
opt = torch.optim.AdamW([{"params": self.model.parameters(), "lr": lr},
|
1416 |
+
{"params": self.cc_projection.parameters(), "lr": 10. * lr}], lr=lr)
|
1417 |
+
if self.use_scheduler:
|
1418 |
+
assert 'target' in self.scheduler_config
|
1419 |
+
scheduler = instantiate_from_config(self.scheduler_config)
|
1420 |
+
|
1421 |
+
print("Setting up LambdaLR scheduler...")
|
1422 |
+
scheduler = [
|
1423 |
+
{
|
1424 |
+
'scheduler': LambdaLR(opt, lr_lambda=scheduler.schedule),
|
1425 |
+
'interval': 'step',
|
1426 |
+
'frequency': 1
|
1427 |
+
}]
|
1428 |
+
return [opt], scheduler
|
1429 |
+
return opt
|
1430 |
+
|
1431 |
+
@torch.no_grad()
|
1432 |
+
def to_rgb(self, x):
|
1433 |
+
x = x.float()
|
1434 |
+
if not hasattr(self, "colorize"):
|
1435 |
+
self.colorize = torch.randn(3, x.shape[1], 1, 1).to(x)
|
1436 |
+
x = nn.functional.conv2d(x, weight=self.colorize)
|
1437 |
+
x = 2. * (x - x.min()) / (x.max() - x.min()) - 1.
|
1438 |
+
return x
|
1439 |
+
|
1440 |
+
|
1441 |
+
class DiffusionWrapper(pl.LightningModule):
|
1442 |
+
def __init__(self, diff_model_config, conditioning_key):
|
1443 |
+
super().__init__()
|
1444 |
+
self.diffusion_model = instantiate_from_config(diff_model_config)
|
1445 |
+
self.conditioning_key = conditioning_key
|
1446 |
+
assert self.conditioning_key in [None, 'concat', 'crossattn', 'hybrid', 'adm', 'hybrid-adm']
|
1447 |
+
|
1448 |
+
def forward(self, x, t, c_concat: list = None, c_crossattn: list = None, c_adm=None):
|
1449 |
+
if self.conditioning_key is None:
|
1450 |
+
out = self.diffusion_model(x, t)
|
1451 |
+
elif self.conditioning_key == 'concat':
|
1452 |
+
xc = torch.cat([x] + c_concat, dim=1)
|
1453 |
+
out = self.diffusion_model(xc, t)
|
1454 |
+
elif self.conditioning_key == 'crossattn':
|
1455 |
+
# c_crossattn dimension: torch.Size([8, 1, 768]) 1
|
1456 |
+
# cc dimension: torch.Size([8, 1, 768]
|
1457 |
+
cc = torch.cat(c_crossattn, 1)
|
1458 |
+
out = self.diffusion_model(x, t, context=cc)
|
1459 |
+
elif self.conditioning_key == 'hybrid':
|
1460 |
+
xc = torch.cat([x] + c_concat, dim=1)
|
1461 |
+
cc = torch.cat(c_crossattn, 1)
|
1462 |
+
out = self.diffusion_model(xc, t, context=cc)
|
1463 |
+
elif self.conditioning_key == 'hybrid-adm':
|
1464 |
+
assert c_adm is not None
|
1465 |
+
xc = torch.cat([x] + c_concat, dim=1)
|
1466 |
+
cc = torch.cat(c_crossattn, 1)
|
1467 |
+
out = self.diffusion_model(xc, t, context=cc, y=c_adm)
|
1468 |
+
elif self.conditioning_key == 'adm':
|
1469 |
+
cc = c_crossattn[0]
|
1470 |
+
out = self.diffusion_model(x, t, y=cc)
|
1471 |
+
else:
|
1472 |
+
raise NotImplementedError()
|
1473 |
+
|
1474 |
+
return out
|
1475 |
+
|
1476 |
+
|
1477 |
+
class LatentUpscaleDiffusion(LatentDiffusion):
|
1478 |
+
def __init__(self, *args, low_scale_config, low_scale_key="LR", **kwargs):
|
1479 |
+
super().__init__(*args, **kwargs)
|
1480 |
+
# assumes that neither the cond_stage nor the low_scale_model contain trainable params
|
1481 |
+
assert not self.cond_stage_trainable
|
1482 |
+
self.instantiate_low_stage(low_scale_config)
|
1483 |
+
self.low_scale_key = low_scale_key
|
1484 |
+
|
1485 |
+
def instantiate_low_stage(self, config):
|
1486 |
+
model = instantiate_from_config(config)
|
1487 |
+
self.low_scale_model = model.eval()
|
1488 |
+
self.low_scale_model.train = disabled_train
|
1489 |
+
for param in self.low_scale_model.parameters():
|
1490 |
+
param.requires_grad = False
|
1491 |
+
|
1492 |
+
@torch.no_grad()
|
1493 |
+
def get_input(self, batch, k, cond_key=None, bs=None, log_mode=False):
|
1494 |
+
if not log_mode:
|
1495 |
+
z, c = super().get_input(batch, k, force_c_encode=True, bs=bs)
|
1496 |
+
else:
|
1497 |
+
z, c, x, xrec, xc = super().get_input(batch, self.first_stage_key, return_first_stage_outputs=True,
|
1498 |
+
force_c_encode=True, return_original_cond=True, bs=bs)
|
1499 |
+
x_low = batch[self.low_scale_key][:bs]
|
1500 |
+
x_low = rearrange(x_low, 'b h w c -> b c h w')
|
1501 |
+
x_low = x_low.to(memory_format=torch.contiguous_format).float()
|
1502 |
+
zx, noise_level = self.low_scale_model(x_low)
|
1503 |
+
all_conds = {"c_concat": [zx], "c_crossattn": [c], "c_adm": noise_level}
|
1504 |
+
#import pudb; pu.db
|
1505 |
+
if log_mode:
|
1506 |
+
# TODO: maybe disable if too expensive
|
1507 |
+
interpretability = False
|
1508 |
+
if interpretability:
|
1509 |
+
zx = zx[:, :, ::2, ::2]
|
1510 |
+
x_low_rec = self.low_scale_model.decode(zx)
|
1511 |
+
return z, all_conds, x, xrec, xc, x_low, x_low_rec, noise_level
|
1512 |
+
return z, all_conds
|
1513 |
+
|
1514 |
+
@torch.no_grad()
|
1515 |
+
def log_images(self, batch, N=8, n_row=4, sample=True, ddim_steps=200, ddim_eta=1., return_keys=None,
|
1516 |
+
plot_denoise_rows=False, plot_progressive_rows=True, plot_diffusion_rows=True,
|
1517 |
+
unconditional_guidance_scale=1., unconditional_guidance_label=None, use_ema_scope=True,
|
1518 |
+
**kwargs):
|
1519 |
+
ema_scope = self.ema_scope if use_ema_scope else nullcontext
|
1520 |
+
use_ddim = ddim_steps is not None
|
1521 |
+
|
1522 |
+
log = dict()
|
1523 |
+
z, c, x, xrec, xc, x_low, x_low_rec, noise_level = self.get_input(batch, self.first_stage_key, bs=N,
|
1524 |
+
log_mode=True)
|
1525 |
+
N = min(x.shape[0], N)
|
1526 |
+
n_row = min(x.shape[0], n_row)
|
1527 |
+
log["inputs"] = x
|
1528 |
+
log["reconstruction"] = xrec
|
1529 |
+
log["x_lr"] = x_low
|
1530 |
+
log[f"x_lr_rec_@noise_levels{'-'.join(map(lambda x: str(x), list(noise_level.cpu().numpy())))}"] = x_low_rec
|
1531 |
+
if self.model.conditioning_key is not None:
|
1532 |
+
if hasattr(self.cond_stage_model, "decode"):
|
1533 |
+
xc = self.cond_stage_model.decode(c)
|
1534 |
+
log["conditioning"] = xc
|
1535 |
+
elif self.cond_stage_key in ["caption", "txt"]:
|
1536 |
+
xc = log_txt_as_img((x.shape[2], x.shape[3]), batch[self.cond_stage_key], size=x.shape[2]//25)
|
1537 |
+
log["conditioning"] = xc
|
1538 |
+
elif self.cond_stage_key == 'class_label':
|
1539 |
+
xc = log_txt_as_img((x.shape[2], x.shape[3]), batch["human_label"], size=x.shape[2]//25)
|
1540 |
+
log['conditioning'] = xc
|
1541 |
+
elif isimage(xc):
|
1542 |
+
log["conditioning"] = xc
|
1543 |
+
if ismap(xc):
|
1544 |
+
log["original_conditioning"] = self.to_rgb(xc)
|
1545 |
+
|
1546 |
+
if plot_diffusion_rows:
|
1547 |
+
# get diffusion row
|
1548 |
+
diffusion_row = list()
|
1549 |
+
z_start = z[:n_row]
|
1550 |
+
for t in range(self.num_timesteps):
|
1551 |
+
if t % self.log_every_t == 0 or t == self.num_timesteps - 1:
|
1552 |
+
t = repeat(torch.tensor([t]), '1 -> b', b=n_row)
|
1553 |
+
t = t.to(self.device).long()
|
1554 |
+
noise = torch.randn_like(z_start)
|
1555 |
+
z_noisy = self.q_sample(x_start=z_start, t=t, noise=noise)
|
1556 |
+
diffusion_row.append(self.decode_first_stage(z_noisy))
|
1557 |
+
|
1558 |
+
diffusion_row = torch.stack(diffusion_row) # n_log_step, n_row, C, H, W
|
1559 |
+
diffusion_grid = rearrange(diffusion_row, 'n b c h w -> b n c h w')
|
1560 |
+
diffusion_grid = rearrange(diffusion_grid, 'b n c h w -> (b n) c h w')
|
1561 |
+
diffusion_grid = make_grid(diffusion_grid, nrow=diffusion_row.shape[0])
|
1562 |
+
log["diffusion_row"] = diffusion_grid
|
1563 |
+
|
1564 |
+
if sample:
|
1565 |
+
# get denoise row
|
1566 |
+
with ema_scope("Sampling"):
|
1567 |
+
samples, z_denoise_row = self.sample_log(cond=c, batch_size=N, ddim=use_ddim,
|
1568 |
+
ddim_steps=ddim_steps, eta=ddim_eta)
|
1569 |
+
# samples, z_denoise_row = self.sample(cond=c, batch_size=N, return_intermediates=True)
|
1570 |
+
x_samples = self.decode_first_stage(samples)
|
1571 |
+
log["samples"] = x_samples
|
1572 |
+
if plot_denoise_rows:
|
1573 |
+
denoise_grid = self._get_denoise_row_from_list(z_denoise_row)
|
1574 |
+
log["denoise_row"] = denoise_grid
|
1575 |
+
|
1576 |
+
if unconditional_guidance_scale > 1.0:
|
1577 |
+
uc_tmp = self.get_unconditional_conditioning(N, unconditional_guidance_label)
|
1578 |
+
# TODO explore better "unconditional" choices for the other keys
|
1579 |
+
# maybe guide away from empty text label and highest noise level and maximally degraded zx?
|
1580 |
+
uc = dict()
|
1581 |
+
for k in c:
|
1582 |
+
if k == "c_crossattn":
|
1583 |
+
assert isinstance(c[k], list) and len(c[k]) == 1
|
1584 |
+
uc[k] = [uc_tmp]
|
1585 |
+
elif k == "c_adm": # todo: only run with text-based guidance?
|
1586 |
+
assert isinstance(c[k], torch.Tensor)
|
1587 |
+
uc[k] = torch.ones_like(c[k]) * self.low_scale_model.max_noise_level
|
1588 |
+
elif isinstance(c[k], list):
|
1589 |
+
uc[k] = [c[k][i] for i in range(len(c[k]))]
|
1590 |
+
else:
|
1591 |
+
uc[k] = c[k]
|
1592 |
+
|
1593 |
+
with ema_scope("Sampling with classifier-free guidance"):
|
1594 |
+
samples_cfg, _ = self.sample_log(cond=c, batch_size=N, ddim=use_ddim,
|
1595 |
+
ddim_steps=ddim_steps, eta=ddim_eta,
|
1596 |
+
unconditional_guidance_scale=unconditional_guidance_scale,
|
1597 |
+
unconditional_conditioning=uc,
|
1598 |
+
)
|
1599 |
+
x_samples_cfg = self.decode_first_stage(samples_cfg)
|
1600 |
+
log[f"samples_cfg_scale_{unconditional_guidance_scale:.2f}"] = x_samples_cfg
|
1601 |
+
|
1602 |
+
if plot_progressive_rows:
|
1603 |
+
with ema_scope("Plotting Progressives"):
|
1604 |
+
img, progressives = self.progressive_denoising(c,
|
1605 |
+
shape=(self.channels, self.image_size, self.image_size),
|
1606 |
+
batch_size=N)
|
1607 |
+
prog_row = self._get_denoise_row_from_list(progressives, desc="Progressive Generation")
|
1608 |
+
log["progressive_row"] = prog_row
|
1609 |
+
|
1610 |
+
return log
|
1611 |
+
|
1612 |
+
|
1613 |
+
class LatentInpaintDiffusion(LatentDiffusion):
|
1614 |
+
"""
|
1615 |
+
can either run as pure inpainting model (only concat mode) or with mixed conditionings,
|
1616 |
+
e.g. mask as concat and text via cross-attn.
|
1617 |
+
To disable finetuning mode, set finetune_keys to None
|
1618 |
+
"""
|
1619 |
+
def __init__(self,
|
1620 |
+
finetune_keys=("model.diffusion_model.input_blocks.0.0.weight",
|
1621 |
+
"model_ema.diffusion_modelinput_blocks00weight"
|
1622 |
+
),
|
1623 |
+
concat_keys=("mask", "masked_image"),
|
1624 |
+
masked_image_key="masked_image",
|
1625 |
+
keep_finetune_dims=4, # if model was trained without concat mode before and we would like to keep these channels
|
1626 |
+
c_concat_log_start=None, # to log reconstruction of c_concat codes
|
1627 |
+
c_concat_log_end=None,
|
1628 |
+
*args, **kwargs
|
1629 |
+
):
|
1630 |
+
ckpt_path = kwargs.pop("ckpt_path", None)
|
1631 |
+
ignore_keys = kwargs.pop("ignore_keys", list())
|
1632 |
+
super().__init__(*args, **kwargs)
|
1633 |
+
self.masked_image_key = masked_image_key
|
1634 |
+
assert self.masked_image_key in concat_keys
|
1635 |
+
self.finetune_keys = finetune_keys
|
1636 |
+
self.concat_keys = concat_keys
|
1637 |
+
self.keep_dims = keep_finetune_dims
|
1638 |
+
self.c_concat_log_start = c_concat_log_start
|
1639 |
+
self.c_concat_log_end = c_concat_log_end
|
1640 |
+
if exists(self.finetune_keys): assert exists(ckpt_path), 'can only finetune from a given checkpoint'
|
1641 |
+
if exists(ckpt_path):
|
1642 |
+
self.init_from_ckpt(ckpt_path, ignore_keys)
|
1643 |
+
|
1644 |
+
def init_from_ckpt(self, path, ignore_keys=list(), only_model=False):
|
1645 |
+
sd = torch.load(path, map_location="cpu")
|
1646 |
+
if "state_dict" in list(sd.keys()):
|
1647 |
+
sd = sd["state_dict"]
|
1648 |
+
keys = list(sd.keys())
|
1649 |
+
for k in keys:
|
1650 |
+
for ik in ignore_keys:
|
1651 |
+
if k.startswith(ik):
|
1652 |
+
print("Deleting key {} from state_dict.".format(k))
|
1653 |
+
del sd[k]
|
1654 |
+
|
1655 |
+
# make it explicit, finetune by including extra input channels
|
1656 |
+
if exists(self.finetune_keys) and k in self.finetune_keys:
|
1657 |
+
new_entry = None
|
1658 |
+
for name, param in self.named_parameters():
|
1659 |
+
if name in self.finetune_keys:
|
1660 |
+
print(f"modifying key '{name}' and keeping its original {self.keep_dims} (channels) dimensions only")
|
1661 |
+
new_entry = torch.zeros_like(param) # zero init
|
1662 |
+
assert exists(new_entry), 'did not find matching parameter to modify'
|
1663 |
+
new_entry[:, :self.keep_dims, ...] = sd[k]
|
1664 |
+
sd[k] = new_entry
|
1665 |
+
|
1666 |
+
missing, unexpected = self.load_state_dict(sd, strict=False) if not only_model else self.model.load_state_dict(sd, strict=False)
|
1667 |
+
print(f"Restored from {path} with {len(missing)} missing and {len(unexpected)} unexpected keys")
|
1668 |
+
if len(missing) > 0:
|
1669 |
+
print(f"Missing Keys: {missing}")
|
1670 |
+
if len(unexpected) > 0:
|
1671 |
+
print(f"Unexpected Keys: {unexpected}")
|
1672 |
+
|
1673 |
+
@torch.no_grad()
|
1674 |
+
def get_input(self, batch, k, cond_key=None, bs=None, return_first_stage_outputs=False):
|
1675 |
+
# note: restricted to non-trainable encoders currently
|
1676 |
+
assert not self.cond_stage_trainable, 'trainable cond stages not yet supported for inpainting'
|
1677 |
+
z, c, x, xrec, xc = super().get_input(batch, self.first_stage_key, return_first_stage_outputs=True,
|
1678 |
+
force_c_encode=True, return_original_cond=True, bs=bs)
|
1679 |
+
|
1680 |
+
assert exists(self.concat_keys)
|
1681 |
+
c_cat = list()
|
1682 |
+
for ck in self.concat_keys:
|
1683 |
+
cc = rearrange(batch[ck], 'b h w c -> b c h w').to(memory_format=torch.contiguous_format).float()
|
1684 |
+
if bs is not None:
|
1685 |
+
cc = cc[:bs]
|
1686 |
+
cc = cc.to(self.device)
|
1687 |
+
bchw = z.shape
|
1688 |
+
if ck != self.masked_image_key:
|
1689 |
+
cc = torch.nn.functional.interpolate(cc, size=bchw[-2:])
|
1690 |
+
else:
|
1691 |
+
cc = self.get_first_stage_encoding(self.encode_first_stage(cc))
|
1692 |
+
c_cat.append(cc)
|
1693 |
+
c_cat = torch.cat(c_cat, dim=1)
|
1694 |
+
all_conds = {"c_concat": [c_cat], "c_crossattn": [c]}
|
1695 |
+
if return_first_stage_outputs:
|
1696 |
+
return z, all_conds, x, xrec, xc
|
1697 |
+
return z, all_conds
|
1698 |
+
|
1699 |
+
@torch.no_grad()
|
1700 |
+
def log_images(self, batch, N=8, n_row=4, sample=True, ddim_steps=200, ddim_eta=1., return_keys=None,
|
1701 |
+
quantize_denoised=True, inpaint=True, plot_denoise_rows=False, plot_progressive_rows=True,
|
1702 |
+
plot_diffusion_rows=True, unconditional_guidance_scale=1., unconditional_guidance_label=None,
|
1703 |
+
use_ema_scope=True,
|
1704 |
+
**kwargs):
|
1705 |
+
ema_scope = self.ema_scope if use_ema_scope else nullcontext
|
1706 |
+
use_ddim = ddim_steps is not None
|
1707 |
+
|
1708 |
+
log = dict()
|
1709 |
+
z, c, x, xrec, xc = self.get_input(batch, self.first_stage_key, bs=N, return_first_stage_outputs=True)
|
1710 |
+
c_cat, c = c["c_concat"][0], c["c_crossattn"][0]
|
1711 |
+
N = min(x.shape[0], N)
|
1712 |
+
n_row = min(x.shape[0], n_row)
|
1713 |
+
log["inputs"] = x
|
1714 |
+
log["reconstruction"] = xrec
|
1715 |
+
if self.model.conditioning_key is not None:
|
1716 |
+
if hasattr(self.cond_stage_model, "decode"):
|
1717 |
+
xc = self.cond_stage_model.decode(c)
|
1718 |
+
log["conditioning"] = xc
|
1719 |
+
elif self.cond_stage_key in ["caption", "txt"]:
|
1720 |
+
xc = log_txt_as_img((x.shape[2], x.shape[3]), batch[self.cond_stage_key], size=x.shape[2] // 25)
|
1721 |
+
log["conditioning"] = xc
|
1722 |
+
elif self.cond_stage_key == 'class_label':
|
1723 |
+
xc = log_txt_as_img((x.shape[2], x.shape[3]), batch["human_label"], size=x.shape[2] // 25)
|
1724 |
+
log['conditioning'] = xc
|
1725 |
+
elif isimage(xc):
|
1726 |
+
log["conditioning"] = xc
|
1727 |
+
if ismap(xc):
|
1728 |
+
log["original_conditioning"] = self.to_rgb(xc)
|
1729 |
+
|
1730 |
+
if not (self.c_concat_log_start is None and self.c_concat_log_end is None):
|
1731 |
+
log["c_concat_decoded"] = self.decode_first_stage(c_cat[:,self.c_concat_log_start:self.c_concat_log_end])
|
1732 |
+
|
1733 |
+
if plot_diffusion_rows:
|
1734 |
+
# get diffusion row
|
1735 |
+
diffusion_row = list()
|
1736 |
+
z_start = z[:n_row]
|
1737 |
+
for t in range(self.num_timesteps):
|
1738 |
+
if t % self.log_every_t == 0 or t == self.num_timesteps - 1:
|
1739 |
+
t = repeat(torch.tensor([t]), '1 -> b', b=n_row)
|
1740 |
+
t = t.to(self.device).long()
|
1741 |
+
noise = torch.randn_like(z_start)
|
1742 |
+
z_noisy = self.q_sample(x_start=z_start, t=t, noise=noise)
|
1743 |
+
diffusion_row.append(self.decode_first_stage(z_noisy))
|
1744 |
+
|
1745 |
+
diffusion_row = torch.stack(diffusion_row) # n_log_step, n_row, C, H, W
|
1746 |
+
diffusion_grid = rearrange(diffusion_row, 'n b c h w -> b n c h w')
|
1747 |
+
diffusion_grid = rearrange(diffusion_grid, 'b n c h w -> (b n) c h w')
|
1748 |
+
diffusion_grid = make_grid(diffusion_grid, nrow=diffusion_row.shape[0])
|
1749 |
+
log["diffusion_row"] = diffusion_grid
|
1750 |
+
|
1751 |
+
if sample:
|
1752 |
+
# get denoise row
|
1753 |
+
with ema_scope("Sampling"):
|
1754 |
+
samples, z_denoise_row = self.sample_log(cond={"c_concat": [c_cat], "c_crossattn": [c]},
|
1755 |
+
batch_size=N, ddim=use_ddim,
|
1756 |
+
ddim_steps=ddim_steps, eta=ddim_eta)
|
1757 |
+
# samples, z_denoise_row = self.sample(cond=c, batch_size=N, return_intermediates=True)
|
1758 |
+
x_samples = self.decode_first_stage(samples)
|
1759 |
+
log["samples"] = x_samples
|
1760 |
+
if plot_denoise_rows:
|
1761 |
+
denoise_grid = self._get_denoise_row_from_list(z_denoise_row)
|
1762 |
+
log["denoise_row"] = denoise_grid
|
1763 |
+
|
1764 |
+
if unconditional_guidance_scale > 1.0:
|
1765 |
+
uc_cross = self.get_unconditional_conditioning(N, unconditional_guidance_label)
|
1766 |
+
uc_cat = c_cat
|
1767 |
+
uc_full = {"c_concat": [uc_cat], "c_crossattn": [uc_cross]}
|
1768 |
+
with ema_scope("Sampling with classifier-free guidance"):
|
1769 |
+
samples_cfg, _ = self.sample_log(cond={"c_concat": [c_cat], "c_crossattn": [c]},
|
1770 |
+
batch_size=N, ddim=use_ddim,
|
1771 |
+
ddim_steps=ddim_steps, eta=ddim_eta,
|
1772 |
+
unconditional_guidance_scale=unconditional_guidance_scale,
|
1773 |
+
unconditional_conditioning=uc_full,
|
1774 |
+
)
|
1775 |
+
x_samples_cfg = self.decode_first_stage(samples_cfg)
|
1776 |
+
log[f"samples_cfg_scale_{unconditional_guidance_scale:.2f}"] = x_samples_cfg
|
1777 |
+
|
1778 |
+
log["masked_image"] = rearrange(batch["masked_image"],
|
1779 |
+
'b h w c -> b c h w').to(memory_format=torch.contiguous_format).float()
|
1780 |
+
return log
|
1781 |
+
|
1782 |
+
|
1783 |
+
class Layout2ImgDiffusion(LatentDiffusion):
|
1784 |
+
# TODO: move all layout-specific hacks to this class
|
1785 |
+
def __init__(self, cond_stage_key, *args, **kwargs):
|
1786 |
+
assert cond_stage_key == 'coordinates_bbox', 'Layout2ImgDiffusion only for cond_stage_key="coordinates_bbox"'
|
1787 |
+
super().__init__(cond_stage_key=cond_stage_key, *args, **kwargs)
|
1788 |
+
|
1789 |
+
def log_images(self, batch, N=8, *args, **kwargs):
|
1790 |
+
logs = super().log_images(batch=batch, N=N, *args, **kwargs)
|
1791 |
+
|
1792 |
+
key = 'train' if self.training else 'validation'
|
1793 |
+
dset = self.trainer.datamodule.datasets[key]
|
1794 |
+
mapper = dset.conditional_builders[self.cond_stage_key]
|
1795 |
+
|
1796 |
+
bbox_imgs = []
|
1797 |
+
map_fn = lambda catno: dset.get_textual_label(dset.get_category_id(catno))
|
1798 |
+
for tknzd_bbox in batch[self.cond_stage_key][:N]:
|
1799 |
+
bboximg = mapper.plot(tknzd_bbox.detach().cpu(), map_fn, (256, 256))
|
1800 |
+
bbox_imgs.append(bboximg)
|
1801 |
+
|
1802 |
+
cond_img = torch.stack(bbox_imgs, dim=0)
|
1803 |
+
logs['bbox_image'] = cond_img
|
1804 |
+
return logs
|
1805 |
+
|
1806 |
+
|
1807 |
+
class SimpleUpscaleDiffusion(LatentDiffusion):
|
1808 |
+
def __init__(self, *args, low_scale_key="LR", **kwargs):
|
1809 |
+
super().__init__(*args, **kwargs)
|
1810 |
+
# assumes that neither the cond_stage nor the low_scale_model contain trainable params
|
1811 |
+
assert not self.cond_stage_trainable
|
1812 |
+
self.low_scale_key = low_scale_key
|
1813 |
+
|
1814 |
+
@torch.no_grad()
|
1815 |
+
def get_input(self, batch, k, cond_key=None, bs=None, log_mode=False):
|
1816 |
+
if not log_mode:
|
1817 |
+
z, c = super().get_input(batch, k, force_c_encode=True, bs=bs)
|
1818 |
+
else:
|
1819 |
+
z, c, x, xrec, xc = super().get_input(batch, self.first_stage_key, return_first_stage_outputs=True,
|
1820 |
+
force_c_encode=True, return_original_cond=True, bs=bs)
|
1821 |
+
x_low = batch[self.low_scale_key][:bs]
|
1822 |
+
x_low = rearrange(x_low, 'b h w c -> b c h w')
|
1823 |
+
x_low = x_low.to(memory_format=torch.contiguous_format).float()
|
1824 |
+
|
1825 |
+
encoder_posterior = self.encode_first_stage(x_low)
|
1826 |
+
zx = self.get_first_stage_encoding(encoder_posterior).detach()
|
1827 |
+
all_conds = {"c_concat": [zx], "c_crossattn": [c]}
|
1828 |
+
|
1829 |
+
if log_mode:
|
1830 |
+
# TODO: maybe disable if too expensive
|
1831 |
+
interpretability = False
|
1832 |
+
if interpretability:
|
1833 |
+
zx = zx[:, :, ::2, ::2]
|
1834 |
+
return z, all_conds, x, xrec, xc, x_low
|
1835 |
+
return z, all_conds
|
1836 |
+
|
1837 |
+
@torch.no_grad()
|
1838 |
+
def log_images(self, batch, N=8, n_row=4, sample=True, ddim_steps=200, ddim_eta=1., return_keys=None,
|
1839 |
+
plot_denoise_rows=False, plot_progressive_rows=True, plot_diffusion_rows=True,
|
1840 |
+
unconditional_guidance_scale=1., unconditional_guidance_label=None, use_ema_scope=True,
|
1841 |
+
**kwargs):
|
1842 |
+
ema_scope = self.ema_scope if use_ema_scope else nullcontext
|
1843 |
+
use_ddim = ddim_steps is not None
|
1844 |
+
|
1845 |
+
log = dict()
|
1846 |
+
z, c, x, xrec, xc, x_low = self.get_input(batch, self.first_stage_key, bs=N, log_mode=True)
|
1847 |
+
N = min(x.shape[0], N)
|
1848 |
+
n_row = min(x.shape[0], n_row)
|
1849 |
+
log["inputs"] = x
|
1850 |
+
log["reconstruction"] = xrec
|
1851 |
+
log["x_lr"] = x_low
|
1852 |
+
|
1853 |
+
if self.model.conditioning_key is not None:
|
1854 |
+
if hasattr(self.cond_stage_model, "decode"):
|
1855 |
+
xc = self.cond_stage_model.decode(c)
|
1856 |
+
log["conditioning"] = xc
|
1857 |
+
elif self.cond_stage_key in ["caption", "txt"]:
|
1858 |
+
xc = log_txt_as_img((x.shape[2], x.shape[3]), batch[self.cond_stage_key], size=x.shape[2]//25)
|
1859 |
+
log["conditioning"] = xc
|
1860 |
+
elif self.cond_stage_key == 'class_label':
|
1861 |
+
xc = log_txt_as_img((x.shape[2], x.shape[3]), batch["human_label"], size=x.shape[2]//25)
|
1862 |
+
log['conditioning'] = xc
|
1863 |
+
elif isimage(xc):
|
1864 |
+
log["conditioning"] = xc
|
1865 |
+
if ismap(xc):
|
1866 |
+
log["original_conditioning"] = self.to_rgb(xc)
|
1867 |
+
|
1868 |
+
if sample:
|
1869 |
+
# get denoise row
|
1870 |
+
with ema_scope("Sampling"):
|
1871 |
+
samples, z_denoise_row = self.sample_log(cond=c, batch_size=N, ddim=use_ddim,
|
1872 |
+
ddim_steps=ddim_steps, eta=ddim_eta)
|
1873 |
+
# samples, z_denoise_row = self.sample(cond=c, batch_size=N, return_intermediates=True)
|
1874 |
+
x_samples = self.decode_first_stage(samples)
|
1875 |
+
log["samples"] = x_samples
|
1876 |
+
|
1877 |
+
if unconditional_guidance_scale > 1.0:
|
1878 |
+
uc_tmp = self.get_unconditional_conditioning(N, unconditional_guidance_label)
|
1879 |
+
uc = dict()
|
1880 |
+
for k in c:
|
1881 |
+
if k == "c_crossattn":
|
1882 |
+
assert isinstance(c[k], list) and len(c[k]) == 1
|
1883 |
+
uc[k] = [uc_tmp]
|
1884 |
+
elif isinstance(c[k], list):
|
1885 |
+
uc[k] = [c[k][i] for i in range(len(c[k]))]
|
1886 |
+
else:
|
1887 |
+
uc[k] = c[k]
|
1888 |
+
|
1889 |
+
with ema_scope("Sampling with classifier-free guidance"):
|
1890 |
+
samples_cfg, _ = self.sample_log(cond=c, batch_size=N, ddim=use_ddim,
|
1891 |
+
ddim_steps=ddim_steps, eta=ddim_eta,
|
1892 |
+
unconditional_guidance_scale=unconditional_guidance_scale,
|
1893 |
+
unconditional_conditioning=uc,
|
1894 |
+
)
|
1895 |
+
x_samples_cfg = self.decode_first_stage(samples_cfg)
|
1896 |
+
log[f"samples_cfg_scale_{unconditional_guidance_scale:.2f}"] = x_samples_cfg
|
1897 |
+
return log
|
1898 |
+
|
1899 |
+
class MultiCatFrameDiffusion(LatentDiffusion):
|
1900 |
+
def __init__(self, *args, low_scale_key="LR", **kwargs):
|
1901 |
+
super().__init__(*args, **kwargs)
|
1902 |
+
# assumes that neither the cond_stage nor the low_scale_model contain trainable params
|
1903 |
+
assert not self.cond_stage_trainable
|
1904 |
+
self.low_scale_key = low_scale_key
|
1905 |
+
|
1906 |
+
@torch.no_grad()
|
1907 |
+
def get_input(self, batch, k, cond_key=None, bs=None, log_mode=False):
|
1908 |
+
n = 2
|
1909 |
+
if not log_mode:
|
1910 |
+
z, c = super().get_input(batch, k, force_c_encode=True, bs=bs)
|
1911 |
+
else:
|
1912 |
+
z, c, x, xrec, xc = super().get_input(batch, self.first_stage_key, return_first_stage_outputs=True,
|
1913 |
+
force_c_encode=True, return_original_cond=True, bs=bs)
|
1914 |
+
cat_conds = batch[self.low_scale_key][:bs]
|
1915 |
+
cats = []
|
1916 |
+
for i in range(n):
|
1917 |
+
x_low = cat_conds[:,:,:,3*i:3*(i+1)]
|
1918 |
+
x_low = rearrange(x_low, 'b h w c -> b c h w')
|
1919 |
+
x_low = x_low.to(memory_format=torch.contiguous_format).float()
|
1920 |
+
encoder_posterior = self.encode_first_stage(x_low)
|
1921 |
+
zx = self.get_first_stage_encoding(encoder_posterior).detach()
|
1922 |
+
cats.append(zx)
|
1923 |
+
|
1924 |
+
all_conds = {"c_concat": [torch.cat(cats, dim=1)], "c_crossattn": [c]}
|
1925 |
+
|
1926 |
+
if log_mode:
|
1927 |
+
# TODO: maybe disable if too expensive
|
1928 |
+
interpretability = False
|
1929 |
+
if interpretability:
|
1930 |
+
zx = zx[:, :, ::2, ::2]
|
1931 |
+
return z, all_conds, x, xrec, xc, x_low
|
1932 |
+
return z, all_conds
|
1933 |
+
|
1934 |
+
@torch.no_grad()
|
1935 |
+
def log_images(self, batch, N=8, n_row=4, sample=True, ddim_steps=200, ddim_eta=1., return_keys=None,
|
1936 |
+
plot_denoise_rows=False, plot_progressive_rows=True, plot_diffusion_rows=True,
|
1937 |
+
unconditional_guidance_scale=1., unconditional_guidance_label=None, use_ema_scope=True,
|
1938 |
+
**kwargs):
|
1939 |
+
ema_scope = self.ema_scope if use_ema_scope else nullcontext
|
1940 |
+
use_ddim = ddim_steps is not None
|
1941 |
+
|
1942 |
+
log = dict()
|
1943 |
+
z, c, x, xrec, xc, x_low = self.get_input(batch, self.first_stage_key, bs=N, log_mode=True)
|
1944 |
+
N = min(x.shape[0], N)
|
1945 |
+
n_row = min(x.shape[0], n_row)
|
1946 |
+
log["inputs"] = x
|
1947 |
+
log["reconstruction"] = xrec
|
1948 |
+
log["x_lr"] = x_low
|
1949 |
+
|
1950 |
+
if self.model.conditioning_key is not None:
|
1951 |
+
if hasattr(self.cond_stage_model, "decode"):
|
1952 |
+
xc = self.cond_stage_model.decode(c)
|
1953 |
+
log["conditioning"] = xc
|
1954 |
+
elif self.cond_stage_key in ["caption", "txt"]:
|
1955 |
+
xc = log_txt_as_img((x.shape[2], x.shape[3]), batch[self.cond_stage_key], size=x.shape[2]//25)
|
1956 |
+
log["conditioning"] = xc
|
1957 |
+
elif self.cond_stage_key == 'class_label':
|
1958 |
+
xc = log_txt_as_img((x.shape[2], x.shape[3]), batch["human_label"], size=x.shape[2]//25)
|
1959 |
+
log['conditioning'] = xc
|
1960 |
+
elif isimage(xc):
|
1961 |
+
log["conditioning"] = xc
|
1962 |
+
if ismap(xc):
|
1963 |
+
log["original_conditioning"] = self.to_rgb(xc)
|
1964 |
+
|
1965 |
+
if sample:
|
1966 |
+
# get denoise row
|
1967 |
+
with ema_scope("Sampling"):
|
1968 |
+
samples, z_denoise_row = self.sample_log(cond=c, batch_size=N, ddim=use_ddim,
|
1969 |
+
ddim_steps=ddim_steps, eta=ddim_eta)
|
1970 |
+
# samples, z_denoise_row = self.sample(cond=c, batch_size=N, return_intermediates=True)
|
1971 |
+
x_samples = self.decode_first_stage(samples)
|
1972 |
+
log["samples"] = x_samples
|
1973 |
+
|
1974 |
+
if unconditional_guidance_scale > 1.0:
|
1975 |
+
uc_tmp = self.get_unconditional_conditioning(N, unconditional_guidance_label)
|
1976 |
+
uc = dict()
|
1977 |
+
for k in c:
|
1978 |
+
if k == "c_crossattn":
|
1979 |
+
assert isinstance(c[k], list) and len(c[k]) == 1
|
1980 |
+
uc[k] = [uc_tmp]
|
1981 |
+
elif isinstance(c[k], list):
|
1982 |
+
uc[k] = [c[k][i] for i in range(len(c[k]))]
|
1983 |
+
else:
|
1984 |
+
uc[k] = c[k]
|
1985 |
+
|
1986 |
+
with ema_scope("Sampling with classifier-free guidance"):
|
1987 |
+
samples_cfg, _ = self.sample_log(cond=c, batch_size=N, ddim=use_ddim,
|
1988 |
+
ddim_steps=ddim_steps, eta=ddim_eta,
|
1989 |
+
unconditional_guidance_scale=unconditional_guidance_scale,
|
1990 |
+
unconditional_conditioning=uc,
|
1991 |
+
)
|
1992 |
+
x_samples_cfg = self.decode_first_stage(samples_cfg)
|
1993 |
+
log[f"samples_cfg_scale_{unconditional_guidance_scale:.2f}"] = x_samples_cfg
|
1994 |
+
return log
|
ldm/models/diffusion/plms.py
ADDED
@@ -0,0 +1,259 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""SAMPLING ONLY."""
|
2 |
+
|
3 |
+
import torch
|
4 |
+
import numpy as np
|
5 |
+
from tqdm import tqdm
|
6 |
+
from functools import partial
|
7 |
+
|
8 |
+
from ldm.modules.diffusionmodules.util import make_ddim_sampling_parameters, make_ddim_timesteps, noise_like
|
9 |
+
from ldm.models.diffusion.sampling_util import norm_thresholding
|
10 |
+
|
11 |
+
|
12 |
+
class PLMSSampler(object):
|
13 |
+
def __init__(self, model, schedule="linear", **kwargs):
|
14 |
+
super().__init__()
|
15 |
+
self.model = model
|
16 |
+
self.ddpm_num_timesteps = model.num_timesteps
|
17 |
+
self.schedule = schedule
|
18 |
+
|
19 |
+
def register_buffer(self, name, attr):
|
20 |
+
if type(attr) == torch.Tensor:
|
21 |
+
if attr.device != torch.device("cuda"):
|
22 |
+
attr = attr.to(torch.device("cuda"))
|
23 |
+
setattr(self, name, attr)
|
24 |
+
|
25 |
+
def make_schedule(self, ddim_num_steps, ddim_discretize="uniform", ddim_eta=0., verbose=True):
|
26 |
+
if ddim_eta != 0:
|
27 |
+
raise ValueError('ddim_eta must be 0 for PLMS')
|
28 |
+
self.ddim_timesteps = make_ddim_timesteps(ddim_discr_method=ddim_discretize, num_ddim_timesteps=ddim_num_steps,
|
29 |
+
num_ddpm_timesteps=self.ddpm_num_timesteps,verbose=verbose)
|
30 |
+
alphas_cumprod = self.model.alphas_cumprod
|
31 |
+
assert alphas_cumprod.shape[0] == self.ddpm_num_timesteps, 'alphas have to be defined for each timestep'
|
32 |
+
to_torch = lambda x: x.clone().detach().to(torch.float32).to(self.model.device)
|
33 |
+
|
34 |
+
self.register_buffer('betas', to_torch(self.model.betas))
|
35 |
+
self.register_buffer('alphas_cumprod', to_torch(alphas_cumprod))
|
36 |
+
self.register_buffer('alphas_cumprod_prev', to_torch(self.model.alphas_cumprod_prev))
|
37 |
+
|
38 |
+
# calculations for diffusion q(x_t | x_{t-1}) and others
|
39 |
+
self.register_buffer('sqrt_alphas_cumprod', to_torch(np.sqrt(alphas_cumprod.cpu())))
|
40 |
+
self.register_buffer('sqrt_one_minus_alphas_cumprod', to_torch(np.sqrt(1. - alphas_cumprod.cpu())))
|
41 |
+
self.register_buffer('log_one_minus_alphas_cumprod', to_torch(np.log(1. - alphas_cumprod.cpu())))
|
42 |
+
self.register_buffer('sqrt_recip_alphas_cumprod', to_torch(np.sqrt(1. / alphas_cumprod.cpu())))
|
43 |
+
self.register_buffer('sqrt_recipm1_alphas_cumprod', to_torch(np.sqrt(1. / alphas_cumprod.cpu() - 1)))
|
44 |
+
|
45 |
+
# ddim sampling parameters
|
46 |
+
ddim_sigmas, ddim_alphas, ddim_alphas_prev = make_ddim_sampling_parameters(alphacums=alphas_cumprod.cpu(),
|
47 |
+
ddim_timesteps=self.ddim_timesteps,
|
48 |
+
eta=ddim_eta,verbose=verbose)
|
49 |
+
self.register_buffer('ddim_sigmas', ddim_sigmas)
|
50 |
+
self.register_buffer('ddim_alphas', ddim_alphas)
|
51 |
+
self.register_buffer('ddim_alphas_prev', ddim_alphas_prev)
|
52 |
+
self.register_buffer('ddim_sqrt_one_minus_alphas', np.sqrt(1. - ddim_alphas))
|
53 |
+
sigmas_for_original_sampling_steps = ddim_eta * torch.sqrt(
|
54 |
+
(1 - self.alphas_cumprod_prev) / (1 - self.alphas_cumprod) * (
|
55 |
+
1 - self.alphas_cumprod / self.alphas_cumprod_prev))
|
56 |
+
self.register_buffer('ddim_sigmas_for_original_num_steps', sigmas_for_original_sampling_steps)
|
57 |
+
|
58 |
+
@torch.no_grad()
|
59 |
+
def sample(self,
|
60 |
+
S,
|
61 |
+
batch_size,
|
62 |
+
shape,
|
63 |
+
conditioning=None,
|
64 |
+
callback=None,
|
65 |
+
normals_sequence=None,
|
66 |
+
img_callback=None,
|
67 |
+
quantize_x0=False,
|
68 |
+
eta=0.,
|
69 |
+
mask=None,
|
70 |
+
x0=None,
|
71 |
+
temperature=1.,
|
72 |
+
noise_dropout=0.,
|
73 |
+
score_corrector=None,
|
74 |
+
corrector_kwargs=None,
|
75 |
+
verbose=True,
|
76 |
+
x_T=None,
|
77 |
+
log_every_t=100,
|
78 |
+
unconditional_guidance_scale=1.,
|
79 |
+
unconditional_conditioning=None,
|
80 |
+
# this has to come in the same format as the conditioning, # e.g. as encoded tokens, ...
|
81 |
+
dynamic_threshold=None,
|
82 |
+
**kwargs
|
83 |
+
):
|
84 |
+
if conditioning is not None:
|
85 |
+
if isinstance(conditioning, dict):
|
86 |
+
ctmp = conditioning[list(conditioning.keys())[0]]
|
87 |
+
while isinstance(ctmp, list): ctmp = ctmp[0]
|
88 |
+
cbs = ctmp.shape[0]
|
89 |
+
if cbs != batch_size:
|
90 |
+
print(f"Warning: Got {cbs} conditionings but batch-size is {batch_size}")
|
91 |
+
else:
|
92 |
+
if conditioning.shape[0] != batch_size:
|
93 |
+
print(f"Warning: Got {conditioning.shape[0]} conditionings but batch-size is {batch_size}")
|
94 |
+
|
95 |
+
self.make_schedule(ddim_num_steps=S, ddim_eta=eta, verbose=verbose)
|
96 |
+
# sampling
|
97 |
+
C, H, W = shape
|
98 |
+
size = (batch_size, C, H, W)
|
99 |
+
print(f'Data shape for PLMS sampling is {size}')
|
100 |
+
|
101 |
+
samples, intermediates = self.plms_sampling(conditioning, size,
|
102 |
+
callback=callback,
|
103 |
+
img_callback=img_callback,
|
104 |
+
quantize_denoised=quantize_x0,
|
105 |
+
mask=mask, x0=x0,
|
106 |
+
ddim_use_original_steps=False,
|
107 |
+
noise_dropout=noise_dropout,
|
108 |
+
temperature=temperature,
|
109 |
+
score_corrector=score_corrector,
|
110 |
+
corrector_kwargs=corrector_kwargs,
|
111 |
+
x_T=x_T,
|
112 |
+
log_every_t=log_every_t,
|
113 |
+
unconditional_guidance_scale=unconditional_guidance_scale,
|
114 |
+
unconditional_conditioning=unconditional_conditioning,
|
115 |
+
dynamic_threshold=dynamic_threshold,
|
116 |
+
)
|
117 |
+
return samples, intermediates
|
118 |
+
|
119 |
+
@torch.no_grad()
|
120 |
+
def plms_sampling(self, cond, shape,
|
121 |
+
x_T=None, ddim_use_original_steps=False,
|
122 |
+
callback=None, timesteps=None, quantize_denoised=False,
|
123 |
+
mask=None, x0=None, img_callback=None, log_every_t=100,
|
124 |
+
temperature=1., noise_dropout=0., score_corrector=None, corrector_kwargs=None,
|
125 |
+
unconditional_guidance_scale=1., unconditional_conditioning=None,
|
126 |
+
dynamic_threshold=None):
|
127 |
+
device = self.model.betas.device
|
128 |
+
b = shape[0]
|
129 |
+
if x_T is None:
|
130 |
+
img = torch.randn(shape, device=device)
|
131 |
+
else:
|
132 |
+
img = x_T
|
133 |
+
|
134 |
+
if timesteps is None:
|
135 |
+
timesteps = self.ddpm_num_timesteps if ddim_use_original_steps else self.ddim_timesteps
|
136 |
+
elif timesteps is not None and not ddim_use_original_steps:
|
137 |
+
subset_end = int(min(timesteps / self.ddim_timesteps.shape[0], 1) * self.ddim_timesteps.shape[0]) - 1
|
138 |
+
timesteps = self.ddim_timesteps[:subset_end]
|
139 |
+
|
140 |
+
intermediates = {'x_inter': [img], 'pred_x0': [img]}
|
141 |
+
time_range = list(reversed(range(0,timesteps))) if ddim_use_original_steps else np.flip(timesteps)
|
142 |
+
total_steps = timesteps if ddim_use_original_steps else timesteps.shape[0]
|
143 |
+
print(f"Running PLMS Sampling with {total_steps} timesteps")
|
144 |
+
|
145 |
+
iterator = tqdm(time_range, desc='PLMS Sampler', total=total_steps)
|
146 |
+
old_eps = []
|
147 |
+
|
148 |
+
for i, step in enumerate(iterator):
|
149 |
+
index = total_steps - i - 1
|
150 |
+
ts = torch.full((b,), step, device=device, dtype=torch.long)
|
151 |
+
ts_next = torch.full((b,), time_range[min(i + 1, len(time_range) - 1)], device=device, dtype=torch.long)
|
152 |
+
|
153 |
+
if mask is not None:
|
154 |
+
assert x0 is not None
|
155 |
+
img_orig = self.model.q_sample(x0, ts) # TODO: deterministic forward pass?
|
156 |
+
img = img_orig * mask + (1. - mask) * img
|
157 |
+
|
158 |
+
outs = self.p_sample_plms(img, cond, ts, index=index, use_original_steps=ddim_use_original_steps,
|
159 |
+
quantize_denoised=quantize_denoised, temperature=temperature,
|
160 |
+
noise_dropout=noise_dropout, score_corrector=score_corrector,
|
161 |
+
corrector_kwargs=corrector_kwargs,
|
162 |
+
unconditional_guidance_scale=unconditional_guidance_scale,
|
163 |
+
unconditional_conditioning=unconditional_conditioning,
|
164 |
+
old_eps=old_eps, t_next=ts_next,
|
165 |
+
dynamic_threshold=dynamic_threshold)
|
166 |
+
img, pred_x0, e_t = outs
|
167 |
+
old_eps.append(e_t)
|
168 |
+
if len(old_eps) >= 4:
|
169 |
+
old_eps.pop(0)
|
170 |
+
if callback: callback(i)
|
171 |
+
if img_callback: img_callback(pred_x0, i)
|
172 |
+
|
173 |
+
if index % log_every_t == 0 or index == total_steps - 1:
|
174 |
+
intermediates['x_inter'].append(img)
|
175 |
+
intermediates['pred_x0'].append(pred_x0)
|
176 |
+
|
177 |
+
return img, intermediates
|
178 |
+
|
179 |
+
@torch.no_grad()
|
180 |
+
def p_sample_plms(self, x, c, t, index, repeat_noise=False, use_original_steps=False, quantize_denoised=False,
|
181 |
+
temperature=1., noise_dropout=0., score_corrector=None, corrector_kwargs=None,
|
182 |
+
unconditional_guidance_scale=1., unconditional_conditioning=None, old_eps=None, t_next=None,
|
183 |
+
dynamic_threshold=None):
|
184 |
+
b, *_, device = *x.shape, x.device
|
185 |
+
|
186 |
+
def get_model_output(x, t):
|
187 |
+
if unconditional_conditioning is None or unconditional_guidance_scale == 1.:
|
188 |
+
e_t = self.model.apply_model(x, t, c)
|
189 |
+
else:
|
190 |
+
x_in = torch.cat([x] * 2)
|
191 |
+
t_in = torch.cat([t] * 2)
|
192 |
+
if isinstance(c, dict):
|
193 |
+
assert isinstance(unconditional_conditioning, dict)
|
194 |
+
c_in = dict()
|
195 |
+
for k in c:
|
196 |
+
if isinstance(c[k], list):
|
197 |
+
c_in[k] = [torch.cat([
|
198 |
+
unconditional_conditioning[k][i],
|
199 |
+
c[k][i]]) for i in range(len(c[k]))]
|
200 |
+
else:
|
201 |
+
c_in[k] = torch.cat([
|
202 |
+
unconditional_conditioning[k],
|
203 |
+
c[k]])
|
204 |
+
else:
|
205 |
+
c_in = torch.cat([unconditional_conditioning, c])
|
206 |
+
e_t_uncond, e_t = self.model.apply_model(x_in, t_in, c_in).chunk(2)
|
207 |
+
e_t = e_t_uncond + unconditional_guidance_scale * (e_t - e_t_uncond)
|
208 |
+
|
209 |
+
if score_corrector is not None:
|
210 |
+
assert self.model.parameterization == "eps"
|
211 |
+
e_t = score_corrector.modify_score(self.model, e_t, x, t, c, **corrector_kwargs)
|
212 |
+
|
213 |
+
return e_t
|
214 |
+
|
215 |
+
alphas = self.model.alphas_cumprod if use_original_steps else self.ddim_alphas
|
216 |
+
alphas_prev = self.model.alphas_cumprod_prev if use_original_steps else self.ddim_alphas_prev
|
217 |
+
sqrt_one_minus_alphas = self.model.sqrt_one_minus_alphas_cumprod if use_original_steps else self.ddim_sqrt_one_minus_alphas
|
218 |
+
sigmas = self.model.ddim_sigmas_for_original_num_steps if use_original_steps else self.ddim_sigmas
|
219 |
+
|
220 |
+
def get_x_prev_and_pred_x0(e_t, index):
|
221 |
+
# select parameters corresponding to the currently considered timestep
|
222 |
+
a_t = torch.full((b, 1, 1, 1), alphas[index], device=device)
|
223 |
+
a_prev = torch.full((b, 1, 1, 1), alphas_prev[index], device=device)
|
224 |
+
sigma_t = torch.full((b, 1, 1, 1), sigmas[index], device=device)
|
225 |
+
sqrt_one_minus_at = torch.full((b, 1, 1, 1), sqrt_one_minus_alphas[index],device=device)
|
226 |
+
|
227 |
+
# current prediction for x_0
|
228 |
+
pred_x0 = (x - sqrt_one_minus_at * e_t) / a_t.sqrt()
|
229 |
+
if quantize_denoised:
|
230 |
+
pred_x0, _, *_ = self.model.first_stage_model.quantize(pred_x0)
|
231 |
+
if dynamic_threshold is not None:
|
232 |
+
pred_x0 = norm_thresholding(pred_x0, dynamic_threshold)
|
233 |
+
# direction pointing to x_t
|
234 |
+
dir_xt = (1. - a_prev - sigma_t**2).sqrt() * e_t
|
235 |
+
noise = sigma_t * noise_like(x.shape, device, repeat_noise) * temperature
|
236 |
+
if noise_dropout > 0.:
|
237 |
+
noise = torch.nn.functional.dropout(noise, p=noise_dropout)
|
238 |
+
x_prev = a_prev.sqrt() * pred_x0 + dir_xt + noise
|
239 |
+
return x_prev, pred_x0
|
240 |
+
|
241 |
+
e_t = get_model_output(x, t)
|
242 |
+
if len(old_eps) == 0:
|
243 |
+
# Pseudo Improved Euler (2nd order)
|
244 |
+
x_prev, pred_x0 = get_x_prev_and_pred_x0(e_t, index)
|
245 |
+
e_t_next = get_model_output(x_prev, t_next)
|
246 |
+
e_t_prime = (e_t + e_t_next) / 2
|
247 |
+
elif len(old_eps) == 1:
|
248 |
+
# 2nd order Pseudo Linear Multistep (Adams-Bashforth)
|
249 |
+
e_t_prime = (3 * e_t - old_eps[-1]) / 2
|
250 |
+
elif len(old_eps) == 2:
|
251 |
+
# 3nd order Pseudo Linear Multistep (Adams-Bashforth)
|
252 |
+
e_t_prime = (23 * e_t - 16 * old_eps[-1] + 5 * old_eps[-2]) / 12
|
253 |
+
elif len(old_eps) >= 3:
|
254 |
+
# 4nd order Pseudo Linear Multistep (Adams-Bashforth)
|
255 |
+
e_t_prime = (55 * e_t - 59 * old_eps[-1] + 37 * old_eps[-2] - 9 * old_eps[-3]) / 24
|
256 |
+
|
257 |
+
x_prev, pred_x0 = get_x_prev_and_pred_x0(e_t_prime, index)
|
258 |
+
|
259 |
+
return x_prev, pred_x0, e_t
|
ldm/models/diffusion/sampling_util.py
ADDED
@@ -0,0 +1,50 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
import numpy as np
|
3 |
+
|
4 |
+
|
5 |
+
def append_dims(x, target_dims):
|
6 |
+
"""Appends dimensions to the end of a tensor until it has target_dims dimensions.
|
7 |
+
From https://github.com/crowsonkb/k-diffusion/blob/master/k_diffusion/utils.py"""
|
8 |
+
dims_to_append = target_dims - x.ndim
|
9 |
+
if dims_to_append < 0:
|
10 |
+
raise ValueError(f'input has {x.ndim} dims but target_dims is {target_dims}, which is less')
|
11 |
+
return x[(...,) + (None,) * dims_to_append]
|
12 |
+
|
13 |
+
|
14 |
+
def renorm_thresholding(x0, value):
|
15 |
+
# renorm
|
16 |
+
pred_max = x0.max()
|
17 |
+
pred_min = x0.min()
|
18 |
+
pred_x0 = (x0 - pred_min) / (pred_max - pred_min) # 0 ... 1
|
19 |
+
pred_x0 = 2 * pred_x0 - 1. # -1 ... 1
|
20 |
+
|
21 |
+
s = torch.quantile(
|
22 |
+
rearrange(pred_x0, 'b ... -> b (...)').abs(),
|
23 |
+
value,
|
24 |
+
dim=-1
|
25 |
+
)
|
26 |
+
s.clamp_(min=1.0)
|
27 |
+
s = s.view(-1, *((1,) * (pred_x0.ndim - 1)))
|
28 |
+
|
29 |
+
# clip by threshold
|
30 |
+
# pred_x0 = pred_x0.clamp(-s, s) / s # needs newer pytorch # TODO bring back to pure-gpu with min/max
|
31 |
+
|
32 |
+
# temporary hack: numpy on cpu
|
33 |
+
pred_x0 = np.clip(pred_x0.cpu().numpy(), -s.cpu().numpy(), s.cpu().numpy()) / s.cpu().numpy()
|
34 |
+
pred_x0 = torch.tensor(pred_x0).to(self.model.device)
|
35 |
+
|
36 |
+
# re.renorm
|
37 |
+
pred_x0 = (pred_x0 + 1.) / 2. # 0 ... 1
|
38 |
+
pred_x0 = (pred_max - pred_min) * pred_x0 + pred_min # orig range
|
39 |
+
return pred_x0
|
40 |
+
|
41 |
+
|
42 |
+
def norm_thresholding(x0, value):
|
43 |
+
s = append_dims(x0.pow(2).flatten(1).mean(1).sqrt().clamp(min=value), x0.ndim)
|
44 |
+
return x0 * (value / s)
|
45 |
+
|
46 |
+
|
47 |
+
def spatial_norm_thresholding(x0, value):
|
48 |
+
# b c h w
|
49 |
+
s = x0.pow(2).mean(1, keepdim=True).sqrt().clamp(min=value)
|
50 |
+
return x0 * (value / s)
|
ldm/modules/attention.py
ADDED
@@ -0,0 +1,266 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from inspect import isfunction
|
2 |
+
import math
|
3 |
+
import torch
|
4 |
+
import torch.nn.functional as F
|
5 |
+
from torch import nn, einsum
|
6 |
+
from einops import rearrange, repeat
|
7 |
+
|
8 |
+
from ldm.modules.diffusionmodules.util import checkpoint
|
9 |
+
|
10 |
+
|
11 |
+
def exists(val):
|
12 |
+
return val is not None
|
13 |
+
|
14 |
+
|
15 |
+
def uniq(arr):
|
16 |
+
return{el: True for el in arr}.keys()
|
17 |
+
|
18 |
+
|
19 |
+
def default(val, d):
|
20 |
+
if exists(val):
|
21 |
+
return val
|
22 |
+
return d() if isfunction(d) else d
|
23 |
+
|
24 |
+
|
25 |
+
def max_neg_value(t):
|
26 |
+
return -torch.finfo(t.dtype).max
|
27 |
+
|
28 |
+
|
29 |
+
def init_(tensor):
|
30 |
+
dim = tensor.shape[-1]
|
31 |
+
std = 1 / math.sqrt(dim)
|
32 |
+
tensor.uniform_(-std, std)
|
33 |
+
return tensor
|
34 |
+
|
35 |
+
|
36 |
+
# feedforward
|
37 |
+
class GEGLU(nn.Module):
|
38 |
+
def __init__(self, dim_in, dim_out):
|
39 |
+
super().__init__()
|
40 |
+
self.proj = nn.Linear(dim_in, dim_out * 2)
|
41 |
+
|
42 |
+
def forward(self, x):
|
43 |
+
x, gate = self.proj(x).chunk(2, dim=-1)
|
44 |
+
return x * F.gelu(gate)
|
45 |
+
|
46 |
+
|
47 |
+
class FeedForward(nn.Module):
|
48 |
+
def __init__(self, dim, dim_out=None, mult=4, glu=False, dropout=0.):
|
49 |
+
super().__init__()
|
50 |
+
inner_dim = int(dim * mult)
|
51 |
+
dim_out = default(dim_out, dim)
|
52 |
+
project_in = nn.Sequential(
|
53 |
+
nn.Linear(dim, inner_dim),
|
54 |
+
nn.GELU()
|
55 |
+
) if not glu else GEGLU(dim, inner_dim)
|
56 |
+
|
57 |
+
self.net = nn.Sequential(
|
58 |
+
project_in,
|
59 |
+
nn.Dropout(dropout),
|
60 |
+
nn.Linear(inner_dim, dim_out)
|
61 |
+
)
|
62 |
+
|
63 |
+
def forward(self, x):
|
64 |
+
return self.net(x)
|
65 |
+
|
66 |
+
|
67 |
+
def zero_module(module):
|
68 |
+
"""
|
69 |
+
Zero out the parameters of a module and return it.
|
70 |
+
"""
|
71 |
+
for p in module.parameters():
|
72 |
+
p.detach().zero_()
|
73 |
+
return module
|
74 |
+
|
75 |
+
|
76 |
+
def Normalize(in_channels):
|
77 |
+
return torch.nn.GroupNorm(num_groups=32, num_channels=in_channels, eps=1e-6, affine=True)
|
78 |
+
|
79 |
+
|
80 |
+
class LinearAttention(nn.Module):
|
81 |
+
def __init__(self, dim, heads=4, dim_head=32):
|
82 |
+
super().__init__()
|
83 |
+
self.heads = heads
|
84 |
+
hidden_dim = dim_head * heads
|
85 |
+
self.to_qkv = nn.Conv2d(dim, hidden_dim * 3, 1, bias = False)
|
86 |
+
self.to_out = nn.Conv2d(hidden_dim, dim, 1)
|
87 |
+
|
88 |
+
def forward(self, x):
|
89 |
+
b, c, h, w = x.shape
|
90 |
+
qkv = self.to_qkv(x)
|
91 |
+
q, k, v = rearrange(qkv, 'b (qkv heads c) h w -> qkv b heads c (h w)', heads = self.heads, qkv=3)
|
92 |
+
k = k.softmax(dim=-1)
|
93 |
+
context = torch.einsum('bhdn,bhen->bhde', k, v)
|
94 |
+
out = torch.einsum('bhde,bhdn->bhen', context, q)
|
95 |
+
out = rearrange(out, 'b heads c (h w) -> b (heads c) h w', heads=self.heads, h=h, w=w)
|
96 |
+
return self.to_out(out)
|
97 |
+
|
98 |
+
|
99 |
+
class SpatialSelfAttention(nn.Module):
|
100 |
+
def __init__(self, in_channels):
|
101 |
+
super().__init__()
|
102 |
+
self.in_channels = in_channels
|
103 |
+
|
104 |
+
self.norm = Normalize(in_channels)
|
105 |
+
self.q = torch.nn.Conv2d(in_channels,
|
106 |
+
in_channels,
|
107 |
+
kernel_size=1,
|
108 |
+
stride=1,
|
109 |
+
padding=0)
|
110 |
+
self.k = torch.nn.Conv2d(in_channels,
|
111 |
+
in_channels,
|
112 |
+
kernel_size=1,
|
113 |
+
stride=1,
|
114 |
+
padding=0)
|
115 |
+
self.v = torch.nn.Conv2d(in_channels,
|
116 |
+
in_channels,
|
117 |
+
kernel_size=1,
|
118 |
+
stride=1,
|
119 |
+
padding=0)
|
120 |
+
self.proj_out = torch.nn.Conv2d(in_channels,
|
121 |
+
in_channels,
|
122 |
+
kernel_size=1,
|
123 |
+
stride=1,
|
124 |
+
padding=0)
|
125 |
+
|
126 |
+
def forward(self, x):
|
127 |
+
h_ = x
|
128 |
+
h_ = self.norm(h_)
|
129 |
+
q = self.q(h_)
|
130 |
+
k = self.k(h_)
|
131 |
+
v = self.v(h_)
|
132 |
+
|
133 |
+
# compute attention
|
134 |
+
b,c,h,w = q.shape
|
135 |
+
q = rearrange(q, 'b c h w -> b (h w) c')
|
136 |
+
k = rearrange(k, 'b c h w -> b c (h w)')
|
137 |
+
w_ = torch.einsum('bij,bjk->bik', q, k)
|
138 |
+
|
139 |
+
w_ = w_ * (int(c)**(-0.5))
|
140 |
+
w_ = torch.nn.functional.softmax(w_, dim=2)
|
141 |
+
|
142 |
+
# attend to values
|
143 |
+
v = rearrange(v, 'b c h w -> b c (h w)')
|
144 |
+
w_ = rearrange(w_, 'b i j -> b j i')
|
145 |
+
h_ = torch.einsum('bij,bjk->bik', v, w_)
|
146 |
+
h_ = rearrange(h_, 'b c (h w) -> b c h w', h=h)
|
147 |
+
h_ = self.proj_out(h_)
|
148 |
+
|
149 |
+
return x+h_
|
150 |
+
|
151 |
+
|
152 |
+
class CrossAttention(nn.Module):
|
153 |
+
def __init__(self, query_dim, context_dim=None, heads=8, dim_head=64, dropout=0.):
|
154 |
+
super().__init__()
|
155 |
+
inner_dim = dim_head * heads
|
156 |
+
context_dim = default(context_dim, query_dim)
|
157 |
+
|
158 |
+
self.scale = dim_head ** -0.5
|
159 |
+
self.heads = heads
|
160 |
+
|
161 |
+
self.to_q = nn.Linear(query_dim, inner_dim, bias=False)
|
162 |
+
self.to_k = nn.Linear(context_dim, inner_dim, bias=False)
|
163 |
+
self.to_v = nn.Linear(context_dim, inner_dim, bias=False)
|
164 |
+
|
165 |
+
self.to_out = nn.Sequential(
|
166 |
+
nn.Linear(inner_dim, query_dim),
|
167 |
+
nn.Dropout(dropout)
|
168 |
+
)
|
169 |
+
|
170 |
+
def forward(self, x, context=None, mask=None):
|
171 |
+
h = self.heads
|
172 |
+
|
173 |
+
q = self.to_q(x)
|
174 |
+
context = default(context, x)
|
175 |
+
k = self.to_k(context)
|
176 |
+
v = self.to_v(context)
|
177 |
+
|
178 |
+
q, k, v = map(lambda t: rearrange(t, 'b n (h d) -> (b h) n d', h=h), (q, k, v))
|
179 |
+
|
180 |
+
sim = einsum('b i d, b j d -> b i j', q, k) * self.scale
|
181 |
+
|
182 |
+
if exists(mask):
|
183 |
+
mask = rearrange(mask, 'b ... -> b (...)')
|
184 |
+
max_neg_value = -torch.finfo(sim.dtype).max
|
185 |
+
mask = repeat(mask, 'b j -> (b h) () j', h=h)
|
186 |
+
sim.masked_fill_(~mask, max_neg_value)
|
187 |
+
|
188 |
+
# attention, what we cannot get enough of
|
189 |
+
attn = sim.softmax(dim=-1)
|
190 |
+
|
191 |
+
out = einsum('b i j, b j d -> b i d', attn, v)
|
192 |
+
out = rearrange(out, '(b h) n d -> b n (h d)', h=h)
|
193 |
+
return self.to_out(out)
|
194 |
+
|
195 |
+
|
196 |
+
class BasicTransformerBlock(nn.Module):
|
197 |
+
def __init__(self, dim, n_heads, d_head, dropout=0., context_dim=None, gated_ff=True, checkpoint=True,
|
198 |
+
disable_self_attn=False):
|
199 |
+
super().__init__()
|
200 |
+
self.disable_self_attn = disable_self_attn
|
201 |
+
self.attn1 = CrossAttention(query_dim=dim, heads=n_heads, dim_head=d_head, dropout=dropout,
|
202 |
+
context_dim=context_dim if self.disable_self_attn else None) # is a self-attention if not self.disable_self_attn
|
203 |
+
self.ff = FeedForward(dim, dropout=dropout, glu=gated_ff)
|
204 |
+
self.attn2 = CrossAttention(query_dim=dim, context_dim=context_dim,
|
205 |
+
heads=n_heads, dim_head=d_head, dropout=dropout) # is self-attn if context is none
|
206 |
+
self.norm1 = nn.LayerNorm(dim)
|
207 |
+
self.norm2 = nn.LayerNorm(dim)
|
208 |
+
self.norm3 = nn.LayerNorm(dim)
|
209 |
+
self.checkpoint = checkpoint
|
210 |
+
|
211 |
+
def forward(self, x, context=None):
|
212 |
+
return checkpoint(self._forward, (x, context), self.parameters(), self.checkpoint)
|
213 |
+
|
214 |
+
def _forward(self, x, context=None):
|
215 |
+
x = self.attn1(self.norm1(x), context=context if self.disable_self_attn else None) + x
|
216 |
+
x = self.attn2(self.norm2(x), context=context) + x
|
217 |
+
x = self.ff(self.norm3(x)) + x
|
218 |
+
return x
|
219 |
+
|
220 |
+
|
221 |
+
class SpatialTransformer(nn.Module):
|
222 |
+
"""
|
223 |
+
Transformer block for image-like data.
|
224 |
+
First, project the input (aka embedding)
|
225 |
+
and reshape to b, t, d.
|
226 |
+
Then apply standard transformer action.
|
227 |
+
Finally, reshape to image
|
228 |
+
"""
|
229 |
+
def __init__(self, in_channels, n_heads, d_head,
|
230 |
+
depth=1, dropout=0., context_dim=None,
|
231 |
+
disable_self_attn=False):
|
232 |
+
super().__init__()
|
233 |
+
self.in_channels = in_channels
|
234 |
+
inner_dim = n_heads * d_head
|
235 |
+
self.norm = Normalize(in_channels)
|
236 |
+
|
237 |
+
self.proj_in = nn.Conv2d(in_channels,
|
238 |
+
inner_dim,
|
239 |
+
kernel_size=1,
|
240 |
+
stride=1,
|
241 |
+
padding=0)
|
242 |
+
|
243 |
+
self.transformer_blocks = nn.ModuleList(
|
244 |
+
[BasicTransformerBlock(inner_dim, n_heads, d_head, dropout=dropout, context_dim=context_dim,
|
245 |
+
disable_self_attn=disable_self_attn)
|
246 |
+
for d in range(depth)]
|
247 |
+
)
|
248 |
+
|
249 |
+
self.proj_out = zero_module(nn.Conv2d(inner_dim,
|
250 |
+
in_channels,
|
251 |
+
kernel_size=1,
|
252 |
+
stride=1,
|
253 |
+
padding=0))
|
254 |
+
|
255 |
+
def forward(self, x, context=None):
|
256 |
+
# note: if no context is given, cross-attention defaults to self-attention
|
257 |
+
b, c, h, w = x.shape
|
258 |
+
x_in = x
|
259 |
+
x = self.norm(x)
|
260 |
+
x = self.proj_in(x)
|
261 |
+
x = rearrange(x, 'b c h w -> b (h w) c').contiguous()
|
262 |
+
for block in self.transformer_blocks:
|
263 |
+
x = block(x, context=context)
|
264 |
+
x = rearrange(x, 'b (h w) c -> b c h w', h=h, w=w).contiguous()
|
265 |
+
x = self.proj_out(x)
|
266 |
+
return x + x_in
|
ldm/modules/diffusionmodules/__init__.py
ADDED
File without changes
|
ldm/modules/diffusionmodules/model.py
ADDED
@@ -0,0 +1,835 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# pytorch_diffusion + derived encoder decoder
|
2 |
+
import math
|
3 |
+
import torch
|
4 |
+
import torch.nn as nn
|
5 |
+
import numpy as np
|
6 |
+
from einops import rearrange
|
7 |
+
|
8 |
+
from ldm.util import instantiate_from_config
|
9 |
+
from ldm.modules.attention import LinearAttention
|
10 |
+
|
11 |
+
|
12 |
+
def get_timestep_embedding(timesteps, embedding_dim):
|
13 |
+
"""
|
14 |
+
This matches the implementation in Denoising Diffusion Probabilistic Models:
|
15 |
+
From Fairseq.
|
16 |
+
Build sinusoidal embeddings.
|
17 |
+
This matches the implementation in tensor2tensor, but differs slightly
|
18 |
+
from the description in Section 3.5 of "Attention Is All You Need".
|
19 |
+
"""
|
20 |
+
assert len(timesteps.shape) == 1
|
21 |
+
|
22 |
+
half_dim = embedding_dim // 2
|
23 |
+
emb = math.log(10000) / (half_dim - 1)
|
24 |
+
emb = torch.exp(torch.arange(half_dim, dtype=torch.float32) * -emb)
|
25 |
+
emb = emb.to(device=timesteps.device)
|
26 |
+
emb = timesteps.float()[:, None] * emb[None, :]
|
27 |
+
emb = torch.cat([torch.sin(emb), torch.cos(emb)], dim=1)
|
28 |
+
if embedding_dim % 2 == 1: # zero pad
|
29 |
+
emb = torch.nn.functional.pad(emb, (0,1,0,0))
|
30 |
+
return emb
|
31 |
+
|
32 |
+
|
33 |
+
def nonlinearity(x):
|
34 |
+
# swish
|
35 |
+
return x*torch.sigmoid(x)
|
36 |
+
|
37 |
+
|
38 |
+
def Normalize(in_channels, num_groups=32):
|
39 |
+
return torch.nn.GroupNorm(num_groups=num_groups, num_channels=in_channels, eps=1e-6, affine=True)
|
40 |
+
|
41 |
+
|
42 |
+
class Upsample(nn.Module):
|
43 |
+
def __init__(self, in_channels, with_conv):
|
44 |
+
super().__init__()
|
45 |
+
self.with_conv = with_conv
|
46 |
+
if self.with_conv:
|
47 |
+
self.conv = torch.nn.Conv2d(in_channels,
|
48 |
+
in_channels,
|
49 |
+
kernel_size=3,
|
50 |
+
stride=1,
|
51 |
+
padding=1)
|
52 |
+
|
53 |
+
def forward(self, x):
|
54 |
+
x = torch.nn.functional.interpolate(x, scale_factor=2.0, mode="nearest")
|
55 |
+
if self.with_conv:
|
56 |
+
x = self.conv(x)
|
57 |
+
return x
|
58 |
+
|
59 |
+
|
60 |
+
class Downsample(nn.Module):
|
61 |
+
def __init__(self, in_channels, with_conv):
|
62 |
+
super().__init__()
|
63 |
+
self.with_conv = with_conv
|
64 |
+
if self.with_conv:
|
65 |
+
# no asymmetric padding in torch conv, must do it ourselves
|
66 |
+
self.conv = torch.nn.Conv2d(in_channels,
|
67 |
+
in_channels,
|
68 |
+
kernel_size=3,
|
69 |
+
stride=2,
|
70 |
+
padding=0)
|
71 |
+
|
72 |
+
def forward(self, x):
|
73 |
+
if self.with_conv:
|
74 |
+
pad = (0,1,0,1)
|
75 |
+
x = torch.nn.functional.pad(x, pad, mode="constant", value=0)
|
76 |
+
x = self.conv(x)
|
77 |
+
else:
|
78 |
+
x = torch.nn.functional.avg_pool2d(x, kernel_size=2, stride=2)
|
79 |
+
return x
|
80 |
+
|
81 |
+
|
82 |
+
class ResnetBlock(nn.Module):
|
83 |
+
def __init__(self, *, in_channels, out_channels=None, conv_shortcut=False,
|
84 |
+
dropout, temb_channels=512):
|
85 |
+
super().__init__()
|
86 |
+
self.in_channels = in_channels
|
87 |
+
out_channels = in_channels if out_channels is None else out_channels
|
88 |
+
self.out_channels = out_channels
|
89 |
+
self.use_conv_shortcut = conv_shortcut
|
90 |
+
|
91 |
+
self.norm1 = Normalize(in_channels)
|
92 |
+
self.conv1 = torch.nn.Conv2d(in_channels,
|
93 |
+
out_channels,
|
94 |
+
kernel_size=3,
|
95 |
+
stride=1,
|
96 |
+
padding=1)
|
97 |
+
if temb_channels > 0:
|
98 |
+
self.temb_proj = torch.nn.Linear(temb_channels,
|
99 |
+
out_channels)
|
100 |
+
self.norm2 = Normalize(out_channels)
|
101 |
+
self.dropout = torch.nn.Dropout(dropout)
|
102 |
+
self.conv2 = torch.nn.Conv2d(out_channels,
|
103 |
+
out_channels,
|
104 |
+
kernel_size=3,
|
105 |
+
stride=1,
|
106 |
+
padding=1)
|
107 |
+
if self.in_channels != self.out_channels:
|
108 |
+
if self.use_conv_shortcut:
|
109 |
+
self.conv_shortcut = torch.nn.Conv2d(in_channels,
|
110 |
+
out_channels,
|
111 |
+
kernel_size=3,
|
112 |
+
stride=1,
|
113 |
+
padding=1)
|
114 |
+
else:
|
115 |
+
self.nin_shortcut = torch.nn.Conv2d(in_channels,
|
116 |
+
out_channels,
|
117 |
+
kernel_size=1,
|
118 |
+
stride=1,
|
119 |
+
padding=0)
|
120 |
+
|
121 |
+
def forward(self, x, temb):
|
122 |
+
h = x
|
123 |
+
h = self.norm1(h)
|
124 |
+
h = nonlinearity(h)
|
125 |
+
h = self.conv1(h)
|
126 |
+
|
127 |
+
if temb is not None:
|
128 |
+
h = h + self.temb_proj(nonlinearity(temb))[:,:,None,None]
|
129 |
+
|
130 |
+
h = self.norm2(h)
|
131 |
+
h = nonlinearity(h)
|
132 |
+
h = self.dropout(h)
|
133 |
+
h = self.conv2(h)
|
134 |
+
|
135 |
+
if self.in_channels != self.out_channels:
|
136 |
+
if self.use_conv_shortcut:
|
137 |
+
x = self.conv_shortcut(x)
|
138 |
+
else:
|
139 |
+
x = self.nin_shortcut(x)
|
140 |
+
|
141 |
+
return x+h
|
142 |
+
|
143 |
+
|
144 |
+
class LinAttnBlock(LinearAttention):
|
145 |
+
"""to match AttnBlock usage"""
|
146 |
+
def __init__(self, in_channels):
|
147 |
+
super().__init__(dim=in_channels, heads=1, dim_head=in_channels)
|
148 |
+
|
149 |
+
|
150 |
+
class AttnBlock(nn.Module):
|
151 |
+
def __init__(self, in_channels):
|
152 |
+
super().__init__()
|
153 |
+
self.in_channels = in_channels
|
154 |
+
|
155 |
+
self.norm = Normalize(in_channels)
|
156 |
+
self.q = torch.nn.Conv2d(in_channels,
|
157 |
+
in_channels,
|
158 |
+
kernel_size=1,
|
159 |
+
stride=1,
|
160 |
+
padding=0)
|
161 |
+
self.k = torch.nn.Conv2d(in_channels,
|
162 |
+
in_channels,
|
163 |
+
kernel_size=1,
|
164 |
+
stride=1,
|
165 |
+
padding=0)
|
166 |
+
self.v = torch.nn.Conv2d(in_channels,
|
167 |
+
in_channels,
|
168 |
+
kernel_size=1,
|
169 |
+
stride=1,
|
170 |
+
padding=0)
|
171 |
+
self.proj_out = torch.nn.Conv2d(in_channels,
|
172 |
+
in_channels,
|
173 |
+
kernel_size=1,
|
174 |
+
stride=1,
|
175 |
+
padding=0)
|
176 |
+
|
177 |
+
|
178 |
+
def forward(self, x):
|
179 |
+
h_ = x
|
180 |
+
h_ = self.norm(h_)
|
181 |
+
q = self.q(h_)
|
182 |
+
k = self.k(h_)
|
183 |
+
v = self.v(h_)
|
184 |
+
|
185 |
+
# compute attention
|
186 |
+
b,c,h,w = q.shape
|
187 |
+
q = q.reshape(b,c,h*w)
|
188 |
+
q = q.permute(0,2,1) # b,hw,c
|
189 |
+
k = k.reshape(b,c,h*w) # b,c,hw
|
190 |
+
w_ = torch.bmm(q,k) # b,hw,hw w[b,i,j]=sum_c q[b,i,c]k[b,c,j]
|
191 |
+
w_ = w_ * (int(c)**(-0.5))
|
192 |
+
w_ = torch.nn.functional.softmax(w_, dim=2)
|
193 |
+
|
194 |
+
# attend to values
|
195 |
+
v = v.reshape(b,c,h*w)
|
196 |
+
w_ = w_.permute(0,2,1) # b,hw,hw (first hw of k, second of q)
|
197 |
+
h_ = torch.bmm(v,w_) # b, c,hw (hw of q) h_[b,c,j] = sum_i v[b,c,i] w_[b,i,j]
|
198 |
+
h_ = h_.reshape(b,c,h,w)
|
199 |
+
|
200 |
+
h_ = self.proj_out(h_)
|
201 |
+
|
202 |
+
return x+h_
|
203 |
+
|
204 |
+
|
205 |
+
def make_attn(in_channels, attn_type="vanilla"):
|
206 |
+
assert attn_type in ["vanilla", "linear", "none"], f'attn_type {attn_type} unknown'
|
207 |
+
print(f"making attention of type '{attn_type}' with {in_channels} in_channels")
|
208 |
+
if attn_type == "vanilla":
|
209 |
+
return AttnBlock(in_channels)
|
210 |
+
elif attn_type == "none":
|
211 |
+
return nn.Identity(in_channels)
|
212 |
+
else:
|
213 |
+
return LinAttnBlock(in_channels)
|
214 |
+
|
215 |
+
|
216 |
+
class Model(nn.Module):
|
217 |
+
def __init__(self, *, ch, out_ch, ch_mult=(1,2,4,8), num_res_blocks,
|
218 |
+
attn_resolutions, dropout=0.0, resamp_with_conv=True, in_channels,
|
219 |
+
resolution, use_timestep=True, use_linear_attn=False, attn_type="vanilla"):
|
220 |
+
super().__init__()
|
221 |
+
if use_linear_attn: attn_type = "linear"
|
222 |
+
self.ch = ch
|
223 |
+
self.temb_ch = self.ch*4
|
224 |
+
self.num_resolutions = len(ch_mult)
|
225 |
+
self.num_res_blocks = num_res_blocks
|
226 |
+
self.resolution = resolution
|
227 |
+
self.in_channels = in_channels
|
228 |
+
|
229 |
+
self.use_timestep = use_timestep
|
230 |
+
if self.use_timestep:
|
231 |
+
# timestep embedding
|
232 |
+
self.temb = nn.Module()
|
233 |
+
self.temb.dense = nn.ModuleList([
|
234 |
+
torch.nn.Linear(self.ch,
|
235 |
+
self.temb_ch),
|
236 |
+
torch.nn.Linear(self.temb_ch,
|
237 |
+
self.temb_ch),
|
238 |
+
])
|
239 |
+
|
240 |
+
# downsampling
|
241 |
+
self.conv_in = torch.nn.Conv2d(in_channels,
|
242 |
+
self.ch,
|
243 |
+
kernel_size=3,
|
244 |
+
stride=1,
|
245 |
+
padding=1)
|
246 |
+
|
247 |
+
curr_res = resolution
|
248 |
+
in_ch_mult = (1,)+tuple(ch_mult)
|
249 |
+
self.down = nn.ModuleList()
|
250 |
+
for i_level in range(self.num_resolutions):
|
251 |
+
block = nn.ModuleList()
|
252 |
+
attn = nn.ModuleList()
|
253 |
+
block_in = ch*in_ch_mult[i_level]
|
254 |
+
block_out = ch*ch_mult[i_level]
|
255 |
+
for i_block in range(self.num_res_blocks):
|
256 |
+
block.append(ResnetBlock(in_channels=block_in,
|
257 |
+
out_channels=block_out,
|
258 |
+
temb_channels=self.temb_ch,
|
259 |
+
dropout=dropout))
|
260 |
+
block_in = block_out
|
261 |
+
if curr_res in attn_resolutions:
|
262 |
+
attn.append(make_attn(block_in, attn_type=attn_type))
|
263 |
+
down = nn.Module()
|
264 |
+
down.block = block
|
265 |
+
down.attn = attn
|
266 |
+
if i_level != self.num_resolutions-1:
|
267 |
+
down.downsample = Downsample(block_in, resamp_with_conv)
|
268 |
+
curr_res = curr_res // 2
|
269 |
+
self.down.append(down)
|
270 |
+
|
271 |
+
# middle
|
272 |
+
self.mid = nn.Module()
|
273 |
+
self.mid.block_1 = ResnetBlock(in_channels=block_in,
|
274 |
+
out_channels=block_in,
|
275 |
+
temb_channels=self.temb_ch,
|
276 |
+
dropout=dropout)
|
277 |
+
self.mid.attn_1 = make_attn(block_in, attn_type=attn_type)
|
278 |
+
self.mid.block_2 = ResnetBlock(in_channels=block_in,
|
279 |
+
out_channels=block_in,
|
280 |
+
temb_channels=self.temb_ch,
|
281 |
+
dropout=dropout)
|
282 |
+
|
283 |
+
# upsampling
|
284 |
+
self.up = nn.ModuleList()
|
285 |
+
for i_level in reversed(range(self.num_resolutions)):
|
286 |
+
block = nn.ModuleList()
|
287 |
+
attn = nn.ModuleList()
|
288 |
+
block_out = ch*ch_mult[i_level]
|
289 |
+
skip_in = ch*ch_mult[i_level]
|
290 |
+
for i_block in range(self.num_res_blocks+1):
|
291 |
+
if i_block == self.num_res_blocks:
|
292 |
+
skip_in = ch*in_ch_mult[i_level]
|
293 |
+
block.append(ResnetBlock(in_channels=block_in+skip_in,
|
294 |
+
out_channels=block_out,
|
295 |
+
temb_channels=self.temb_ch,
|
296 |
+
dropout=dropout))
|
297 |
+
block_in = block_out
|
298 |
+
if curr_res in attn_resolutions:
|
299 |
+
attn.append(make_attn(block_in, attn_type=attn_type))
|
300 |
+
up = nn.Module()
|
301 |
+
up.block = block
|
302 |
+
up.attn = attn
|
303 |
+
if i_level != 0:
|
304 |
+
up.upsample = Upsample(block_in, resamp_with_conv)
|
305 |
+
curr_res = curr_res * 2
|
306 |
+
self.up.insert(0, up) # prepend to get consistent order
|
307 |
+
|
308 |
+
# end
|
309 |
+
self.norm_out = Normalize(block_in)
|
310 |
+
self.conv_out = torch.nn.Conv2d(block_in,
|
311 |
+
out_ch,
|
312 |
+
kernel_size=3,
|
313 |
+
stride=1,
|
314 |
+
padding=1)
|
315 |
+
|
316 |
+
def forward(self, x, t=None, context=None):
|
317 |
+
#assert x.shape[2] == x.shape[3] == self.resolution
|
318 |
+
if context is not None:
|
319 |
+
# assume aligned context, cat along channel axis
|
320 |
+
x = torch.cat((x, context), dim=1)
|
321 |
+
if self.use_timestep:
|
322 |
+
# timestep embedding
|
323 |
+
assert t is not None
|
324 |
+
temb = get_timestep_embedding(t, self.ch)
|
325 |
+
temb = self.temb.dense[0](temb)
|
326 |
+
temb = nonlinearity(temb)
|
327 |
+
temb = self.temb.dense[1](temb)
|
328 |
+
else:
|
329 |
+
temb = None
|
330 |
+
|
331 |
+
# downsampling
|
332 |
+
hs = [self.conv_in(x)]
|
333 |
+
for i_level in range(self.num_resolutions):
|
334 |
+
for i_block in range(self.num_res_blocks):
|
335 |
+
h = self.down[i_level].block[i_block](hs[-1], temb)
|
336 |
+
if len(self.down[i_level].attn) > 0:
|
337 |
+
h = self.down[i_level].attn[i_block](h)
|
338 |
+
hs.append(h)
|
339 |
+
if i_level != self.num_resolutions-1:
|
340 |
+
hs.append(self.down[i_level].downsample(hs[-1]))
|
341 |
+
|
342 |
+
# middle
|
343 |
+
h = hs[-1]
|
344 |
+
h = self.mid.block_1(h, temb)
|
345 |
+
h = self.mid.attn_1(h)
|
346 |
+
h = self.mid.block_2(h, temb)
|
347 |
+
|
348 |
+
# upsampling
|
349 |
+
for i_level in reversed(range(self.num_resolutions)):
|
350 |
+
for i_block in range(self.num_res_blocks+1):
|
351 |
+
h = self.up[i_level].block[i_block](
|
352 |
+
torch.cat([h, hs.pop()], dim=1), temb)
|
353 |
+
if len(self.up[i_level].attn) > 0:
|
354 |
+
h = self.up[i_level].attn[i_block](h)
|
355 |
+
if i_level != 0:
|
356 |
+
h = self.up[i_level].upsample(h)
|
357 |
+
|
358 |
+
# end
|
359 |
+
h = self.norm_out(h)
|
360 |
+
h = nonlinearity(h)
|
361 |
+
h = self.conv_out(h)
|
362 |
+
return h
|
363 |
+
|
364 |
+
def get_last_layer(self):
|
365 |
+
return self.conv_out.weight
|
366 |
+
|
367 |
+
|
368 |
+
class Encoder(nn.Module):
|
369 |
+
def __init__(self, *, ch, out_ch, ch_mult=(1,2,4,8), num_res_blocks,
|
370 |
+
attn_resolutions, dropout=0.0, resamp_with_conv=True, in_channels,
|
371 |
+
resolution, z_channels, double_z=True, use_linear_attn=False, attn_type="vanilla",
|
372 |
+
**ignore_kwargs):
|
373 |
+
super().__init__()
|
374 |
+
if use_linear_attn: attn_type = "linear"
|
375 |
+
self.ch = ch
|
376 |
+
self.temb_ch = 0
|
377 |
+
self.num_resolutions = len(ch_mult)
|
378 |
+
self.num_res_blocks = num_res_blocks
|
379 |
+
self.resolution = resolution
|
380 |
+
self.in_channels = in_channels
|
381 |
+
|
382 |
+
# downsampling
|
383 |
+
self.conv_in = torch.nn.Conv2d(in_channels,
|
384 |
+
self.ch,
|
385 |
+
kernel_size=3,
|
386 |
+
stride=1,
|
387 |
+
padding=1)
|
388 |
+
|
389 |
+
curr_res = resolution
|
390 |
+
in_ch_mult = (1,)+tuple(ch_mult)
|
391 |
+
self.in_ch_mult = in_ch_mult
|
392 |
+
self.down = nn.ModuleList()
|
393 |
+
for i_level in range(self.num_resolutions):
|
394 |
+
block = nn.ModuleList()
|
395 |
+
attn = nn.ModuleList()
|
396 |
+
block_in = ch*in_ch_mult[i_level]
|
397 |
+
block_out = ch*ch_mult[i_level]
|
398 |
+
for i_block in range(self.num_res_blocks):
|
399 |
+
block.append(ResnetBlock(in_channels=block_in,
|
400 |
+
out_channels=block_out,
|
401 |
+
temb_channels=self.temb_ch,
|
402 |
+
dropout=dropout))
|
403 |
+
block_in = block_out
|
404 |
+
if curr_res in attn_resolutions:
|
405 |
+
attn.append(make_attn(block_in, attn_type=attn_type))
|
406 |
+
down = nn.Module()
|
407 |
+
down.block = block
|
408 |
+
down.attn = attn
|
409 |
+
if i_level != self.num_resolutions-1:
|
410 |
+
down.downsample = Downsample(block_in, resamp_with_conv)
|
411 |
+
curr_res = curr_res // 2
|
412 |
+
self.down.append(down)
|
413 |
+
|
414 |
+
# middle
|
415 |
+
self.mid = nn.Module()
|
416 |
+
self.mid.block_1 = ResnetBlock(in_channels=block_in,
|
417 |
+
out_channels=block_in,
|
418 |
+
temb_channels=self.temb_ch,
|
419 |
+
dropout=dropout)
|
420 |
+
self.mid.attn_1 = make_attn(block_in, attn_type=attn_type)
|
421 |
+
self.mid.block_2 = ResnetBlock(in_channels=block_in,
|
422 |
+
out_channels=block_in,
|
423 |
+
temb_channels=self.temb_ch,
|
424 |
+
dropout=dropout)
|
425 |
+
|
426 |
+
# end
|
427 |
+
self.norm_out = Normalize(block_in)
|
428 |
+
self.conv_out = torch.nn.Conv2d(block_in,
|
429 |
+
2*z_channels if double_z else z_channels,
|
430 |
+
kernel_size=3,
|
431 |
+
stride=1,
|
432 |
+
padding=1)
|
433 |
+
|
434 |
+
def forward(self, x):
|
435 |
+
# timestep embedding
|
436 |
+
temb = None
|
437 |
+
|
438 |
+
# downsampling
|
439 |
+
hs = [self.conv_in(x)]
|
440 |
+
for i_level in range(self.num_resolutions):
|
441 |
+
for i_block in range(self.num_res_blocks):
|
442 |
+
h = self.down[i_level].block[i_block](hs[-1], temb)
|
443 |
+
if len(self.down[i_level].attn) > 0:
|
444 |
+
h = self.down[i_level].attn[i_block](h)
|
445 |
+
hs.append(h)
|
446 |
+
if i_level != self.num_resolutions-1:
|
447 |
+
hs.append(self.down[i_level].downsample(hs[-1]))
|
448 |
+
|
449 |
+
# middle
|
450 |
+
h = hs[-1]
|
451 |
+
h = self.mid.block_1(h, temb)
|
452 |
+
h = self.mid.attn_1(h)
|
453 |
+
h = self.mid.block_2(h, temb)
|
454 |
+
|
455 |
+
# end
|
456 |
+
h = self.norm_out(h)
|
457 |
+
h = nonlinearity(h)
|
458 |
+
h = self.conv_out(h)
|
459 |
+
return h
|
460 |
+
|
461 |
+
|
462 |
+
class Decoder(nn.Module):
|
463 |
+
def __init__(self, *, ch, out_ch, ch_mult=(1,2,4,8), num_res_blocks,
|
464 |
+
attn_resolutions, dropout=0.0, resamp_with_conv=True, in_channels,
|
465 |
+
resolution, z_channels, give_pre_end=False, tanh_out=False, use_linear_attn=False,
|
466 |
+
attn_type="vanilla", **ignorekwargs):
|
467 |
+
super().__init__()
|
468 |
+
if use_linear_attn: attn_type = "linear"
|
469 |
+
self.ch = ch
|
470 |
+
self.temb_ch = 0
|
471 |
+
self.num_resolutions = len(ch_mult)
|
472 |
+
self.num_res_blocks = num_res_blocks
|
473 |
+
self.resolution = resolution
|
474 |
+
self.in_channels = in_channels
|
475 |
+
self.give_pre_end = give_pre_end
|
476 |
+
self.tanh_out = tanh_out
|
477 |
+
|
478 |
+
# compute in_ch_mult, block_in and curr_res at lowest res
|
479 |
+
in_ch_mult = (1,)+tuple(ch_mult)
|
480 |
+
block_in = ch*ch_mult[self.num_resolutions-1]
|
481 |
+
curr_res = resolution // 2**(self.num_resolutions-1)
|
482 |
+
self.z_shape = (1,z_channels,curr_res,curr_res)
|
483 |
+
print("Working with z of shape {} = {} dimensions.".format(
|
484 |
+
self.z_shape, np.prod(self.z_shape)))
|
485 |
+
|
486 |
+
# z to block_in
|
487 |
+
self.conv_in = torch.nn.Conv2d(z_channels,
|
488 |
+
block_in,
|
489 |
+
kernel_size=3,
|
490 |
+
stride=1,
|
491 |
+
padding=1)
|
492 |
+
|
493 |
+
# middle
|
494 |
+
self.mid = nn.Module()
|
495 |
+
self.mid.block_1 = ResnetBlock(in_channels=block_in,
|
496 |
+
out_channels=block_in,
|
497 |
+
temb_channels=self.temb_ch,
|
498 |
+
dropout=dropout)
|
499 |
+
self.mid.attn_1 = make_attn(block_in, attn_type=attn_type)
|
500 |
+
self.mid.block_2 = ResnetBlock(in_channels=block_in,
|
501 |
+
out_channels=block_in,
|
502 |
+
temb_channels=self.temb_ch,
|
503 |
+
dropout=dropout)
|
504 |
+
|
505 |
+
# upsampling
|
506 |
+
self.up = nn.ModuleList()
|
507 |
+
for i_level in reversed(range(self.num_resolutions)):
|
508 |
+
block = nn.ModuleList()
|
509 |
+
attn = nn.ModuleList()
|
510 |
+
block_out = ch*ch_mult[i_level]
|
511 |
+
for i_block in range(self.num_res_blocks+1):
|
512 |
+
block.append(ResnetBlock(in_channels=block_in,
|
513 |
+
out_channels=block_out,
|
514 |
+
temb_channels=self.temb_ch,
|
515 |
+
dropout=dropout))
|
516 |
+
block_in = block_out
|
517 |
+
if curr_res in attn_resolutions:
|
518 |
+
attn.append(make_attn(block_in, attn_type=attn_type))
|
519 |
+
up = nn.Module()
|
520 |
+
up.block = block
|
521 |
+
up.attn = attn
|
522 |
+
if i_level != 0:
|
523 |
+
up.upsample = Upsample(block_in, resamp_with_conv)
|
524 |
+
curr_res = curr_res * 2
|
525 |
+
self.up.insert(0, up) # prepend to get consistent order
|
526 |
+
|
527 |
+
# end
|
528 |
+
self.norm_out = Normalize(block_in)
|
529 |
+
self.conv_out = torch.nn.Conv2d(block_in,
|
530 |
+
out_ch,
|
531 |
+
kernel_size=3,
|
532 |
+
stride=1,
|
533 |
+
padding=1)
|
534 |
+
|
535 |
+
def forward(self, z):
|
536 |
+
#assert z.shape[1:] == self.z_shape[1:]
|
537 |
+
self.last_z_shape = z.shape
|
538 |
+
|
539 |
+
# timestep embedding
|
540 |
+
temb = None
|
541 |
+
|
542 |
+
# z to block_in
|
543 |
+
h = self.conv_in(z)
|
544 |
+
|
545 |
+
# middle
|
546 |
+
h = self.mid.block_1(h, temb)
|
547 |
+
h = self.mid.attn_1(h)
|
548 |
+
h = self.mid.block_2(h, temb)
|
549 |
+
|
550 |
+
# upsampling
|
551 |
+
for i_level in reversed(range(self.num_resolutions)):
|
552 |
+
for i_block in range(self.num_res_blocks+1):
|
553 |
+
h = self.up[i_level].block[i_block](h, temb)
|
554 |
+
if len(self.up[i_level].attn) > 0:
|
555 |
+
h = self.up[i_level].attn[i_block](h)
|
556 |
+
if i_level != 0:
|
557 |
+
h = self.up[i_level].upsample(h)
|
558 |
+
|
559 |
+
# end
|
560 |
+
if self.give_pre_end:
|
561 |
+
return h
|
562 |
+
|
563 |
+
h = self.norm_out(h)
|
564 |
+
h = nonlinearity(h)
|
565 |
+
h = self.conv_out(h)
|
566 |
+
if self.tanh_out:
|
567 |
+
h = torch.tanh(h)
|
568 |
+
return h
|
569 |
+
|
570 |
+
|
571 |
+
class SimpleDecoder(nn.Module):
|
572 |
+
def __init__(self, in_channels, out_channels, *args, **kwargs):
|
573 |
+
super().__init__()
|
574 |
+
self.model = nn.ModuleList([nn.Conv2d(in_channels, in_channels, 1),
|
575 |
+
ResnetBlock(in_channels=in_channels,
|
576 |
+
out_channels=2 * in_channels,
|
577 |
+
temb_channels=0, dropout=0.0),
|
578 |
+
ResnetBlock(in_channels=2 * in_channels,
|
579 |
+
out_channels=4 * in_channels,
|
580 |
+
temb_channels=0, dropout=0.0),
|
581 |
+
ResnetBlock(in_channels=4 * in_channels,
|
582 |
+
out_channels=2 * in_channels,
|
583 |
+
temb_channels=0, dropout=0.0),
|
584 |
+
nn.Conv2d(2*in_channels, in_channels, 1),
|
585 |
+
Upsample(in_channels, with_conv=True)])
|
586 |
+
# end
|
587 |
+
self.norm_out = Normalize(in_channels)
|
588 |
+
self.conv_out = torch.nn.Conv2d(in_channels,
|
589 |
+
out_channels,
|
590 |
+
kernel_size=3,
|
591 |
+
stride=1,
|
592 |
+
padding=1)
|
593 |
+
|
594 |
+
def forward(self, x):
|
595 |
+
for i, layer in enumerate(self.model):
|
596 |
+
if i in [1,2,3]:
|
597 |
+
x = layer(x, None)
|
598 |
+
else:
|
599 |
+
x = layer(x)
|
600 |
+
|
601 |
+
h = self.norm_out(x)
|
602 |
+
h = nonlinearity(h)
|
603 |
+
x = self.conv_out(h)
|
604 |
+
return x
|
605 |
+
|
606 |
+
|
607 |
+
class UpsampleDecoder(nn.Module):
|
608 |
+
def __init__(self, in_channels, out_channels, ch, num_res_blocks, resolution,
|
609 |
+
ch_mult=(2,2), dropout=0.0):
|
610 |
+
super().__init__()
|
611 |
+
# upsampling
|
612 |
+
self.temb_ch = 0
|
613 |
+
self.num_resolutions = len(ch_mult)
|
614 |
+
self.num_res_blocks = num_res_blocks
|
615 |
+
block_in = in_channels
|
616 |
+
curr_res = resolution // 2 ** (self.num_resolutions - 1)
|
617 |
+
self.res_blocks = nn.ModuleList()
|
618 |
+
self.upsample_blocks = nn.ModuleList()
|
619 |
+
for i_level in range(self.num_resolutions):
|
620 |
+
res_block = []
|
621 |
+
block_out = ch * ch_mult[i_level]
|
622 |
+
for i_block in range(self.num_res_blocks + 1):
|
623 |
+
res_block.append(ResnetBlock(in_channels=block_in,
|
624 |
+
out_channels=block_out,
|
625 |
+
temb_channels=self.temb_ch,
|
626 |
+
dropout=dropout))
|
627 |
+
block_in = block_out
|
628 |
+
self.res_blocks.append(nn.ModuleList(res_block))
|
629 |
+
if i_level != self.num_resolutions - 1:
|
630 |
+
self.upsample_blocks.append(Upsample(block_in, True))
|
631 |
+
curr_res = curr_res * 2
|
632 |
+
|
633 |
+
# end
|
634 |
+
self.norm_out = Normalize(block_in)
|
635 |
+
self.conv_out = torch.nn.Conv2d(block_in,
|
636 |
+
out_channels,
|
637 |
+
kernel_size=3,
|
638 |
+
stride=1,
|
639 |
+
padding=1)
|
640 |
+
|
641 |
+
def forward(self, x):
|
642 |
+
# upsampling
|
643 |
+
h = x
|
644 |
+
for k, i_level in enumerate(range(self.num_resolutions)):
|
645 |
+
for i_block in range(self.num_res_blocks + 1):
|
646 |
+
h = self.res_blocks[i_level][i_block](h, None)
|
647 |
+
if i_level != self.num_resolutions - 1:
|
648 |
+
h = self.upsample_blocks[k](h)
|
649 |
+
h = self.norm_out(h)
|
650 |
+
h = nonlinearity(h)
|
651 |
+
h = self.conv_out(h)
|
652 |
+
return h
|
653 |
+
|
654 |
+
|
655 |
+
class LatentRescaler(nn.Module):
|
656 |
+
def __init__(self, factor, in_channels, mid_channels, out_channels, depth=2):
|
657 |
+
super().__init__()
|
658 |
+
# residual block, interpolate, residual block
|
659 |
+
self.factor = factor
|
660 |
+
self.conv_in = nn.Conv2d(in_channels,
|
661 |
+
mid_channels,
|
662 |
+
kernel_size=3,
|
663 |
+
stride=1,
|
664 |
+
padding=1)
|
665 |
+
self.res_block1 = nn.ModuleList([ResnetBlock(in_channels=mid_channels,
|
666 |
+
out_channels=mid_channels,
|
667 |
+
temb_channels=0,
|
668 |
+
dropout=0.0) for _ in range(depth)])
|
669 |
+
self.attn = AttnBlock(mid_channels)
|
670 |
+
self.res_block2 = nn.ModuleList([ResnetBlock(in_channels=mid_channels,
|
671 |
+
out_channels=mid_channels,
|
672 |
+
temb_channels=0,
|
673 |
+
dropout=0.0) for _ in range(depth)])
|
674 |
+
|
675 |
+
self.conv_out = nn.Conv2d(mid_channels,
|
676 |
+
out_channels,
|
677 |
+
kernel_size=1,
|
678 |
+
)
|
679 |
+
|
680 |
+
def forward(self, x):
|
681 |
+
x = self.conv_in(x)
|
682 |
+
for block in self.res_block1:
|
683 |
+
x = block(x, None)
|
684 |
+
x = torch.nn.functional.interpolate(x, size=(int(round(x.shape[2]*self.factor)), int(round(x.shape[3]*self.factor))))
|
685 |
+
x = self.attn(x)
|
686 |
+
for block in self.res_block2:
|
687 |
+
x = block(x, None)
|
688 |
+
x = self.conv_out(x)
|
689 |
+
return x
|
690 |
+
|
691 |
+
|
692 |
+
class MergedRescaleEncoder(nn.Module):
|
693 |
+
def __init__(self, in_channels, ch, resolution, out_ch, num_res_blocks,
|
694 |
+
attn_resolutions, dropout=0.0, resamp_with_conv=True,
|
695 |
+
ch_mult=(1,2,4,8), rescale_factor=1.0, rescale_module_depth=1):
|
696 |
+
super().__init__()
|
697 |
+
intermediate_chn = ch * ch_mult[-1]
|
698 |
+
self.encoder = Encoder(in_channels=in_channels, num_res_blocks=num_res_blocks, ch=ch, ch_mult=ch_mult,
|
699 |
+
z_channels=intermediate_chn, double_z=False, resolution=resolution,
|
700 |
+
attn_resolutions=attn_resolutions, dropout=dropout, resamp_with_conv=resamp_with_conv,
|
701 |
+
out_ch=None)
|
702 |
+
self.rescaler = LatentRescaler(factor=rescale_factor, in_channels=intermediate_chn,
|
703 |
+
mid_channels=intermediate_chn, out_channels=out_ch, depth=rescale_module_depth)
|
704 |
+
|
705 |
+
def forward(self, x):
|
706 |
+
x = self.encoder(x)
|
707 |
+
x = self.rescaler(x)
|
708 |
+
return x
|
709 |
+
|
710 |
+
|
711 |
+
class MergedRescaleDecoder(nn.Module):
|
712 |
+
def __init__(self, z_channels, out_ch, resolution, num_res_blocks, attn_resolutions, ch, ch_mult=(1,2,4,8),
|
713 |
+
dropout=0.0, resamp_with_conv=True, rescale_factor=1.0, rescale_module_depth=1):
|
714 |
+
super().__init__()
|
715 |
+
tmp_chn = z_channels*ch_mult[-1]
|
716 |
+
self.decoder = Decoder(out_ch=out_ch, z_channels=tmp_chn, attn_resolutions=attn_resolutions, dropout=dropout,
|
717 |
+
resamp_with_conv=resamp_with_conv, in_channels=None, num_res_blocks=num_res_blocks,
|
718 |
+
ch_mult=ch_mult, resolution=resolution, ch=ch)
|
719 |
+
self.rescaler = LatentRescaler(factor=rescale_factor, in_channels=z_channels, mid_channels=tmp_chn,
|
720 |
+
out_channels=tmp_chn, depth=rescale_module_depth)
|
721 |
+
|
722 |
+
def forward(self, x):
|
723 |
+
x = self.rescaler(x)
|
724 |
+
x = self.decoder(x)
|
725 |
+
return x
|
726 |
+
|
727 |
+
|
728 |
+
class Upsampler(nn.Module):
|
729 |
+
def __init__(self, in_size, out_size, in_channels, out_channels, ch_mult=2):
|
730 |
+
super().__init__()
|
731 |
+
assert out_size >= in_size
|
732 |
+
num_blocks = int(np.log2(out_size//in_size))+1
|
733 |
+
factor_up = 1.+ (out_size % in_size)
|
734 |
+
print(f"Building {self.__class__.__name__} with in_size: {in_size} --> out_size {out_size} and factor {factor_up}")
|
735 |
+
self.rescaler = LatentRescaler(factor=factor_up, in_channels=in_channels, mid_channels=2*in_channels,
|
736 |
+
out_channels=in_channels)
|
737 |
+
self.decoder = Decoder(out_ch=out_channels, resolution=out_size, z_channels=in_channels, num_res_blocks=2,
|
738 |
+
attn_resolutions=[], in_channels=None, ch=in_channels,
|
739 |
+
ch_mult=[ch_mult for _ in range(num_blocks)])
|
740 |
+
|
741 |
+
def forward(self, x):
|
742 |
+
x = self.rescaler(x)
|
743 |
+
x = self.decoder(x)
|
744 |
+
return x
|
745 |
+
|
746 |
+
|
747 |
+
class Resize(nn.Module):
|
748 |
+
def __init__(self, in_channels=None, learned=False, mode="bilinear"):
|
749 |
+
super().__init__()
|
750 |
+
self.with_conv = learned
|
751 |
+
self.mode = mode
|
752 |
+
if self.with_conv:
|
753 |
+
print(f"Note: {self.__class__.__name} uses learned downsampling and will ignore the fixed {mode} mode")
|
754 |
+
raise NotImplementedError()
|
755 |
+
assert in_channels is not None
|
756 |
+
# no asymmetric padding in torch conv, must do it ourselves
|
757 |
+
self.conv = torch.nn.Conv2d(in_channels,
|
758 |
+
in_channels,
|
759 |
+
kernel_size=4,
|
760 |
+
stride=2,
|
761 |
+
padding=1)
|
762 |
+
|
763 |
+
def forward(self, x, scale_factor=1.0):
|
764 |
+
if scale_factor==1.0:
|
765 |
+
return x
|
766 |
+
else:
|
767 |
+
x = torch.nn.functional.interpolate(x, mode=self.mode, align_corners=False, scale_factor=scale_factor)
|
768 |
+
return x
|
769 |
+
|
770 |
+
class FirstStagePostProcessor(nn.Module):
|
771 |
+
|
772 |
+
def __init__(self, ch_mult:list, in_channels,
|
773 |
+
pretrained_model:nn.Module=None,
|
774 |
+
reshape=False,
|
775 |
+
n_channels=None,
|
776 |
+
dropout=0.,
|
777 |
+
pretrained_config=None):
|
778 |
+
super().__init__()
|
779 |
+
if pretrained_config is None:
|
780 |
+
assert pretrained_model is not None, 'Either "pretrained_model" or "pretrained_config" must not be None'
|
781 |
+
self.pretrained_model = pretrained_model
|
782 |
+
else:
|
783 |
+
assert pretrained_config is not None, 'Either "pretrained_model" or "pretrained_config" must not be None'
|
784 |
+
self.instantiate_pretrained(pretrained_config)
|
785 |
+
|
786 |
+
self.do_reshape = reshape
|
787 |
+
|
788 |
+
if n_channels is None:
|
789 |
+
n_channels = self.pretrained_model.encoder.ch
|
790 |
+
|
791 |
+
self.proj_norm = Normalize(in_channels,num_groups=in_channels//2)
|
792 |
+
self.proj = nn.Conv2d(in_channels,n_channels,kernel_size=3,
|
793 |
+
stride=1,padding=1)
|
794 |
+
|
795 |
+
blocks = []
|
796 |
+
downs = []
|
797 |
+
ch_in = n_channels
|
798 |
+
for m in ch_mult:
|
799 |
+
blocks.append(ResnetBlock(in_channels=ch_in,out_channels=m*n_channels,dropout=dropout))
|
800 |
+
ch_in = m * n_channels
|
801 |
+
downs.append(Downsample(ch_in, with_conv=False))
|
802 |
+
|
803 |
+
self.model = nn.ModuleList(blocks)
|
804 |
+
self.downsampler = nn.ModuleList(downs)
|
805 |
+
|
806 |
+
|
807 |
+
def instantiate_pretrained(self, config):
|
808 |
+
model = instantiate_from_config(config)
|
809 |
+
self.pretrained_model = model.eval()
|
810 |
+
# self.pretrained_model.train = False
|
811 |
+
for param in self.pretrained_model.parameters():
|
812 |
+
param.requires_grad = False
|
813 |
+
|
814 |
+
|
815 |
+
@torch.no_grad()
|
816 |
+
def encode_with_pretrained(self,x):
|
817 |
+
c = self.pretrained_model.encode(x)
|
818 |
+
if isinstance(c, DiagonalGaussianDistribution):
|
819 |
+
c = c.mode()
|
820 |
+
return c
|
821 |
+
|
822 |
+
def forward(self,x):
|
823 |
+
z_fs = self.encode_with_pretrained(x)
|
824 |
+
z = self.proj_norm(z_fs)
|
825 |
+
z = self.proj(z)
|
826 |
+
z = nonlinearity(z)
|
827 |
+
|
828 |
+
for submodel, downmodel in zip(self.model,self.downsampler):
|
829 |
+
z = submodel(z,temb=None)
|
830 |
+
z = downmodel(z)
|
831 |
+
|
832 |
+
if self.do_reshape:
|
833 |
+
z = rearrange(z,'b c h w -> b (h w) c')
|
834 |
+
return z
|
835 |
+
|
ldm/modules/diffusionmodules/openaimodel.py
ADDED
@@ -0,0 +1,996 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from abc import abstractmethod
|
2 |
+
from functools import partial
|
3 |
+
import math
|
4 |
+
from typing import Iterable
|
5 |
+
|
6 |
+
import numpy as np
|
7 |
+
import torch as th
|
8 |
+
import torch.nn as nn
|
9 |
+
import torch.nn.functional as F
|
10 |
+
|
11 |
+
from ldm.modules.diffusionmodules.util import (
|
12 |
+
checkpoint,
|
13 |
+
conv_nd,
|
14 |
+
linear,
|
15 |
+
avg_pool_nd,
|
16 |
+
zero_module,
|
17 |
+
normalization,
|
18 |
+
timestep_embedding,
|
19 |
+
)
|
20 |
+
from ldm.modules.attention import SpatialTransformer
|
21 |
+
from ldm.util import exists
|
22 |
+
|
23 |
+
|
24 |
+
# dummy replace
|
25 |
+
def convert_module_to_f16(x):
|
26 |
+
pass
|
27 |
+
|
28 |
+
def convert_module_to_f32(x):
|
29 |
+
pass
|
30 |
+
|
31 |
+
|
32 |
+
## go
|
33 |
+
class AttentionPool2d(nn.Module):
|
34 |
+
"""
|
35 |
+
Adapted from CLIP: https://github.com/openai/CLIP/blob/main/clip/model.py
|
36 |
+
"""
|
37 |
+
|
38 |
+
def __init__(
|
39 |
+
self,
|
40 |
+
spacial_dim: int,
|
41 |
+
embed_dim: int,
|
42 |
+
num_heads_channels: int,
|
43 |
+
output_dim: int = None,
|
44 |
+
):
|
45 |
+
super().__init__()
|
46 |
+
self.positional_embedding = nn.Parameter(th.randn(embed_dim, spacial_dim ** 2 + 1) / embed_dim ** 0.5)
|
47 |
+
self.qkv_proj = conv_nd(1, embed_dim, 3 * embed_dim, 1)
|
48 |
+
self.c_proj = conv_nd(1, embed_dim, output_dim or embed_dim, 1)
|
49 |
+
self.num_heads = embed_dim // num_heads_channels
|
50 |
+
self.attention = QKVAttention(self.num_heads)
|
51 |
+
|
52 |
+
def forward(self, x):
|
53 |
+
b, c, *_spatial = x.shape
|
54 |
+
x = x.reshape(b, c, -1) # NC(HW)
|
55 |
+
x = th.cat([x.mean(dim=-1, keepdim=True), x], dim=-1) # NC(HW+1)
|
56 |
+
x = x + self.positional_embedding[None, :, :].to(x.dtype) # NC(HW+1)
|
57 |
+
x = self.qkv_proj(x)
|
58 |
+
x = self.attention(x)
|
59 |
+
x = self.c_proj(x)
|
60 |
+
return x[:, :, 0]
|
61 |
+
|
62 |
+
|
63 |
+
class TimestepBlock(nn.Module):
|
64 |
+
"""
|
65 |
+
Any module where forward() takes timestep embeddings as a second argument.
|
66 |
+
"""
|
67 |
+
|
68 |
+
@abstractmethod
|
69 |
+
def forward(self, x, emb):
|
70 |
+
"""
|
71 |
+
Apply the module to `x` given `emb` timestep embeddings.
|
72 |
+
"""
|
73 |
+
|
74 |
+
|
75 |
+
class TimestepEmbedSequential(nn.Sequential, TimestepBlock):
|
76 |
+
"""
|
77 |
+
A sequential module that passes timestep embeddings to the children that
|
78 |
+
support it as an extra input.
|
79 |
+
"""
|
80 |
+
|
81 |
+
def forward(self, x, emb, context=None):
|
82 |
+
for layer in self:
|
83 |
+
if isinstance(layer, TimestepBlock):
|
84 |
+
x = layer(x, emb)
|
85 |
+
elif isinstance(layer, SpatialTransformer):
|
86 |
+
x = layer(x, context)
|
87 |
+
else:
|
88 |
+
x = layer(x)
|
89 |
+
return x
|
90 |
+
|
91 |
+
|
92 |
+
class Upsample(nn.Module):
|
93 |
+
"""
|
94 |
+
An upsampling layer with an optional convolution.
|
95 |
+
:param channels: channels in the inputs and outputs.
|
96 |
+
:param use_conv: a bool determining if a convolution is applied.
|
97 |
+
:param dims: determines if the signal is 1D, 2D, or 3D. If 3D, then
|
98 |
+
upsampling occurs in the inner-two dimensions.
|
99 |
+
"""
|
100 |
+
|
101 |
+
def __init__(self, channels, use_conv, dims=2, out_channels=None, padding=1):
|
102 |
+
super().__init__()
|
103 |
+
self.channels = channels
|
104 |
+
self.out_channels = out_channels or channels
|
105 |
+
self.use_conv = use_conv
|
106 |
+
self.dims = dims
|
107 |
+
if use_conv:
|
108 |
+
self.conv = conv_nd(dims, self.channels, self.out_channels, 3, padding=padding)
|
109 |
+
|
110 |
+
def forward(self, x):
|
111 |
+
assert x.shape[1] == self.channels
|
112 |
+
if self.dims == 3:
|
113 |
+
x = F.interpolate(
|
114 |
+
x, (x.shape[2], x.shape[3] * 2, x.shape[4] * 2), mode="nearest"
|
115 |
+
)
|
116 |
+
else:
|
117 |
+
x = F.interpolate(x, scale_factor=2, mode="nearest")
|
118 |
+
if self.use_conv:
|
119 |
+
x = self.conv(x)
|
120 |
+
return x
|
121 |
+
|
122 |
+
class TransposedUpsample(nn.Module):
|
123 |
+
'Learned 2x upsampling without padding'
|
124 |
+
def __init__(self, channels, out_channels=None, ks=5):
|
125 |
+
super().__init__()
|
126 |
+
self.channels = channels
|
127 |
+
self.out_channels = out_channels or channels
|
128 |
+
|
129 |
+
self.up = nn.ConvTranspose2d(self.channels,self.out_channels,kernel_size=ks,stride=2)
|
130 |
+
|
131 |
+
def forward(self,x):
|
132 |
+
return self.up(x)
|
133 |
+
|
134 |
+
|
135 |
+
class Downsample(nn.Module):
|
136 |
+
"""
|
137 |
+
A downsampling layer with an optional convolution.
|
138 |
+
:param channels: channels in the inputs and outputs.
|
139 |
+
:param use_conv: a bool determining if a convolution is applied.
|
140 |
+
:param dims: determines if the signal is 1D, 2D, or 3D. If 3D, then
|
141 |
+
downsampling occurs in the inner-two dimensions.
|
142 |
+
"""
|
143 |
+
|
144 |
+
def __init__(self, channels, use_conv, dims=2, out_channels=None,padding=1):
|
145 |
+
super().__init__()
|
146 |
+
self.channels = channels
|
147 |
+
self.out_channels = out_channels or channels
|
148 |
+
self.use_conv = use_conv
|
149 |
+
self.dims = dims
|
150 |
+
stride = 2 if dims != 3 else (1, 2, 2)
|
151 |
+
if use_conv:
|
152 |
+
self.op = conv_nd(
|
153 |
+
dims, self.channels, self.out_channels, 3, stride=stride, padding=padding
|
154 |
+
)
|
155 |
+
else:
|
156 |
+
assert self.channels == self.out_channels
|
157 |
+
self.op = avg_pool_nd(dims, kernel_size=stride, stride=stride)
|
158 |
+
|
159 |
+
def forward(self, x):
|
160 |
+
assert x.shape[1] == self.channels
|
161 |
+
return self.op(x)
|
162 |
+
|
163 |
+
|
164 |
+
class ResBlock(TimestepBlock):
|
165 |
+
"""
|
166 |
+
A residual block that can optionally change the number of channels.
|
167 |
+
:param channels: the number of input channels.
|
168 |
+
:param emb_channels: the number of timestep embedding channels.
|
169 |
+
:param dropout: the rate of dropout.
|
170 |
+
:param out_channels: if specified, the number of out channels.
|
171 |
+
:param use_conv: if True and out_channels is specified, use a spatial
|
172 |
+
convolution instead of a smaller 1x1 convolution to change the
|
173 |
+
channels in the skip connection.
|
174 |
+
:param dims: determines if the signal is 1D, 2D, or 3D.
|
175 |
+
:param use_checkpoint: if True, use gradient checkpointing on this module.
|
176 |
+
:param up: if True, use this block for upsampling.
|
177 |
+
:param down: if True, use this block for downsampling.
|
178 |
+
"""
|
179 |
+
|
180 |
+
def __init__(
|
181 |
+
self,
|
182 |
+
channels,
|
183 |
+
emb_channels,
|
184 |
+
dropout,
|
185 |
+
out_channels=None,
|
186 |
+
use_conv=False,
|
187 |
+
use_scale_shift_norm=False,
|
188 |
+
dims=2,
|
189 |
+
use_checkpoint=False,
|
190 |
+
up=False,
|
191 |
+
down=False,
|
192 |
+
):
|
193 |
+
super().__init__()
|
194 |
+
self.channels = channels
|
195 |
+
self.emb_channels = emb_channels
|
196 |
+
self.dropout = dropout
|
197 |
+
self.out_channels = out_channels or channels
|
198 |
+
self.use_conv = use_conv
|
199 |
+
self.use_checkpoint = use_checkpoint
|
200 |
+
self.use_scale_shift_norm = use_scale_shift_norm
|
201 |
+
|
202 |
+
self.in_layers = nn.Sequential(
|
203 |
+
normalization(channels),
|
204 |
+
nn.SiLU(),
|
205 |
+
conv_nd(dims, channels, self.out_channels, 3, padding=1),
|
206 |
+
)
|
207 |
+
|
208 |
+
self.updown = up or down
|
209 |
+
|
210 |
+
if up:
|
211 |
+
self.h_upd = Upsample(channels, False, dims)
|
212 |
+
self.x_upd = Upsample(channels, False, dims)
|
213 |
+
elif down:
|
214 |
+
self.h_upd = Downsample(channels, False, dims)
|
215 |
+
self.x_upd = Downsample(channels, False, dims)
|
216 |
+
else:
|
217 |
+
self.h_upd = self.x_upd = nn.Identity()
|
218 |
+
|
219 |
+
self.emb_layers = nn.Sequential(
|
220 |
+
nn.SiLU(),
|
221 |
+
linear(
|
222 |
+
emb_channels,
|
223 |
+
2 * self.out_channels if use_scale_shift_norm else self.out_channels,
|
224 |
+
),
|
225 |
+
)
|
226 |
+
self.out_layers = nn.Sequential(
|
227 |
+
normalization(self.out_channels),
|
228 |
+
nn.SiLU(),
|
229 |
+
nn.Dropout(p=dropout),
|
230 |
+
zero_module(
|
231 |
+
conv_nd(dims, self.out_channels, self.out_channels, 3, padding=1)
|
232 |
+
),
|
233 |
+
)
|
234 |
+
|
235 |
+
if self.out_channels == channels:
|
236 |
+
self.skip_connection = nn.Identity()
|
237 |
+
elif use_conv:
|
238 |
+
self.skip_connection = conv_nd(
|
239 |
+
dims, channels, self.out_channels, 3, padding=1
|
240 |
+
)
|
241 |
+
else:
|
242 |
+
self.skip_connection = conv_nd(dims, channels, self.out_channels, 1)
|
243 |
+
|
244 |
+
def forward(self, x, emb):
|
245 |
+
"""
|
246 |
+
Apply the block to a Tensor, conditioned on a timestep embedding.
|
247 |
+
:param x: an [N x C x ...] Tensor of features.
|
248 |
+
:param emb: an [N x emb_channels] Tensor of timestep embeddings.
|
249 |
+
:return: an [N x C x ...] Tensor of outputs.
|
250 |
+
"""
|
251 |
+
return checkpoint(
|
252 |
+
self._forward, (x, emb), self.parameters(), self.use_checkpoint
|
253 |
+
)
|
254 |
+
|
255 |
+
|
256 |
+
def _forward(self, x, emb):
|
257 |
+
if self.updown:
|
258 |
+
in_rest, in_conv = self.in_layers[:-1], self.in_layers[-1]
|
259 |
+
h = in_rest(x)
|
260 |
+
h = self.h_upd(h)
|
261 |
+
x = self.x_upd(x)
|
262 |
+
h = in_conv(h)
|
263 |
+
else:
|
264 |
+
h = self.in_layers(x)
|
265 |
+
emb_out = self.emb_layers(emb).type(h.dtype)
|
266 |
+
while len(emb_out.shape) < len(h.shape):
|
267 |
+
emb_out = emb_out[..., None]
|
268 |
+
if self.use_scale_shift_norm:
|
269 |
+
out_norm, out_rest = self.out_layers[0], self.out_layers[1:]
|
270 |
+
scale, shift = th.chunk(emb_out, 2, dim=1)
|
271 |
+
h = out_norm(h) * (1 + scale) + shift
|
272 |
+
h = out_rest(h)
|
273 |
+
else:
|
274 |
+
h = h + emb_out
|
275 |
+
h = self.out_layers(h)
|
276 |
+
return self.skip_connection(x) + h
|
277 |
+
|
278 |
+
|
279 |
+
class AttentionBlock(nn.Module):
|
280 |
+
"""
|
281 |
+
An attention block that allows spatial positions to attend to each other.
|
282 |
+
Originally ported from here, but adapted to the N-d case.
|
283 |
+
https://github.com/hojonathanho/diffusion/blob/1e0dceb3b3495bbe19116a5e1b3596cd0706c543/diffusion_tf/models/unet.py#L66.
|
284 |
+
"""
|
285 |
+
|
286 |
+
def __init__(
|
287 |
+
self,
|
288 |
+
channels,
|
289 |
+
num_heads=1,
|
290 |
+
num_head_channels=-1,
|
291 |
+
use_checkpoint=False,
|
292 |
+
use_new_attention_order=False,
|
293 |
+
):
|
294 |
+
super().__init__()
|
295 |
+
self.channels = channels
|
296 |
+
if num_head_channels == -1:
|
297 |
+
self.num_heads = num_heads
|
298 |
+
else:
|
299 |
+
assert (
|
300 |
+
channels % num_head_channels == 0
|
301 |
+
), f"q,k,v channels {channels} is not divisible by num_head_channels {num_head_channels}"
|
302 |
+
self.num_heads = channels // num_head_channels
|
303 |
+
self.use_checkpoint = use_checkpoint
|
304 |
+
self.norm = normalization(channels)
|
305 |
+
self.qkv = conv_nd(1, channels, channels * 3, 1)
|
306 |
+
if use_new_attention_order:
|
307 |
+
# split qkv before split heads
|
308 |
+
self.attention = QKVAttention(self.num_heads)
|
309 |
+
else:
|
310 |
+
# split heads before split qkv
|
311 |
+
self.attention = QKVAttentionLegacy(self.num_heads)
|
312 |
+
|
313 |
+
self.proj_out = zero_module(conv_nd(1, channels, channels, 1))
|
314 |
+
|
315 |
+
def forward(self, x):
|
316 |
+
return checkpoint(self._forward, (x,), self.parameters(), True) # TODO: check checkpoint usage, is True # TODO: fix the .half call!!!
|
317 |
+
#return pt_checkpoint(self._forward, x) # pytorch
|
318 |
+
|
319 |
+
def _forward(self, x):
|
320 |
+
b, c, *spatial = x.shape
|
321 |
+
x = x.reshape(b, c, -1)
|
322 |
+
qkv = self.qkv(self.norm(x))
|
323 |
+
h = self.attention(qkv)
|
324 |
+
h = self.proj_out(h)
|
325 |
+
return (x + h).reshape(b, c, *spatial)
|
326 |
+
|
327 |
+
|
328 |
+
def count_flops_attn(model, _x, y):
|
329 |
+
"""
|
330 |
+
A counter for the `thop` package to count the operations in an
|
331 |
+
attention operation.
|
332 |
+
Meant to be used like:
|
333 |
+
macs, params = thop.profile(
|
334 |
+
model,
|
335 |
+
inputs=(inputs, timestamps),
|
336 |
+
custom_ops={QKVAttention: QKVAttention.count_flops},
|
337 |
+
)
|
338 |
+
"""
|
339 |
+
b, c, *spatial = y[0].shape
|
340 |
+
num_spatial = int(np.prod(spatial))
|
341 |
+
# We perform two matmuls with the same number of ops.
|
342 |
+
# The first computes the weight matrix, the second computes
|
343 |
+
# the combination of the value vectors.
|
344 |
+
matmul_ops = 2 * b * (num_spatial ** 2) * c
|
345 |
+
model.total_ops += th.DoubleTensor([matmul_ops])
|
346 |
+
|
347 |
+
|
348 |
+
class QKVAttentionLegacy(nn.Module):
|
349 |
+
"""
|
350 |
+
A module which performs QKV attention. Matches legacy QKVAttention + input/ouput heads shaping
|
351 |
+
"""
|
352 |
+
|
353 |
+
def __init__(self, n_heads):
|
354 |
+
super().__init__()
|
355 |
+
self.n_heads = n_heads
|
356 |
+
|
357 |
+
def forward(self, qkv):
|
358 |
+
"""
|
359 |
+
Apply QKV attention.
|
360 |
+
:param qkv: an [N x (H * 3 * C) x T] tensor of Qs, Ks, and Vs.
|
361 |
+
:return: an [N x (H * C) x T] tensor after attention.
|
362 |
+
"""
|
363 |
+
bs, width, length = qkv.shape
|
364 |
+
assert width % (3 * self.n_heads) == 0
|
365 |
+
ch = width // (3 * self.n_heads)
|
366 |
+
q, k, v = qkv.reshape(bs * self.n_heads, ch * 3, length).split(ch, dim=1)
|
367 |
+
scale = 1 / math.sqrt(math.sqrt(ch))
|
368 |
+
weight = th.einsum(
|
369 |
+
"bct,bcs->bts", q * scale, k * scale
|
370 |
+
) # More stable with f16 than dividing afterwards
|
371 |
+
weight = th.softmax(weight.float(), dim=-1).type(weight.dtype)
|
372 |
+
a = th.einsum("bts,bcs->bct", weight, v)
|
373 |
+
return a.reshape(bs, -1, length)
|
374 |
+
|
375 |
+
@staticmethod
|
376 |
+
def count_flops(model, _x, y):
|
377 |
+
return count_flops_attn(model, _x, y)
|
378 |
+
|
379 |
+
|
380 |
+
class QKVAttention(nn.Module):
|
381 |
+
"""
|
382 |
+
A module which performs QKV attention and splits in a different order.
|
383 |
+
"""
|
384 |
+
|
385 |
+
def __init__(self, n_heads):
|
386 |
+
super().__init__()
|
387 |
+
self.n_heads = n_heads
|
388 |
+
|
389 |
+
def forward(self, qkv):
|
390 |
+
"""
|
391 |
+
Apply QKV attention.
|
392 |
+
:param qkv: an [N x (3 * H * C) x T] tensor of Qs, Ks, and Vs.
|
393 |
+
:return: an [N x (H * C) x T] tensor after attention.
|
394 |
+
"""
|
395 |
+
bs, width, length = qkv.shape
|
396 |
+
assert width % (3 * self.n_heads) == 0
|
397 |
+
ch = width // (3 * self.n_heads)
|
398 |
+
q, k, v = qkv.chunk(3, dim=1)
|
399 |
+
scale = 1 / math.sqrt(math.sqrt(ch))
|
400 |
+
weight = th.einsum(
|
401 |
+
"bct,bcs->bts",
|
402 |
+
(q * scale).view(bs * self.n_heads, ch, length),
|
403 |
+
(k * scale).view(bs * self.n_heads, ch, length),
|
404 |
+
) # More stable with f16 than dividing afterwards
|
405 |
+
weight = th.softmax(weight.float(), dim=-1).type(weight.dtype)
|
406 |
+
a = th.einsum("bts,bcs->bct", weight, v.reshape(bs * self.n_heads, ch, length))
|
407 |
+
return a.reshape(bs, -1, length)
|
408 |
+
|
409 |
+
@staticmethod
|
410 |
+
def count_flops(model, _x, y):
|
411 |
+
return count_flops_attn(model, _x, y)
|
412 |
+
|
413 |
+
|
414 |
+
class UNetModel(nn.Module):
|
415 |
+
"""
|
416 |
+
The full UNet model with attention and timestep embedding.
|
417 |
+
:param in_channels: channels in the input Tensor.
|
418 |
+
:param model_channels: base channel count for the model.
|
419 |
+
:param out_channels: channels in the output Tensor.
|
420 |
+
:param num_res_blocks: number of residual blocks per downsample.
|
421 |
+
:param attention_resolutions: a collection of downsample rates at which
|
422 |
+
attention will take place. May be a set, list, or tuple.
|
423 |
+
For example, if this contains 4, then at 4x downsampling, attention
|
424 |
+
will be used.
|
425 |
+
:param dropout: the dropout probability.
|
426 |
+
:param channel_mult: channel multiplier for each level of the UNet.
|
427 |
+
:param conv_resample: if True, use learned convolutions for upsampling and
|
428 |
+
downsampling.
|
429 |
+
:param dims: determines if the signal is 1D, 2D, or 3D.
|
430 |
+
:param num_classes: if specified (as an int), then this model will be
|
431 |
+
class-conditional with `num_classes` classes.
|
432 |
+
:param use_checkpoint: use gradient checkpointing to reduce memory usage.
|
433 |
+
:param num_heads: the number of attention heads in each attention layer.
|
434 |
+
:param num_heads_channels: if specified, ignore num_heads and instead use
|
435 |
+
a fixed channel width per attention head.
|
436 |
+
:param num_heads_upsample: works with num_heads to set a different number
|
437 |
+
of heads for upsampling. Deprecated.
|
438 |
+
:param use_scale_shift_norm: use a FiLM-like conditioning mechanism.
|
439 |
+
:param resblock_updown: use residual blocks for up/downsampling.
|
440 |
+
:param use_new_attention_order: use a different attention pattern for potentially
|
441 |
+
increased efficiency.
|
442 |
+
"""
|
443 |
+
|
444 |
+
def __init__(
|
445 |
+
self,
|
446 |
+
image_size,
|
447 |
+
in_channels,
|
448 |
+
model_channels,
|
449 |
+
out_channels,
|
450 |
+
num_res_blocks,
|
451 |
+
attention_resolutions,
|
452 |
+
dropout=0,
|
453 |
+
channel_mult=(1, 2, 4, 8),
|
454 |
+
conv_resample=True,
|
455 |
+
dims=2,
|
456 |
+
num_classes=None,
|
457 |
+
use_checkpoint=False,
|
458 |
+
use_fp16=False,
|
459 |
+
num_heads=-1,
|
460 |
+
num_head_channels=-1,
|
461 |
+
num_heads_upsample=-1,
|
462 |
+
use_scale_shift_norm=False,
|
463 |
+
resblock_updown=False,
|
464 |
+
use_new_attention_order=False,
|
465 |
+
use_spatial_transformer=False, # custom transformer support
|
466 |
+
transformer_depth=1, # custom transformer support
|
467 |
+
context_dim=None, # custom transformer support
|
468 |
+
n_embed=None, # custom support for prediction of discrete ids into codebook of first stage vq model
|
469 |
+
legacy=True,
|
470 |
+
disable_self_attentions=None,
|
471 |
+
num_attention_blocks=None
|
472 |
+
):
|
473 |
+
super().__init__()
|
474 |
+
if use_spatial_transformer:
|
475 |
+
assert context_dim is not None, 'Fool!! You forgot to include the dimension of your cross-attention conditioning...'
|
476 |
+
|
477 |
+
if context_dim is not None:
|
478 |
+
assert use_spatial_transformer, 'Fool!! You forgot to use the spatial transformer for your cross-attention conditioning...'
|
479 |
+
from omegaconf.listconfig import ListConfig
|
480 |
+
if type(context_dim) == ListConfig:
|
481 |
+
context_dim = list(context_dim)
|
482 |
+
|
483 |
+
if num_heads_upsample == -1:
|
484 |
+
num_heads_upsample = num_heads
|
485 |
+
|
486 |
+
if num_heads == -1:
|
487 |
+
assert num_head_channels != -1, 'Either num_heads or num_head_channels has to be set'
|
488 |
+
|
489 |
+
if num_head_channels == -1:
|
490 |
+
assert num_heads != -1, 'Either num_heads or num_head_channels has to be set'
|
491 |
+
|
492 |
+
self.image_size = image_size
|
493 |
+
self.in_channels = in_channels
|
494 |
+
self.model_channels = model_channels
|
495 |
+
self.out_channels = out_channels
|
496 |
+
if isinstance(num_res_blocks, int):
|
497 |
+
self.num_res_blocks = len(channel_mult) * [num_res_blocks]
|
498 |
+
else:
|
499 |
+
if len(num_res_blocks) != len(channel_mult):
|
500 |
+
raise ValueError("provide num_res_blocks either as an int (globally constant) or "
|
501 |
+
"as a list/tuple (per-level) with the same length as channel_mult")
|
502 |
+
self.num_res_blocks = num_res_blocks
|
503 |
+
#self.num_res_blocks = num_res_blocks
|
504 |
+
if disable_self_attentions is not None:
|
505 |
+
# should be a list of booleans, indicating whether to disable self-attention in TransformerBlocks or not
|
506 |
+
assert len(disable_self_attentions) == len(channel_mult)
|
507 |
+
if num_attention_blocks is not None:
|
508 |
+
assert len(num_attention_blocks) == len(self.num_res_blocks)
|
509 |
+
assert all(map(lambda i: self.num_res_blocks[i] >= num_attention_blocks[i], range(len(num_attention_blocks))))
|
510 |
+
print(f"Constructor of UNetModel received num_attention_blocks={num_attention_blocks}. "
|
511 |
+
f"This option has LESS priority than attention_resolutions {attention_resolutions}, "
|
512 |
+
f"i.e., in cases where num_attention_blocks[i] > 0 but 2**i not in attention_resolutions, "
|
513 |
+
f"attention will still not be set.") # todo: convert to warning
|
514 |
+
|
515 |
+
self.attention_resolutions = attention_resolutions
|
516 |
+
self.dropout = dropout
|
517 |
+
self.channel_mult = channel_mult
|
518 |
+
self.conv_resample = conv_resample
|
519 |
+
self.num_classes = num_classes
|
520 |
+
self.use_checkpoint = use_checkpoint
|
521 |
+
self.dtype = th.float16 if use_fp16 else th.float32
|
522 |
+
self.num_heads = num_heads
|
523 |
+
self.num_head_channels = num_head_channels
|
524 |
+
self.num_heads_upsample = num_heads_upsample
|
525 |
+
self.predict_codebook_ids = n_embed is not None
|
526 |
+
|
527 |
+
time_embed_dim = model_channels * 4
|
528 |
+
self.time_embed = nn.Sequential(
|
529 |
+
linear(model_channels, time_embed_dim),
|
530 |
+
nn.SiLU(),
|
531 |
+
linear(time_embed_dim, time_embed_dim),
|
532 |
+
)
|
533 |
+
|
534 |
+
if self.num_classes is not None:
|
535 |
+
self.label_emb = nn.Embedding(num_classes, time_embed_dim)
|
536 |
+
|
537 |
+
self.input_blocks = nn.ModuleList(
|
538 |
+
[
|
539 |
+
TimestepEmbedSequential(
|
540 |
+
conv_nd(dims, in_channels, model_channels, 3, padding=1)
|
541 |
+
)
|
542 |
+
]
|
543 |
+
)
|
544 |
+
self._feature_size = model_channels
|
545 |
+
input_block_chans = [model_channels]
|
546 |
+
ch = model_channels
|
547 |
+
ds = 1
|
548 |
+
for level, mult in enumerate(channel_mult):
|
549 |
+
for nr in range(self.num_res_blocks[level]):
|
550 |
+
layers = [
|
551 |
+
ResBlock(
|
552 |
+
ch,
|
553 |
+
time_embed_dim,
|
554 |
+
dropout,
|
555 |
+
out_channels=mult * model_channels,
|
556 |
+
dims=dims,
|
557 |
+
use_checkpoint=use_checkpoint,
|
558 |
+
use_scale_shift_norm=use_scale_shift_norm,
|
559 |
+
)
|
560 |
+
]
|
561 |
+
ch = mult * model_channels
|
562 |
+
if ds in attention_resolutions:
|
563 |
+
if num_head_channels == -1:
|
564 |
+
dim_head = ch // num_heads
|
565 |
+
else:
|
566 |
+
num_heads = ch // num_head_channels
|
567 |
+
dim_head = num_head_channels
|
568 |
+
if legacy:
|
569 |
+
#num_heads = 1
|
570 |
+
dim_head = ch // num_heads if use_spatial_transformer else num_head_channels
|
571 |
+
if exists(disable_self_attentions):
|
572 |
+
disabled_sa = disable_self_attentions[level]
|
573 |
+
else:
|
574 |
+
disabled_sa = False
|
575 |
+
|
576 |
+
if not exists(num_attention_blocks) or nr < num_attention_blocks[level]:
|
577 |
+
layers.append(
|
578 |
+
AttentionBlock(
|
579 |
+
ch,
|
580 |
+
use_checkpoint=use_checkpoint,
|
581 |
+
num_heads=num_heads,
|
582 |
+
num_head_channels=dim_head,
|
583 |
+
use_new_attention_order=use_new_attention_order,
|
584 |
+
) if not use_spatial_transformer else SpatialTransformer(
|
585 |
+
ch, num_heads, dim_head, depth=transformer_depth, context_dim=context_dim,
|
586 |
+
disable_self_attn=disabled_sa
|
587 |
+
)
|
588 |
+
)
|
589 |
+
self.input_blocks.append(TimestepEmbedSequential(*layers))
|
590 |
+
self._feature_size += ch
|
591 |
+
input_block_chans.append(ch)
|
592 |
+
if level != len(channel_mult) - 1:
|
593 |
+
out_ch = ch
|
594 |
+
self.input_blocks.append(
|
595 |
+
TimestepEmbedSequential(
|
596 |
+
ResBlock(
|
597 |
+
ch,
|
598 |
+
time_embed_dim,
|
599 |
+
dropout,
|
600 |
+
out_channels=out_ch,
|
601 |
+
dims=dims,
|
602 |
+
use_checkpoint=use_checkpoint,
|
603 |
+
use_scale_shift_norm=use_scale_shift_norm,
|
604 |
+
down=True,
|
605 |
+
)
|
606 |
+
if resblock_updown
|
607 |
+
else Downsample(
|
608 |
+
ch, conv_resample, dims=dims, out_channels=out_ch
|
609 |
+
)
|
610 |
+
)
|
611 |
+
)
|
612 |
+
ch = out_ch
|
613 |
+
input_block_chans.append(ch)
|
614 |
+
ds *= 2
|
615 |
+
self._feature_size += ch
|
616 |
+
|
617 |
+
if num_head_channels == -1:
|
618 |
+
dim_head = ch // num_heads
|
619 |
+
else:
|
620 |
+
num_heads = ch // num_head_channels
|
621 |
+
dim_head = num_head_channels
|
622 |
+
if legacy:
|
623 |
+
#num_heads = 1
|
624 |
+
dim_head = ch // num_heads if use_spatial_transformer else num_head_channels
|
625 |
+
self.middle_block = TimestepEmbedSequential(
|
626 |
+
ResBlock(
|
627 |
+
ch,
|
628 |
+
time_embed_dim,
|
629 |
+
dropout,
|
630 |
+
dims=dims,
|
631 |
+
use_checkpoint=use_checkpoint,
|
632 |
+
use_scale_shift_norm=use_scale_shift_norm,
|
633 |
+
),
|
634 |
+
AttentionBlock(
|
635 |
+
ch,
|
636 |
+
use_checkpoint=use_checkpoint,
|
637 |
+
num_heads=num_heads,
|
638 |
+
num_head_channels=dim_head,
|
639 |
+
use_new_attention_order=use_new_attention_order,
|
640 |
+
) if not use_spatial_transformer else SpatialTransformer( # always uses a self-attn
|
641 |
+
ch, num_heads, dim_head, depth=transformer_depth, context_dim=context_dim
|
642 |
+
),
|
643 |
+
ResBlock(
|
644 |
+
ch,
|
645 |
+
time_embed_dim,
|
646 |
+
dropout,
|
647 |
+
dims=dims,
|
648 |
+
use_checkpoint=use_checkpoint,
|
649 |
+
use_scale_shift_norm=use_scale_shift_norm,
|
650 |
+
),
|
651 |
+
)
|
652 |
+
self._feature_size += ch
|
653 |
+
|
654 |
+
self.output_blocks = nn.ModuleList([])
|
655 |
+
for level, mult in list(enumerate(channel_mult))[::-1]:
|
656 |
+
for i in range(self.num_res_blocks[level] + 1):
|
657 |
+
ich = input_block_chans.pop()
|
658 |
+
layers = [
|
659 |
+
ResBlock(
|
660 |
+
ch + ich,
|
661 |
+
time_embed_dim,
|
662 |
+
dropout,
|
663 |
+
out_channels=model_channels * mult,
|
664 |
+
dims=dims,
|
665 |
+
use_checkpoint=use_checkpoint,
|
666 |
+
use_scale_shift_norm=use_scale_shift_norm,
|
667 |
+
)
|
668 |
+
]
|
669 |
+
ch = model_channels * mult
|
670 |
+
if ds in attention_resolutions:
|
671 |
+
if num_head_channels == -1:
|
672 |
+
dim_head = ch // num_heads
|
673 |
+
else:
|
674 |
+
num_heads = ch // num_head_channels
|
675 |
+
dim_head = num_head_channels
|
676 |
+
if legacy:
|
677 |
+
#num_heads = 1
|
678 |
+
dim_head = ch // num_heads if use_spatial_transformer else num_head_channels
|
679 |
+
if exists(disable_self_attentions):
|
680 |
+
disabled_sa = disable_self_attentions[level]
|
681 |
+
else:
|
682 |
+
disabled_sa = False
|
683 |
+
|
684 |
+
if not exists(num_attention_blocks) or i < num_attention_blocks[level]:
|
685 |
+
layers.append(
|
686 |
+
AttentionBlock(
|
687 |
+
ch,
|
688 |
+
use_checkpoint=use_checkpoint,
|
689 |
+
num_heads=num_heads_upsample,
|
690 |
+
num_head_channels=dim_head,
|
691 |
+
use_new_attention_order=use_new_attention_order,
|
692 |
+
) if not use_spatial_transformer else SpatialTransformer(
|
693 |
+
ch, num_heads, dim_head, depth=transformer_depth, context_dim=context_dim,
|
694 |
+
disable_self_attn=disabled_sa
|
695 |
+
)
|
696 |
+
)
|
697 |
+
if level and i == self.num_res_blocks[level]:
|
698 |
+
out_ch = ch
|
699 |
+
layers.append(
|
700 |
+
ResBlock(
|
701 |
+
ch,
|
702 |
+
time_embed_dim,
|
703 |
+
dropout,
|
704 |
+
out_channels=out_ch,
|
705 |
+
dims=dims,
|
706 |
+
use_checkpoint=use_checkpoint,
|
707 |
+
use_scale_shift_norm=use_scale_shift_norm,
|
708 |
+
up=True,
|
709 |
+
)
|
710 |
+
if resblock_updown
|
711 |
+
else Upsample(ch, conv_resample, dims=dims, out_channels=out_ch)
|
712 |
+
)
|
713 |
+
ds //= 2
|
714 |
+
self.output_blocks.append(TimestepEmbedSequential(*layers))
|
715 |
+
self._feature_size += ch
|
716 |
+
|
717 |
+
self.out = nn.Sequential(
|
718 |
+
normalization(ch),
|
719 |
+
nn.SiLU(),
|
720 |
+
zero_module(conv_nd(dims, model_channels, out_channels, 3, padding=1)),
|
721 |
+
)
|
722 |
+
if self.predict_codebook_ids:
|
723 |
+
self.id_predictor = nn.Sequential(
|
724 |
+
normalization(ch),
|
725 |
+
conv_nd(dims, model_channels, n_embed, 1),
|
726 |
+
#nn.LogSoftmax(dim=1) # change to cross_entropy and produce non-normalized logits
|
727 |
+
)
|
728 |
+
|
729 |
+
def convert_to_fp16(self):
|
730 |
+
"""
|
731 |
+
Convert the torso of the model to float16.
|
732 |
+
"""
|
733 |
+
self.input_blocks.apply(convert_module_to_f16)
|
734 |
+
self.middle_block.apply(convert_module_to_f16)
|
735 |
+
self.output_blocks.apply(convert_module_to_f16)
|
736 |
+
|
737 |
+
def convert_to_fp32(self):
|
738 |
+
"""
|
739 |
+
Convert the torso of the model to float32.
|
740 |
+
"""
|
741 |
+
self.input_blocks.apply(convert_module_to_f32)
|
742 |
+
self.middle_block.apply(convert_module_to_f32)
|
743 |
+
self.output_blocks.apply(convert_module_to_f32)
|
744 |
+
|
745 |
+
def forward(self, x, timesteps=None, context=None, y=None,**kwargs):
|
746 |
+
"""
|
747 |
+
Apply the model to an input batch.
|
748 |
+
:param x: an [N x C x ...] Tensor of inputs.
|
749 |
+
:param timesteps: a 1-D batch of timesteps.
|
750 |
+
:param context: conditioning plugged in via crossattn
|
751 |
+
:param y: an [N] Tensor of labels, if class-conditional.
|
752 |
+
:return: an [N x C x ...] Tensor of outputs.
|
753 |
+
"""
|
754 |
+
assert (y is not None) == (
|
755 |
+
self.num_classes is not None
|
756 |
+
), "must specify y if and only if the model is class-conditional"
|
757 |
+
hs = []
|
758 |
+
t_emb = timestep_embedding(timesteps, self.model_channels, repeat_only=False)
|
759 |
+
emb = self.time_embed(t_emb)
|
760 |
+
|
761 |
+
if self.num_classes is not None:
|
762 |
+
assert y.shape == (x.shape[0],)
|
763 |
+
emb = emb + self.label_emb(y)
|
764 |
+
|
765 |
+
h = x.type(self.dtype)
|
766 |
+
for module in self.input_blocks:
|
767 |
+
h = module(h, emb, context)
|
768 |
+
hs.append(h)
|
769 |
+
h = self.middle_block(h, emb, context)
|
770 |
+
for module in self.output_blocks:
|
771 |
+
h = th.cat([h, hs.pop()], dim=1)
|
772 |
+
h = module(h, emb, context)
|
773 |
+
h = h.type(x.dtype)
|
774 |
+
if self.predict_codebook_ids:
|
775 |
+
return self.id_predictor(h)
|
776 |
+
else:
|
777 |
+
return self.out(h)
|
778 |
+
|
779 |
+
|
780 |
+
class EncoderUNetModel(nn.Module):
|
781 |
+
"""
|
782 |
+
The half UNet model with attention and timestep embedding.
|
783 |
+
For usage, see UNet.
|
784 |
+
"""
|
785 |
+
|
786 |
+
def __init__(
|
787 |
+
self,
|
788 |
+
image_size,
|
789 |
+
in_channels,
|
790 |
+
model_channels,
|
791 |
+
out_channels,
|
792 |
+
num_res_blocks,
|
793 |
+
attention_resolutions,
|
794 |
+
dropout=0,
|
795 |
+
channel_mult=(1, 2, 4, 8),
|
796 |
+
conv_resample=True,
|
797 |
+
dims=2,
|
798 |
+
use_checkpoint=False,
|
799 |
+
use_fp16=False,
|
800 |
+
num_heads=1,
|
801 |
+
num_head_channels=-1,
|
802 |
+
num_heads_upsample=-1,
|
803 |
+
use_scale_shift_norm=False,
|
804 |
+
resblock_updown=False,
|
805 |
+
use_new_attention_order=False,
|
806 |
+
pool="adaptive",
|
807 |
+
*args,
|
808 |
+
**kwargs
|
809 |
+
):
|
810 |
+
super().__init__()
|
811 |
+
|
812 |
+
if num_heads_upsample == -1:
|
813 |
+
num_heads_upsample = num_heads
|
814 |
+
|
815 |
+
self.in_channels = in_channels
|
816 |
+
self.model_channels = model_channels
|
817 |
+
self.out_channels = out_channels
|
818 |
+
self.num_res_blocks = num_res_blocks
|
819 |
+
self.attention_resolutions = attention_resolutions
|
820 |
+
self.dropout = dropout
|
821 |
+
self.channel_mult = channel_mult
|
822 |
+
self.conv_resample = conv_resample
|
823 |
+
self.use_checkpoint = use_checkpoint
|
824 |
+
self.dtype = th.float16 if use_fp16 else th.float32
|
825 |
+
self.num_heads = num_heads
|
826 |
+
self.num_head_channels = num_head_channels
|
827 |
+
self.num_heads_upsample = num_heads_upsample
|
828 |
+
|
829 |
+
time_embed_dim = model_channels * 4
|
830 |
+
self.time_embed = nn.Sequential(
|
831 |
+
linear(model_channels, time_embed_dim),
|
832 |
+
nn.SiLU(),
|
833 |
+
linear(time_embed_dim, time_embed_dim),
|
834 |
+
)
|
835 |
+
|
836 |
+
self.input_blocks = nn.ModuleList(
|
837 |
+
[
|
838 |
+
TimestepEmbedSequential(
|
839 |
+
conv_nd(dims, in_channels, model_channels, 3, padding=1)
|
840 |
+
)
|
841 |
+
]
|
842 |
+
)
|
843 |
+
self._feature_size = model_channels
|
844 |
+
input_block_chans = [model_channels]
|
845 |
+
ch = model_channels
|
846 |
+
ds = 1
|
847 |
+
for level, mult in enumerate(channel_mult):
|
848 |
+
for _ in range(num_res_blocks):
|
849 |
+
layers = [
|
850 |
+
ResBlock(
|
851 |
+
ch,
|
852 |
+
time_embed_dim,
|
853 |
+
dropout,
|
854 |
+
out_channels=mult * model_channels,
|
855 |
+
dims=dims,
|
856 |
+
use_checkpoint=use_checkpoint,
|
857 |
+
use_scale_shift_norm=use_scale_shift_norm,
|
858 |
+
)
|
859 |
+
]
|
860 |
+
ch = mult * model_channels
|
861 |
+
if ds in attention_resolutions:
|
862 |
+
layers.append(
|
863 |
+
AttentionBlock(
|
864 |
+
ch,
|
865 |
+
use_checkpoint=use_checkpoint,
|
866 |
+
num_heads=num_heads,
|
867 |
+
num_head_channels=num_head_channels,
|
868 |
+
use_new_attention_order=use_new_attention_order,
|
869 |
+
)
|
870 |
+
)
|
871 |
+
self.input_blocks.append(TimestepEmbedSequential(*layers))
|
872 |
+
self._feature_size += ch
|
873 |
+
input_block_chans.append(ch)
|
874 |
+
if level != len(channel_mult) - 1:
|
875 |
+
out_ch = ch
|
876 |
+
self.input_blocks.append(
|
877 |
+
TimestepEmbedSequential(
|
878 |
+
ResBlock(
|
879 |
+
ch,
|
880 |
+
time_embed_dim,
|
881 |
+
dropout,
|
882 |
+
out_channels=out_ch,
|
883 |
+
dims=dims,
|
884 |
+
use_checkpoint=use_checkpoint,
|
885 |
+
use_scale_shift_norm=use_scale_shift_norm,
|
886 |
+
down=True,
|
887 |
+
)
|
888 |
+
if resblock_updown
|
889 |
+
else Downsample(
|
890 |
+
ch, conv_resample, dims=dims, out_channels=out_ch
|
891 |
+
)
|
892 |
+
)
|
893 |
+
)
|
894 |
+
ch = out_ch
|
895 |
+
input_block_chans.append(ch)
|
896 |
+
ds *= 2
|
897 |
+
self._feature_size += ch
|
898 |
+
|
899 |
+
self.middle_block = TimestepEmbedSequential(
|
900 |
+
ResBlock(
|
901 |
+
ch,
|
902 |
+
time_embed_dim,
|
903 |
+
dropout,
|
904 |
+
dims=dims,
|
905 |
+
use_checkpoint=use_checkpoint,
|
906 |
+
use_scale_shift_norm=use_scale_shift_norm,
|
907 |
+
),
|
908 |
+
AttentionBlock(
|
909 |
+
ch,
|
910 |
+
use_checkpoint=use_checkpoint,
|
911 |
+
num_heads=num_heads,
|
912 |
+
num_head_channels=num_head_channels,
|
913 |
+
use_new_attention_order=use_new_attention_order,
|
914 |
+
),
|
915 |
+
ResBlock(
|
916 |
+
ch,
|
917 |
+
time_embed_dim,
|
918 |
+
dropout,
|
919 |
+
dims=dims,
|
920 |
+
use_checkpoint=use_checkpoint,
|
921 |
+
use_scale_shift_norm=use_scale_shift_norm,
|
922 |
+
),
|
923 |
+
)
|
924 |
+
self._feature_size += ch
|
925 |
+
self.pool = pool
|
926 |
+
if pool == "adaptive":
|
927 |
+
self.out = nn.Sequential(
|
928 |
+
normalization(ch),
|
929 |
+
nn.SiLU(),
|
930 |
+
nn.AdaptiveAvgPool2d((1, 1)),
|
931 |
+
zero_module(conv_nd(dims, ch, out_channels, 1)),
|
932 |
+
nn.Flatten(),
|
933 |
+
)
|
934 |
+
elif pool == "attention":
|
935 |
+
assert num_head_channels != -1
|
936 |
+
self.out = nn.Sequential(
|
937 |
+
normalization(ch),
|
938 |
+
nn.SiLU(),
|
939 |
+
AttentionPool2d(
|
940 |
+
(image_size // ds), ch, num_head_channels, out_channels
|
941 |
+
),
|
942 |
+
)
|
943 |
+
elif pool == "spatial":
|
944 |
+
self.out = nn.Sequential(
|
945 |
+
nn.Linear(self._feature_size, 2048),
|
946 |
+
nn.ReLU(),
|
947 |
+
nn.Linear(2048, self.out_channels),
|
948 |
+
)
|
949 |
+
elif pool == "spatial_v2":
|
950 |
+
self.out = nn.Sequential(
|
951 |
+
nn.Linear(self._feature_size, 2048),
|
952 |
+
normalization(2048),
|
953 |
+
nn.SiLU(),
|
954 |
+
nn.Linear(2048, self.out_channels),
|
955 |
+
)
|
956 |
+
else:
|
957 |
+
raise NotImplementedError(f"Unexpected {pool} pooling")
|
958 |
+
|
959 |
+
def convert_to_fp16(self):
|
960 |
+
"""
|
961 |
+
Convert the torso of the model to float16.
|
962 |
+
"""
|
963 |
+
self.input_blocks.apply(convert_module_to_f16)
|
964 |
+
self.middle_block.apply(convert_module_to_f16)
|
965 |
+
|
966 |
+
def convert_to_fp32(self):
|
967 |
+
"""
|
968 |
+
Convert the torso of the model to float32.
|
969 |
+
"""
|
970 |
+
self.input_blocks.apply(convert_module_to_f32)
|
971 |
+
self.middle_block.apply(convert_module_to_f32)
|
972 |
+
|
973 |
+
def forward(self, x, timesteps):
|
974 |
+
"""
|
975 |
+
Apply the model to an input batch.
|
976 |
+
:param x: an [N x C x ...] Tensor of inputs.
|
977 |
+
:param timesteps: a 1-D batch of timesteps.
|
978 |
+
:return: an [N x K] Tensor of outputs.
|
979 |
+
"""
|
980 |
+
emb = self.time_embed(timestep_embedding(timesteps, self.model_channels))
|
981 |
+
|
982 |
+
results = []
|
983 |
+
h = x.type(self.dtype)
|
984 |
+
for module in self.input_blocks:
|
985 |
+
h = module(h, emb)
|
986 |
+
if self.pool.startswith("spatial"):
|
987 |
+
results.append(h.type(x.dtype).mean(dim=(2, 3)))
|
988 |
+
h = self.middle_block(h, emb)
|
989 |
+
if self.pool.startswith("spatial"):
|
990 |
+
results.append(h.type(x.dtype).mean(dim=(2, 3)))
|
991 |
+
h = th.cat(results, axis=-1)
|
992 |
+
return self.out(h)
|
993 |
+
else:
|
994 |
+
h = h.type(x.dtype)
|
995 |
+
return self.out(h)
|
996 |
+
|
ldm/modules/diffusionmodules/util.py
ADDED
@@ -0,0 +1,267 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# adopted from
|
2 |
+
# https://github.com/openai/improved-diffusion/blob/main/improved_diffusion/gaussian_diffusion.py
|
3 |
+
# and
|
4 |
+
# https://github.com/lucidrains/denoising-diffusion-pytorch/blob/7706bdfc6f527f58d33f84b7b522e61e6e3164b3/denoising_diffusion_pytorch/denoising_diffusion_pytorch.py
|
5 |
+
# and
|
6 |
+
# https://github.com/openai/guided-diffusion/blob/0ba878e517b276c45d1195eb29f6f5f72659a05b/guided_diffusion/nn.py
|
7 |
+
#
|
8 |
+
# thanks!
|
9 |
+
|
10 |
+
|
11 |
+
import os
|
12 |
+
import math
|
13 |
+
import torch
|
14 |
+
import torch.nn as nn
|
15 |
+
import numpy as np
|
16 |
+
from einops import repeat
|
17 |
+
|
18 |
+
from ldm.util import instantiate_from_config
|
19 |
+
|
20 |
+
|
21 |
+
def make_beta_schedule(schedule, n_timestep, linear_start=1e-4, linear_end=2e-2, cosine_s=8e-3):
|
22 |
+
if schedule == "linear":
|
23 |
+
betas = (
|
24 |
+
torch.linspace(linear_start ** 0.5, linear_end ** 0.5, n_timestep, dtype=torch.float64) ** 2
|
25 |
+
)
|
26 |
+
|
27 |
+
elif schedule == "cosine":
|
28 |
+
timesteps = (
|
29 |
+
torch.arange(n_timestep + 1, dtype=torch.float64) / n_timestep + cosine_s
|
30 |
+
)
|
31 |
+
alphas = timesteps / (1 + cosine_s) * np.pi / 2
|
32 |
+
alphas = torch.cos(alphas).pow(2)
|
33 |
+
alphas = alphas / alphas[0]
|
34 |
+
betas = 1 - alphas[1:] / alphas[:-1]
|
35 |
+
betas = np.clip(betas, a_min=0, a_max=0.999)
|
36 |
+
|
37 |
+
elif schedule == "sqrt_linear":
|
38 |
+
betas = torch.linspace(linear_start, linear_end, n_timestep, dtype=torch.float64)
|
39 |
+
elif schedule == "sqrt":
|
40 |
+
betas = torch.linspace(linear_start, linear_end, n_timestep, dtype=torch.float64) ** 0.5
|
41 |
+
else:
|
42 |
+
raise ValueError(f"schedule '{schedule}' unknown.")
|
43 |
+
return betas.numpy()
|
44 |
+
|
45 |
+
|
46 |
+
def make_ddim_timesteps(ddim_discr_method, num_ddim_timesteps, num_ddpm_timesteps, verbose=True):
|
47 |
+
if ddim_discr_method == 'uniform':
|
48 |
+
c = num_ddpm_timesteps // num_ddim_timesteps
|
49 |
+
ddim_timesteps = np.asarray(list(range(0, num_ddpm_timesteps, c)))
|
50 |
+
elif ddim_discr_method == 'quad':
|
51 |
+
ddim_timesteps = ((np.linspace(0, np.sqrt(num_ddpm_timesteps * .8), num_ddim_timesteps)) ** 2).astype(int)
|
52 |
+
else:
|
53 |
+
raise NotImplementedError(f'There is no ddim discretization method called "{ddim_discr_method}"')
|
54 |
+
|
55 |
+
# assert ddim_timesteps.shape[0] == num_ddim_timesteps
|
56 |
+
# add one to get the final alpha values right (the ones from first scale to data during sampling)
|
57 |
+
steps_out = ddim_timesteps + 1
|
58 |
+
if verbose:
|
59 |
+
print(f'Selected timesteps for ddim sampler: {steps_out}')
|
60 |
+
return steps_out
|
61 |
+
|
62 |
+
|
63 |
+
def make_ddim_sampling_parameters(alphacums, ddim_timesteps, eta, verbose=True):
|
64 |
+
# select alphas for computing the variance schedule
|
65 |
+
alphas = alphacums[ddim_timesteps]
|
66 |
+
alphas_prev = np.asarray([alphacums[0]] + alphacums[ddim_timesteps[:-1]].tolist())
|
67 |
+
|
68 |
+
# according the the formula provided in https://arxiv.org/abs/2010.02502
|
69 |
+
sigmas = eta * np.sqrt((1 - alphas_prev) / (1 - alphas) * (1 - alphas / alphas_prev))
|
70 |
+
if verbose:
|
71 |
+
print(f'Selected alphas for ddim sampler: a_t: {alphas}; a_(t-1): {alphas_prev}')
|
72 |
+
print(f'For the chosen value of eta, which is {eta}, '
|
73 |
+
f'this results in the following sigma_t schedule for ddim sampler {sigmas}')
|
74 |
+
return sigmas, alphas, alphas_prev
|
75 |
+
|
76 |
+
|
77 |
+
def betas_for_alpha_bar(num_diffusion_timesteps, alpha_bar, max_beta=0.999):
|
78 |
+
"""
|
79 |
+
Create a beta schedule that discretizes the given alpha_t_bar function,
|
80 |
+
which defines the cumulative product of (1-beta) over time from t = [0,1].
|
81 |
+
:param num_diffusion_timesteps: the number of betas to produce.
|
82 |
+
:param alpha_bar: a lambda that takes an argument t from 0 to 1 and
|
83 |
+
produces the cumulative product of (1-beta) up to that
|
84 |
+
part of the diffusion process.
|
85 |
+
:param max_beta: the maximum beta to use; use values lower than 1 to
|
86 |
+
prevent singularities.
|
87 |
+
"""
|
88 |
+
betas = []
|
89 |
+
for i in range(num_diffusion_timesteps):
|
90 |
+
t1 = i / num_diffusion_timesteps
|
91 |
+
t2 = (i + 1) / num_diffusion_timesteps
|
92 |
+
betas.append(min(1 - alpha_bar(t2) / alpha_bar(t1), max_beta))
|
93 |
+
return np.array(betas)
|
94 |
+
|
95 |
+
|
96 |
+
def extract_into_tensor(a, t, x_shape):
|
97 |
+
b, *_ = t.shape
|
98 |
+
out = a.gather(-1, t)
|
99 |
+
return out.reshape(b, *((1,) * (len(x_shape) - 1)))
|
100 |
+
|
101 |
+
|
102 |
+
def checkpoint(func, inputs, params, flag):
|
103 |
+
"""
|
104 |
+
Evaluate a function without caching intermediate activations, allowing for
|
105 |
+
reduced memory at the expense of extra compute in the backward pass.
|
106 |
+
:param func: the function to evaluate.
|
107 |
+
:param inputs: the argument sequence to pass to `func`.
|
108 |
+
:param params: a sequence of parameters `func` depends on but does not
|
109 |
+
explicitly take as arguments.
|
110 |
+
:param flag: if False, disable gradient checkpointing.
|
111 |
+
"""
|
112 |
+
if flag:
|
113 |
+
args = tuple(inputs) + tuple(params)
|
114 |
+
return CheckpointFunction.apply(func, len(inputs), *args)
|
115 |
+
else:
|
116 |
+
return func(*inputs)
|
117 |
+
|
118 |
+
|
119 |
+
class CheckpointFunction(torch.autograd.Function):
|
120 |
+
@staticmethod
|
121 |
+
def forward(ctx, run_function, length, *args):
|
122 |
+
ctx.run_function = run_function
|
123 |
+
ctx.input_tensors = list(args[:length])
|
124 |
+
ctx.input_params = list(args[length:])
|
125 |
+
|
126 |
+
with torch.no_grad():
|
127 |
+
output_tensors = ctx.run_function(*ctx.input_tensors)
|
128 |
+
return output_tensors
|
129 |
+
|
130 |
+
@staticmethod
|
131 |
+
def backward(ctx, *output_grads):
|
132 |
+
ctx.input_tensors = [x.detach().requires_grad_(True) for x in ctx.input_tensors]
|
133 |
+
with torch.enable_grad():
|
134 |
+
# Fixes a bug where the first op in run_function modifies the
|
135 |
+
# Tensor storage in place, which is not allowed for detach()'d
|
136 |
+
# Tensors.
|
137 |
+
shallow_copies = [x.view_as(x) for x in ctx.input_tensors]
|
138 |
+
output_tensors = ctx.run_function(*shallow_copies)
|
139 |
+
input_grads = torch.autograd.grad(
|
140 |
+
output_tensors,
|
141 |
+
ctx.input_tensors + ctx.input_params,
|
142 |
+
output_grads,
|
143 |
+
allow_unused=True,
|
144 |
+
)
|
145 |
+
del ctx.input_tensors
|
146 |
+
del ctx.input_params
|
147 |
+
del output_tensors
|
148 |
+
return (None, None) + input_grads
|
149 |
+
|
150 |
+
|
151 |
+
def timestep_embedding(timesteps, dim, max_period=10000, repeat_only=False):
|
152 |
+
"""
|
153 |
+
Create sinusoidal timestep embeddings.
|
154 |
+
:param timesteps: a 1-D Tensor of N indices, one per batch element.
|
155 |
+
These may be fractional.
|
156 |
+
:param dim: the dimension of the output.
|
157 |
+
:param max_period: controls the minimum frequency of the embeddings.
|
158 |
+
:return: an [N x dim] Tensor of positional embeddings.
|
159 |
+
"""
|
160 |
+
if not repeat_only:
|
161 |
+
half = dim // 2
|
162 |
+
freqs = torch.exp(
|
163 |
+
-math.log(max_period) * torch.arange(start=0, end=half, dtype=torch.float32) / half
|
164 |
+
).to(device=timesteps.device)
|
165 |
+
args = timesteps[:, None].float() * freqs[None]
|
166 |
+
embedding = torch.cat([torch.cos(args), torch.sin(args)], dim=-1)
|
167 |
+
if dim % 2:
|
168 |
+
embedding = torch.cat([embedding, torch.zeros_like(embedding[:, :1])], dim=-1)
|
169 |
+
else:
|
170 |
+
embedding = repeat(timesteps, 'b -> b d', d=dim)
|
171 |
+
return embedding
|
172 |
+
|
173 |
+
|
174 |
+
def zero_module(module):
|
175 |
+
"""
|
176 |
+
Zero out the parameters of a module and return it.
|
177 |
+
"""
|
178 |
+
for p in module.parameters():
|
179 |
+
p.detach().zero_()
|
180 |
+
return module
|
181 |
+
|
182 |
+
|
183 |
+
def scale_module(module, scale):
|
184 |
+
"""
|
185 |
+
Scale the parameters of a module and return it.
|
186 |
+
"""
|
187 |
+
for p in module.parameters():
|
188 |
+
p.detach().mul_(scale)
|
189 |
+
return module
|
190 |
+
|
191 |
+
|
192 |
+
def mean_flat(tensor):
|
193 |
+
"""
|
194 |
+
Take the mean over all non-batch dimensions.
|
195 |
+
"""
|
196 |
+
return tensor.mean(dim=list(range(1, len(tensor.shape))))
|
197 |
+
|
198 |
+
|
199 |
+
def normalization(channels):
|
200 |
+
"""
|
201 |
+
Make a standard normalization layer.
|
202 |
+
:param channels: number of input channels.
|
203 |
+
:return: an nn.Module for normalization.
|
204 |
+
"""
|
205 |
+
return GroupNorm32(32, channels)
|
206 |
+
|
207 |
+
|
208 |
+
# PyTorch 1.7 has SiLU, but we support PyTorch 1.5.
|
209 |
+
class SiLU(nn.Module):
|
210 |
+
def forward(self, x):
|
211 |
+
return x * torch.sigmoid(x)
|
212 |
+
|
213 |
+
|
214 |
+
class GroupNorm32(nn.GroupNorm):
|
215 |
+
def forward(self, x):
|
216 |
+
return super().forward(x.float()).type(x.dtype)
|
217 |
+
|
218 |
+
def conv_nd(dims, *args, **kwargs):
|
219 |
+
"""
|
220 |
+
Create a 1D, 2D, or 3D convolution module.
|
221 |
+
"""
|
222 |
+
if dims == 1:
|
223 |
+
return nn.Conv1d(*args, **kwargs)
|
224 |
+
elif dims == 2:
|
225 |
+
return nn.Conv2d(*args, **kwargs)
|
226 |
+
elif dims == 3:
|
227 |
+
return nn.Conv3d(*args, **kwargs)
|
228 |
+
raise ValueError(f"unsupported dimensions: {dims}")
|
229 |
+
|
230 |
+
|
231 |
+
def linear(*args, **kwargs):
|
232 |
+
"""
|
233 |
+
Create a linear module.
|
234 |
+
"""
|
235 |
+
return nn.Linear(*args, **kwargs)
|
236 |
+
|
237 |
+
|
238 |
+
def avg_pool_nd(dims, *args, **kwargs):
|
239 |
+
"""
|
240 |
+
Create a 1D, 2D, or 3D average pooling module.
|
241 |
+
"""
|
242 |
+
if dims == 1:
|
243 |
+
return nn.AvgPool1d(*args, **kwargs)
|
244 |
+
elif dims == 2:
|
245 |
+
return nn.AvgPool2d(*args, **kwargs)
|
246 |
+
elif dims == 3:
|
247 |
+
return nn.AvgPool3d(*args, **kwargs)
|
248 |
+
raise ValueError(f"unsupported dimensions: {dims}")
|
249 |
+
|
250 |
+
|
251 |
+
class HybridConditioner(nn.Module):
|
252 |
+
|
253 |
+
def __init__(self, c_concat_config, c_crossattn_config):
|
254 |
+
super().__init__()
|
255 |
+
self.concat_conditioner = instantiate_from_config(c_concat_config)
|
256 |
+
self.crossattn_conditioner = instantiate_from_config(c_crossattn_config)
|
257 |
+
|
258 |
+
def forward(self, c_concat, c_crossattn):
|
259 |
+
c_concat = self.concat_conditioner(c_concat)
|
260 |
+
c_crossattn = self.crossattn_conditioner(c_crossattn)
|
261 |
+
return {'c_concat': [c_concat], 'c_crossattn': [c_crossattn]}
|
262 |
+
|
263 |
+
|
264 |
+
def noise_like(shape, device, repeat=False):
|
265 |
+
repeat_noise = lambda: torch.randn((1, *shape[1:]), device=device).repeat(shape[0], *((1,) * (len(shape) - 1)))
|
266 |
+
noise = lambda: torch.randn(shape, device=device)
|
267 |
+
return repeat_noise() if repeat else noise()
|
ldm/modules/distributions/__init__.py
ADDED
File without changes
|
ldm/modules/distributions/distributions.py
ADDED
@@ -0,0 +1,92 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
import numpy as np
|
3 |
+
|
4 |
+
|
5 |
+
class AbstractDistribution:
|
6 |
+
def sample(self):
|
7 |
+
raise NotImplementedError()
|
8 |
+
|
9 |
+
def mode(self):
|
10 |
+
raise NotImplementedError()
|
11 |
+
|
12 |
+
|
13 |
+
class DiracDistribution(AbstractDistribution):
|
14 |
+
def __init__(self, value):
|
15 |
+
self.value = value
|
16 |
+
|
17 |
+
def sample(self):
|
18 |
+
return self.value
|
19 |
+
|
20 |
+
def mode(self):
|
21 |
+
return self.value
|
22 |
+
|
23 |
+
|
24 |
+
class DiagonalGaussianDistribution(object):
|
25 |
+
def __init__(self, parameters, deterministic=False):
|
26 |
+
self.parameters = parameters
|
27 |
+
self.mean, self.logvar = torch.chunk(parameters, 2, dim=1)
|
28 |
+
self.logvar = torch.clamp(self.logvar, -30.0, 20.0)
|
29 |
+
self.deterministic = deterministic
|
30 |
+
self.std = torch.exp(0.5 * self.logvar)
|
31 |
+
self.var = torch.exp(self.logvar)
|
32 |
+
if self.deterministic:
|
33 |
+
self.var = self.std = torch.zeros_like(self.mean).to(device=self.parameters.device)
|
34 |
+
|
35 |
+
def sample(self):
|
36 |
+
x = self.mean + self.std * torch.randn(self.mean.shape).to(device=self.parameters.device)
|
37 |
+
return x
|
38 |
+
|
39 |
+
def kl(self, other=None):
|
40 |
+
if self.deterministic:
|
41 |
+
return torch.Tensor([0.])
|
42 |
+
else:
|
43 |
+
if other is None:
|
44 |
+
return 0.5 * torch.sum(torch.pow(self.mean, 2)
|
45 |
+
+ self.var - 1.0 - self.logvar,
|
46 |
+
dim=[1, 2, 3])
|
47 |
+
else:
|
48 |
+
return 0.5 * torch.sum(
|
49 |
+
torch.pow(self.mean - other.mean, 2) / other.var
|
50 |
+
+ self.var / other.var - 1.0 - self.logvar + other.logvar,
|
51 |
+
dim=[1, 2, 3])
|
52 |
+
|
53 |
+
def nll(self, sample, dims=[1,2,3]):
|
54 |
+
if self.deterministic:
|
55 |
+
return torch.Tensor([0.])
|
56 |
+
logtwopi = np.log(2.0 * np.pi)
|
57 |
+
return 0.5 * torch.sum(
|
58 |
+
logtwopi + self.logvar + torch.pow(sample - self.mean, 2) / self.var,
|
59 |
+
dim=dims)
|
60 |
+
|
61 |
+
def mode(self):
|
62 |
+
return self.mean
|
63 |
+
|
64 |
+
|
65 |
+
def normal_kl(mean1, logvar1, mean2, logvar2):
|
66 |
+
"""
|
67 |
+
source: https://github.com/openai/guided-diffusion/blob/27c20a8fab9cb472df5d6bdd6c8d11c8f430b924/guided_diffusion/losses.py#L12
|
68 |
+
Compute the KL divergence between two gaussians.
|
69 |
+
Shapes are automatically broadcasted, so batches can be compared to
|
70 |
+
scalars, among other use cases.
|
71 |
+
"""
|
72 |
+
tensor = None
|
73 |
+
for obj in (mean1, logvar1, mean2, logvar2):
|
74 |
+
if isinstance(obj, torch.Tensor):
|
75 |
+
tensor = obj
|
76 |
+
break
|
77 |
+
assert tensor is not None, "at least one argument must be a Tensor"
|
78 |
+
|
79 |
+
# Force variances to be Tensors. Broadcasting helps convert scalars to
|
80 |
+
# Tensors, but it does not work for torch.exp().
|
81 |
+
logvar1, logvar2 = [
|
82 |
+
x if isinstance(x, torch.Tensor) else torch.tensor(x).to(tensor)
|
83 |
+
for x in (logvar1, logvar2)
|
84 |
+
]
|
85 |
+
|
86 |
+
return 0.5 * (
|
87 |
+
-1.0
|
88 |
+
+ logvar2
|
89 |
+
- logvar1
|
90 |
+
+ torch.exp(logvar1 - logvar2)
|
91 |
+
+ ((mean1 - mean2) ** 2) * torch.exp(-logvar2)
|
92 |
+
)
|
ldm/modules/ema.py
ADDED
@@ -0,0 +1,76 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
from torch import nn
|
3 |
+
|
4 |
+
|
5 |
+
class LitEma(nn.Module):
|
6 |
+
def __init__(self, model, decay=0.9999, use_num_upates=True):
|
7 |
+
super().__init__()
|
8 |
+
if decay < 0.0 or decay > 1.0:
|
9 |
+
raise ValueError('Decay must be between 0 and 1')
|
10 |
+
|
11 |
+
self.m_name2s_name = {}
|
12 |
+
self.register_buffer('decay', torch.tensor(decay, dtype=torch.float32))
|
13 |
+
self.register_buffer('num_updates', torch.tensor(0,dtype=torch.int) if use_num_upates
|
14 |
+
else torch.tensor(-1,dtype=torch.int))
|
15 |
+
|
16 |
+
for name, p in model.named_parameters():
|
17 |
+
if p.requires_grad:
|
18 |
+
#remove as '.'-character is not allowed in buffers
|
19 |
+
s_name = name.replace('.','')
|
20 |
+
self.m_name2s_name.update({name:s_name})
|
21 |
+
self.register_buffer(s_name,p.clone().detach().data)
|
22 |
+
|
23 |
+
self.collected_params = []
|
24 |
+
|
25 |
+
def forward(self,model):
|
26 |
+
decay = self.decay
|
27 |
+
|
28 |
+
if self.num_updates >= 0:
|
29 |
+
self.num_updates += 1
|
30 |
+
decay = min(self.decay,(1 + self.num_updates) / (10 + self.num_updates))
|
31 |
+
|
32 |
+
one_minus_decay = 1.0 - decay
|
33 |
+
|
34 |
+
with torch.no_grad():
|
35 |
+
m_param = dict(model.named_parameters())
|
36 |
+
shadow_params = dict(self.named_buffers())
|
37 |
+
|
38 |
+
for key in m_param:
|
39 |
+
if m_param[key].requires_grad:
|
40 |
+
sname = self.m_name2s_name[key]
|
41 |
+
shadow_params[sname] = shadow_params[sname].type_as(m_param[key])
|
42 |
+
shadow_params[sname].sub_(one_minus_decay * (shadow_params[sname] - m_param[key]))
|
43 |
+
else:
|
44 |
+
assert not key in self.m_name2s_name
|
45 |
+
|
46 |
+
def copy_to(self, model):
|
47 |
+
m_param = dict(model.named_parameters())
|
48 |
+
shadow_params = dict(self.named_buffers())
|
49 |
+
for key in m_param:
|
50 |
+
if m_param[key].requires_grad:
|
51 |
+
m_param[key].data.copy_(shadow_params[self.m_name2s_name[key]].data)
|
52 |
+
else:
|
53 |
+
assert not key in self.m_name2s_name
|
54 |
+
|
55 |
+
def store(self, parameters):
|
56 |
+
"""
|
57 |
+
Save the current parameters for restoring later.
|
58 |
+
Args:
|
59 |
+
parameters: Iterable of `torch.nn.Parameter`; the parameters to be
|
60 |
+
temporarily stored.
|
61 |
+
"""
|
62 |
+
self.collected_params = [param.clone() for param in parameters]
|
63 |
+
|
64 |
+
def restore(self, parameters):
|
65 |
+
"""
|
66 |
+
Restore the parameters stored with the `store` method.
|
67 |
+
Useful to validate the model with EMA parameters without affecting the
|
68 |
+
original optimization process. Store the parameters before the
|
69 |
+
`copy_to` method. After validation (or model saving), use this to
|
70 |
+
restore the former parameters.
|
71 |
+
Args:
|
72 |
+
parameters: Iterable of `torch.nn.Parameter`; the parameters to be
|
73 |
+
updated with the stored parameters.
|
74 |
+
"""
|
75 |
+
for c_param, param in zip(self.collected_params, parameters):
|
76 |
+
param.data.copy_(c_param.data)
|
ldm/modules/encoders/__init__.py
ADDED
File without changes
|
ldm/modules/encoders/modules.py
ADDED
@@ -0,0 +1,550 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
import torch.nn as nn
|
3 |
+
import numpy as np
|
4 |
+
from functools import partial
|
5 |
+
import kornia
|
6 |
+
|
7 |
+
from ldm.modules.x_transformer import Encoder, TransformerWrapper # TODO: can we directly rely on lucidrains code and simply add this as a reuirement? --> test
|
8 |
+
from ldm.util import default
|
9 |
+
import clip
|
10 |
+
|
11 |
+
|
12 |
+
class AbstractEncoder(nn.Module):
|
13 |
+
def __init__(self):
|
14 |
+
super().__init__()
|
15 |
+
|
16 |
+
def encode(self, *args, **kwargs):
|
17 |
+
raise NotImplementedError
|
18 |
+
|
19 |
+
class IdentityEncoder(AbstractEncoder):
|
20 |
+
|
21 |
+
def encode(self, x):
|
22 |
+
return x
|
23 |
+
|
24 |
+
class FaceClipEncoder(AbstractEncoder):
|
25 |
+
def __init__(self, augment=True, retreival_key=None):
|
26 |
+
super().__init__()
|
27 |
+
self.encoder = FrozenCLIPImageEmbedder()
|
28 |
+
self.augment = augment
|
29 |
+
self.retreival_key = retreival_key
|
30 |
+
|
31 |
+
def forward(self, img):
|
32 |
+
encodings = []
|
33 |
+
with torch.no_grad():
|
34 |
+
x_offset = 125
|
35 |
+
if self.retreival_key:
|
36 |
+
# Assumes retrieved image are packed into the second half of channels
|
37 |
+
face = img[:,3:,190:440,x_offset:(512-x_offset)]
|
38 |
+
other = img[:,:3,...].clone()
|
39 |
+
else:
|
40 |
+
face = img[:,:,190:440,x_offset:(512-x_offset)]
|
41 |
+
other = img.clone()
|
42 |
+
|
43 |
+
if self.augment:
|
44 |
+
face = K.RandomHorizontalFlip()(face)
|
45 |
+
|
46 |
+
other[:,:,190:440,x_offset:(512-x_offset)] *= 0
|
47 |
+
encodings = [
|
48 |
+
self.encoder.encode(face),
|
49 |
+
self.encoder.encode(other),
|
50 |
+
]
|
51 |
+
|
52 |
+
return torch.cat(encodings, dim=1)
|
53 |
+
|
54 |
+
def encode(self, img):
|
55 |
+
if isinstance(img, list):
|
56 |
+
# Uncondition
|
57 |
+
return torch.zeros((1, 2, 768), device=self.encoder.model.visual.conv1.weight.device)
|
58 |
+
|
59 |
+
return self(img)
|
60 |
+
|
61 |
+
class FaceIdClipEncoder(AbstractEncoder):
|
62 |
+
def __init__(self):
|
63 |
+
super().__init__()
|
64 |
+
self.encoder = FrozenCLIPImageEmbedder()
|
65 |
+
for p in self.encoder.parameters():
|
66 |
+
p.requires_grad = False
|
67 |
+
self.id = FrozenFaceEncoder("/home/jpinkney/code/stable-diffusion/model_ir_se50.pth", augment=True)
|
68 |
+
|
69 |
+
def forward(self, img):
|
70 |
+
encodings = []
|
71 |
+
with torch.no_grad():
|
72 |
+
face = kornia.geometry.resize(img, (256, 256),
|
73 |
+
interpolation='bilinear', align_corners=True)
|
74 |
+
|
75 |
+
other = img.clone()
|
76 |
+
other[:,:,184:452,122:396] *= 0
|
77 |
+
encodings = [
|
78 |
+
self.id.encode(face),
|
79 |
+
self.encoder.encode(other),
|
80 |
+
]
|
81 |
+
|
82 |
+
return torch.cat(encodings, dim=1)
|
83 |
+
|
84 |
+
def encode(self, img):
|
85 |
+
if isinstance(img, list):
|
86 |
+
# Uncondition
|
87 |
+
return torch.zeros((1, 2, 768), device=self.encoder.model.visual.conv1.weight.device)
|
88 |
+
|
89 |
+
return self(img)
|
90 |
+
|
91 |
+
class ClassEmbedder(nn.Module):
|
92 |
+
def __init__(self, embed_dim, n_classes=1000, key='class'):
|
93 |
+
super().__init__()
|
94 |
+
self.key = key
|
95 |
+
self.embedding = nn.Embedding(n_classes, embed_dim)
|
96 |
+
|
97 |
+
def forward(self, batch, key=None):
|
98 |
+
if key is None:
|
99 |
+
key = self.key
|
100 |
+
# this is for use in crossattn
|
101 |
+
c = batch[key][:, None]
|
102 |
+
c = self.embedding(c)
|
103 |
+
return c
|
104 |
+
|
105 |
+
|
106 |
+
class TransformerEmbedder(AbstractEncoder):
|
107 |
+
"""Some transformer encoder layers"""
|
108 |
+
def __init__(self, n_embed, n_layer, vocab_size, max_seq_len=77, device="cuda"):
|
109 |
+
super().__init__()
|
110 |
+
self.device = device
|
111 |
+
self.transformer = TransformerWrapper(num_tokens=vocab_size, max_seq_len=max_seq_len,
|
112 |
+
attn_layers=Encoder(dim=n_embed, depth=n_layer))
|
113 |
+
|
114 |
+
def forward(self, tokens):
|
115 |
+
tokens = tokens.to(self.device) # meh
|
116 |
+
z = self.transformer(tokens, return_embeddings=True)
|
117 |
+
return z
|
118 |
+
|
119 |
+
def encode(self, x):
|
120 |
+
return self(x)
|
121 |
+
|
122 |
+
|
123 |
+
class BERTTokenizer(AbstractEncoder):
|
124 |
+
""" Uses a pretrained BERT tokenizer by huggingface. Vocab size: 30522 (?)"""
|
125 |
+
def __init__(self, device="cuda", vq_interface=True, max_length=77):
|
126 |
+
super().__init__()
|
127 |
+
from transformers import BertTokenizerFast # TODO: add to reuquirements
|
128 |
+
self.tokenizer = BertTokenizerFast.from_pretrained("bert-base-uncased")
|
129 |
+
self.device = device
|
130 |
+
self.vq_interface = vq_interface
|
131 |
+
self.max_length = max_length
|
132 |
+
|
133 |
+
def forward(self, text):
|
134 |
+
batch_encoding = self.tokenizer(text, truncation=True, max_length=self.max_length, return_length=True,
|
135 |
+
return_overflowing_tokens=False, padding="max_length", return_tensors="pt")
|
136 |
+
tokens = batch_encoding["input_ids"].to(self.device)
|
137 |
+
return tokens
|
138 |
+
|
139 |
+
@torch.no_grad()
|
140 |
+
def encode(self, text):
|
141 |
+
tokens = self(text)
|
142 |
+
if not self.vq_interface:
|
143 |
+
return tokens
|
144 |
+
return None, None, [None, None, tokens]
|
145 |
+
|
146 |
+
def decode(self, text):
|
147 |
+
return text
|
148 |
+
|
149 |
+
|
150 |
+
class BERTEmbedder(AbstractEncoder):
|
151 |
+
"""Uses the BERT tokenizr model and add some transformer encoder layers"""
|
152 |
+
def __init__(self, n_embed, n_layer, vocab_size=30522, max_seq_len=77,
|
153 |
+
device="cuda",use_tokenizer=True, embedding_dropout=0.0):
|
154 |
+
super().__init__()
|
155 |
+
self.use_tknz_fn = use_tokenizer
|
156 |
+
if self.use_tknz_fn:
|
157 |
+
self.tknz_fn = BERTTokenizer(vq_interface=False, max_length=max_seq_len)
|
158 |
+
self.device = device
|
159 |
+
self.transformer = TransformerWrapper(num_tokens=vocab_size, max_seq_len=max_seq_len,
|
160 |
+
attn_layers=Encoder(dim=n_embed, depth=n_layer),
|
161 |
+
emb_dropout=embedding_dropout)
|
162 |
+
|
163 |
+
def forward(self, text):
|
164 |
+
if self.use_tknz_fn:
|
165 |
+
tokens = self.tknz_fn(text)#.to(self.device)
|
166 |
+
else:
|
167 |
+
tokens = text
|
168 |
+
z = self.transformer(tokens, return_embeddings=True)
|
169 |
+
return z
|
170 |
+
|
171 |
+
def encode(self, text):
|
172 |
+
# output of length 77
|
173 |
+
return self(text)
|
174 |
+
|
175 |
+
|
176 |
+
from transformers import T5Tokenizer, T5EncoderModel, CLIPTokenizer, CLIPTextModel
|
177 |
+
|
178 |
+
def disabled_train(self, mode=True):
|
179 |
+
"""Overwrite model.train with this function to make sure train/eval mode
|
180 |
+
does not change anymore."""
|
181 |
+
return self
|
182 |
+
|
183 |
+
|
184 |
+
class FrozenT5Embedder(AbstractEncoder):
|
185 |
+
"""Uses the T5 transformer encoder for text"""
|
186 |
+
def __init__(self, version="google/t5-v1_1-large", device="cuda", max_length=77): # others are google/t5-v1_1-xl and google/t5-v1_1-xxl
|
187 |
+
super().__init__()
|
188 |
+
self.tokenizer = T5Tokenizer.from_pretrained(version)
|
189 |
+
self.transformer = T5EncoderModel.from_pretrained(version)
|
190 |
+
self.device = device
|
191 |
+
self.max_length = max_length # TODO: typical value?
|
192 |
+
self.freeze()
|
193 |
+
|
194 |
+
def freeze(self):
|
195 |
+
self.transformer = self.transformer.eval()
|
196 |
+
#self.train = disabled_train
|
197 |
+
for param in self.parameters():
|
198 |
+
param.requires_grad = False
|
199 |
+
|
200 |
+
def forward(self, text):
|
201 |
+
batch_encoding = self.tokenizer(text, truncation=True, max_length=self.max_length, return_length=True,
|
202 |
+
return_overflowing_tokens=False, padding="max_length", return_tensors="pt")
|
203 |
+
tokens = batch_encoding["input_ids"].to(self.device)
|
204 |
+
outputs = self.transformer(input_ids=tokens)
|
205 |
+
|
206 |
+
z = outputs.last_hidden_state
|
207 |
+
return z
|
208 |
+
|
209 |
+
def encode(self, text):
|
210 |
+
return self(text)
|
211 |
+
|
212 |
+
from ldm.thirdp.psp.id_loss import IDFeatures
|
213 |
+
import kornia.augmentation as K
|
214 |
+
|
215 |
+
class FrozenFaceEncoder(AbstractEncoder):
|
216 |
+
def __init__(self, model_path, augment=False):
|
217 |
+
super().__init__()
|
218 |
+
self.loss_fn = IDFeatures(model_path)
|
219 |
+
# face encoder is frozen
|
220 |
+
for p in self.loss_fn.parameters():
|
221 |
+
p.requires_grad = False
|
222 |
+
# Mapper is trainable
|
223 |
+
self.mapper = torch.nn.Linear(512, 768)
|
224 |
+
p = 0.25
|
225 |
+
if augment:
|
226 |
+
self.augment = K.AugmentationSequential(
|
227 |
+
K.RandomHorizontalFlip(p=0.5),
|
228 |
+
K.RandomEqualize(p=p),
|
229 |
+
# K.RandomPlanckianJitter(p=p),
|
230 |
+
# K.RandomPlasmaBrightness(p=p),
|
231 |
+
# K.RandomPlasmaContrast(p=p),
|
232 |
+
# K.ColorJiggle(0.02, 0.2, 0.2, p=p),
|
233 |
+
)
|
234 |
+
else:
|
235 |
+
self.augment = False
|
236 |
+
|
237 |
+
def forward(self, img):
|
238 |
+
if isinstance(img, list):
|
239 |
+
# Uncondition
|
240 |
+
return torch.zeros((1, 1, 768), device=self.mapper.weight.device)
|
241 |
+
|
242 |
+
if self.augment is not None:
|
243 |
+
# Transforms require 0-1
|
244 |
+
img = self.augment((img + 1)/2)
|
245 |
+
img = 2*img - 1
|
246 |
+
|
247 |
+
feat = self.loss_fn(img, crop=True)
|
248 |
+
feat = self.mapper(feat.unsqueeze(1))
|
249 |
+
return feat
|
250 |
+
|
251 |
+
def encode(self, img):
|
252 |
+
return self(img)
|
253 |
+
|
254 |
+
class FrozenCLIPEmbedder(AbstractEncoder):
|
255 |
+
"""Uses the CLIP transformer encoder for text (from huggingface)"""
|
256 |
+
def __init__(self, version="openai/clip-vit-large-patch14", device="cuda", max_length=77): # clip-vit-base-patch32
|
257 |
+
super().__init__()
|
258 |
+
self.tokenizer = CLIPTokenizer.from_pretrained(version)
|
259 |
+
self.transformer = CLIPTextModel.from_pretrained(version)
|
260 |
+
self.device = device
|
261 |
+
self.max_length = max_length # TODO: typical value?
|
262 |
+
self.freeze()
|
263 |
+
|
264 |
+
def freeze(self):
|
265 |
+
self.transformer = self.transformer.eval()
|
266 |
+
#self.train = disabled_train
|
267 |
+
for param in self.parameters():
|
268 |
+
param.requires_grad = False
|
269 |
+
|
270 |
+
def forward(self, text):
|
271 |
+
batch_encoding = self.tokenizer(text, truncation=True, max_length=self.max_length, return_length=True,
|
272 |
+
return_overflowing_tokens=False, padding="max_length", return_tensors="pt")
|
273 |
+
tokens = batch_encoding["input_ids"].to(self.device)
|
274 |
+
outputs = self.transformer(input_ids=tokens)
|
275 |
+
|
276 |
+
z = outputs.last_hidden_state
|
277 |
+
return z
|
278 |
+
|
279 |
+
def encode(self, text):
|
280 |
+
return self(text)
|
281 |
+
|
282 |
+
import torch.nn.functional as F
|
283 |
+
from transformers import CLIPVisionModel
|
284 |
+
class ClipImageProjector(AbstractEncoder):
|
285 |
+
"""
|
286 |
+
Uses the CLIP image encoder.
|
287 |
+
"""
|
288 |
+
def __init__(self, version="openai/clip-vit-large-patch14", max_length=77): # clip-vit-base-patch32
|
289 |
+
super().__init__()
|
290 |
+
self.model = CLIPVisionModel.from_pretrained(version)
|
291 |
+
self.model.train()
|
292 |
+
self.max_length = max_length # TODO: typical value?
|
293 |
+
self.antialias = True
|
294 |
+
self.mapper = torch.nn.Linear(1024, 768)
|
295 |
+
self.register_buffer('mean', torch.Tensor([0.48145466, 0.4578275, 0.40821073]), persistent=False)
|
296 |
+
self.register_buffer('std', torch.Tensor([0.26862954, 0.26130258, 0.27577711]), persistent=False)
|
297 |
+
null_cond = self.get_null_cond(version, max_length)
|
298 |
+
self.register_buffer('null_cond', null_cond)
|
299 |
+
|
300 |
+
@torch.no_grad()
|
301 |
+
def get_null_cond(self, version, max_length):
|
302 |
+
device = self.mean.device
|
303 |
+
embedder = FrozenCLIPEmbedder(version=version, device=device, max_length=max_length)
|
304 |
+
null_cond = embedder([""])
|
305 |
+
return null_cond
|
306 |
+
|
307 |
+
def preprocess(self, x):
|
308 |
+
# Expects inputs in the range -1, 1
|
309 |
+
x = kornia.geometry.resize(x, (224, 224),
|
310 |
+
interpolation='bicubic',align_corners=True,
|
311 |
+
antialias=self.antialias)
|
312 |
+
x = (x + 1.) / 2.
|
313 |
+
# renormalize according to clip
|
314 |
+
x = kornia.enhance.normalize(x, self.mean, self.std)
|
315 |
+
return x
|
316 |
+
|
317 |
+
def forward(self, x):
|
318 |
+
if isinstance(x, list):
|
319 |
+
return self.null_cond
|
320 |
+
# x is assumed to be in range [-1,1]
|
321 |
+
x = self.preprocess(x)
|
322 |
+
outputs = self.model(pixel_values=x)
|
323 |
+
last_hidden_state = outputs.last_hidden_state
|
324 |
+
last_hidden_state = self.mapper(last_hidden_state)
|
325 |
+
return F.pad(last_hidden_state, [0,0, 0,self.max_length-last_hidden_state.shape[1], 0,0])
|
326 |
+
|
327 |
+
def encode(self, im):
|
328 |
+
return self(im)
|
329 |
+
|
330 |
+
class ProjectedFrozenCLIPEmbedder(AbstractEncoder):
|
331 |
+
def __init__(self, version="openai/clip-vit-large-patch14", device="cuda", max_length=77): # clip-vit-base-patch32
|
332 |
+
super().__init__()
|
333 |
+
self.embedder = FrozenCLIPEmbedder(version=version, device=device, max_length=max_length)
|
334 |
+
self.projection = torch.nn.Linear(768, 768)
|
335 |
+
|
336 |
+
def forward(self, text):
|
337 |
+
z = self.embedder(text)
|
338 |
+
return self.projection(z)
|
339 |
+
|
340 |
+
def encode(self, text):
|
341 |
+
return self(text)
|
342 |
+
|
343 |
+
class FrozenCLIPImageEmbedder(AbstractEncoder):
|
344 |
+
"""
|
345 |
+
Uses the CLIP image encoder.
|
346 |
+
Not actually frozen... If you want that set cond_stage_trainable=False in cfg
|
347 |
+
"""
|
348 |
+
def __init__(
|
349 |
+
self,
|
350 |
+
model='ViT-L/14',
|
351 |
+
jit=False,
|
352 |
+
device='cpu',
|
353 |
+
antialias=False,
|
354 |
+
):
|
355 |
+
super().__init__()
|
356 |
+
self.model, _ = clip.load(name=model, device=device, jit=jit)
|
357 |
+
# We don't use the text part so delete it
|
358 |
+
del self.model.transformer
|
359 |
+
self.antialias = antialias
|
360 |
+
self.register_buffer('mean', torch.Tensor([0.48145466, 0.4578275, 0.40821073]), persistent=False)
|
361 |
+
self.register_buffer('std', torch.Tensor([0.26862954, 0.26130258, 0.27577711]), persistent=False)
|
362 |
+
|
363 |
+
def preprocess(self, x):
|
364 |
+
# Expects inputs in the range -1, 1
|
365 |
+
x = kornia.geometry.resize(x, (224, 224),
|
366 |
+
interpolation='bicubic',align_corners=True,
|
367 |
+
antialias=self.antialias)
|
368 |
+
x = (x + 1.) / 2.
|
369 |
+
# renormalize according to clip
|
370 |
+
x = kornia.enhance.normalize(x, self.mean, self.std)
|
371 |
+
return x
|
372 |
+
|
373 |
+
def forward(self, x):
|
374 |
+
# x is assumed to be in range [-1,1]
|
375 |
+
if isinstance(x, list):
|
376 |
+
# [""] denotes condition dropout for ucg
|
377 |
+
device = self.model.visual.conv1.weight.device
|
378 |
+
return torch.zeros(1, 768, device=device)
|
379 |
+
return self.model.encode_image(self.preprocess(x)).float()
|
380 |
+
|
381 |
+
def encode(self, im):
|
382 |
+
return self(im).unsqueeze(1)
|
383 |
+
|
384 |
+
from torchvision import transforms
|
385 |
+
import random
|
386 |
+
|
387 |
+
class FrozenCLIPImageMutliEmbedder(AbstractEncoder):
|
388 |
+
"""
|
389 |
+
Uses the CLIP image encoder.
|
390 |
+
Not actually frozen... If you want that set cond_stage_trainable=False in cfg
|
391 |
+
"""
|
392 |
+
def __init__(
|
393 |
+
self,
|
394 |
+
model='ViT-L/14',
|
395 |
+
jit=False,
|
396 |
+
device='cpu',
|
397 |
+
antialias=True,
|
398 |
+
max_crops=5,
|
399 |
+
):
|
400 |
+
super().__init__()
|
401 |
+
self.model, _ = clip.load(name=model, device=device, jit=jit)
|
402 |
+
# We don't use the text part so delete it
|
403 |
+
del self.model.transformer
|
404 |
+
self.antialias = antialias
|
405 |
+
self.register_buffer('mean', torch.Tensor([0.48145466, 0.4578275, 0.40821073]), persistent=False)
|
406 |
+
self.register_buffer('std', torch.Tensor([0.26862954, 0.26130258, 0.27577711]), persistent=False)
|
407 |
+
self.max_crops = max_crops
|
408 |
+
|
409 |
+
def preprocess(self, x):
|
410 |
+
|
411 |
+
# Expects inputs in the range -1, 1
|
412 |
+
randcrop = transforms.RandomResizedCrop(224, scale=(0.085, 1.0), ratio=(1,1))
|
413 |
+
max_crops = self.max_crops
|
414 |
+
patches = []
|
415 |
+
crops = [randcrop(x) for _ in range(max_crops)]
|
416 |
+
patches.extend(crops)
|
417 |
+
x = torch.cat(patches, dim=0)
|
418 |
+
x = (x + 1.) / 2.
|
419 |
+
# renormalize according to clip
|
420 |
+
x = kornia.enhance.normalize(x, self.mean, self.std)
|
421 |
+
return x
|
422 |
+
|
423 |
+
def forward(self, x):
|
424 |
+
# x is assumed to be in range [-1,1]
|
425 |
+
if isinstance(x, list):
|
426 |
+
# [""] denotes condition dropout for ucg
|
427 |
+
device = self.model.visual.conv1.weight.device
|
428 |
+
return torch.zeros(1, self.max_crops, 768, device=device)
|
429 |
+
batch_tokens = []
|
430 |
+
for im in x:
|
431 |
+
patches = self.preprocess(im.unsqueeze(0))
|
432 |
+
tokens = self.model.encode_image(patches).float()
|
433 |
+
for t in tokens:
|
434 |
+
if random.random() < 0.1:
|
435 |
+
t *= 0
|
436 |
+
batch_tokens.append(tokens.unsqueeze(0))
|
437 |
+
|
438 |
+
return torch.cat(batch_tokens, dim=0)
|
439 |
+
|
440 |
+
def encode(self, im):
|
441 |
+
return self(im)
|
442 |
+
|
443 |
+
class SpatialRescaler(nn.Module):
|
444 |
+
def __init__(self,
|
445 |
+
n_stages=1,
|
446 |
+
method='bilinear',
|
447 |
+
multiplier=0.5,
|
448 |
+
in_channels=3,
|
449 |
+
out_channels=None,
|
450 |
+
bias=False):
|
451 |
+
super().__init__()
|
452 |
+
self.n_stages = n_stages
|
453 |
+
assert self.n_stages >= 0
|
454 |
+
assert method in ['nearest','linear','bilinear','trilinear','bicubic','area']
|
455 |
+
self.multiplier = multiplier
|
456 |
+
self.interpolator = partial(torch.nn.functional.interpolate, mode=method)
|
457 |
+
self.remap_output = out_channels is not None
|
458 |
+
if self.remap_output:
|
459 |
+
print(f'Spatial Rescaler mapping from {in_channels} to {out_channels} channels after resizing.')
|
460 |
+
self.channel_mapper = nn.Conv2d(in_channels,out_channels,1,bias=bias)
|
461 |
+
|
462 |
+
def forward(self,x):
|
463 |
+
for stage in range(self.n_stages):
|
464 |
+
x = self.interpolator(x, scale_factor=self.multiplier)
|
465 |
+
|
466 |
+
|
467 |
+
if self.remap_output:
|
468 |
+
x = self.channel_mapper(x)
|
469 |
+
return x
|
470 |
+
|
471 |
+
def encode(self, x):
|
472 |
+
return self(x)
|
473 |
+
|
474 |
+
|
475 |
+
from ldm.util import instantiate_from_config
|
476 |
+
from ldm.modules.diffusionmodules.util import make_beta_schedule, extract_into_tensor, noise_like
|
477 |
+
|
478 |
+
|
479 |
+
class LowScaleEncoder(nn.Module):
|
480 |
+
def __init__(self, model_config, linear_start, linear_end, timesteps=1000, max_noise_level=250, output_size=64,
|
481 |
+
scale_factor=1.0):
|
482 |
+
super().__init__()
|
483 |
+
self.max_noise_level = max_noise_level
|
484 |
+
self.model = instantiate_from_config(model_config)
|
485 |
+
self.augmentation_schedule = self.register_schedule(timesteps=timesteps, linear_start=linear_start,
|
486 |
+
linear_end=linear_end)
|
487 |
+
self.out_size = output_size
|
488 |
+
self.scale_factor = scale_factor
|
489 |
+
|
490 |
+
def register_schedule(self, beta_schedule="linear", timesteps=1000,
|
491 |
+
linear_start=1e-4, linear_end=2e-2, cosine_s=8e-3):
|
492 |
+
betas = make_beta_schedule(beta_schedule, timesteps, linear_start=linear_start, linear_end=linear_end,
|
493 |
+
cosine_s=cosine_s)
|
494 |
+
alphas = 1. - betas
|
495 |
+
alphas_cumprod = np.cumprod(alphas, axis=0)
|
496 |
+
alphas_cumprod_prev = np.append(1., alphas_cumprod[:-1])
|
497 |
+
|
498 |
+
timesteps, = betas.shape
|
499 |
+
self.num_timesteps = int(timesteps)
|
500 |
+
self.linear_start = linear_start
|
501 |
+
self.linear_end = linear_end
|
502 |
+
assert alphas_cumprod.shape[0] == self.num_timesteps, 'alphas have to be defined for each timestep'
|
503 |
+
|
504 |
+
to_torch = partial(torch.tensor, dtype=torch.float32)
|
505 |
+
|
506 |
+
self.register_buffer('betas', to_torch(betas))
|
507 |
+
self.register_buffer('alphas_cumprod', to_torch(alphas_cumprod))
|
508 |
+
self.register_buffer('alphas_cumprod_prev', to_torch(alphas_cumprod_prev))
|
509 |
+
|
510 |
+
# calculations for diffusion q(x_t | x_{t-1}) and others
|
511 |
+
self.register_buffer('sqrt_alphas_cumprod', to_torch(np.sqrt(alphas_cumprod)))
|
512 |
+
self.register_buffer('sqrt_one_minus_alphas_cumprod', to_torch(np.sqrt(1. - alphas_cumprod)))
|
513 |
+
self.register_buffer('log_one_minus_alphas_cumprod', to_torch(np.log(1. - alphas_cumprod)))
|
514 |
+
self.register_buffer('sqrt_recip_alphas_cumprod', to_torch(np.sqrt(1. / alphas_cumprod)))
|
515 |
+
self.register_buffer('sqrt_recipm1_alphas_cumprod', to_torch(np.sqrt(1. / alphas_cumprod - 1)))
|
516 |
+
|
517 |
+
def q_sample(self, x_start, t, noise=None):
|
518 |
+
noise = default(noise, lambda: torch.randn_like(x_start))
|
519 |
+
return (extract_into_tensor(self.sqrt_alphas_cumprod, t, x_start.shape) * x_start +
|
520 |
+
extract_into_tensor(self.sqrt_one_minus_alphas_cumprod, t, x_start.shape) * noise)
|
521 |
+
|
522 |
+
def forward(self, x):
|
523 |
+
z = self.model.encode(x).sample()
|
524 |
+
z = z * self.scale_factor
|
525 |
+
noise_level = torch.randint(0, self.max_noise_level, (x.shape[0],), device=x.device).long()
|
526 |
+
z = self.q_sample(z, noise_level)
|
527 |
+
if self.out_size is not None:
|
528 |
+
z = torch.nn.functional.interpolate(z, size=self.out_size, mode="nearest") # TODO: experiment with mode
|
529 |
+
# z = z.repeat_interleave(2, -2).repeat_interleave(2, -1)
|
530 |
+
return z, noise_level
|
531 |
+
|
532 |
+
def decode(self, z):
|
533 |
+
z = z / self.scale_factor
|
534 |
+
return self.model.decode(z)
|
535 |
+
|
536 |
+
|
537 |
+
if __name__ == "__main__":
|
538 |
+
from ldm.util import count_params
|
539 |
+
sentences = ["a hedgehog drinking a whiskey", "der mond ist aufgegangen", "Ein Satz mit vielen Sonderzeichen: äöü ß ?! : 'xx-y/@s'"]
|
540 |
+
model = FrozenT5Embedder(version="google/t5-v1_1-xl").cuda()
|
541 |
+
count_params(model, True)
|
542 |
+
z = model(sentences)
|
543 |
+
print(z.shape)
|
544 |
+
|
545 |
+
model = FrozenCLIPEmbedder().cuda()
|
546 |
+
count_params(model, True)
|
547 |
+
z = model(sentences)
|
548 |
+
print(z.shape)
|
549 |
+
|
550 |
+
print("done.")
|
ldm/modules/evaluate/adm_evaluator.py
ADDED
@@ -0,0 +1,676 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import argparse
|
2 |
+
import io
|
3 |
+
import os
|
4 |
+
import random
|
5 |
+
import warnings
|
6 |
+
import zipfile
|
7 |
+
from abc import ABC, abstractmethod
|
8 |
+
from contextlib import contextmanager
|
9 |
+
from functools import partial
|
10 |
+
from multiprocessing import cpu_count
|
11 |
+
from multiprocessing.pool import ThreadPool
|
12 |
+
from typing import Iterable, Optional, Tuple
|
13 |
+
import yaml
|
14 |
+
|
15 |
+
import numpy as np
|
16 |
+
import requests
|
17 |
+
import tensorflow.compat.v1 as tf
|
18 |
+
from scipy import linalg
|
19 |
+
from tqdm.auto import tqdm
|
20 |
+
|
21 |
+
INCEPTION_V3_URL = "https://openaipublic.blob.core.windows.net/diffusion/jul-2021/ref_batches/classify_image_graph_def.pb"
|
22 |
+
INCEPTION_V3_PATH = "classify_image_graph_def.pb"
|
23 |
+
|
24 |
+
FID_POOL_NAME = "pool_3:0"
|
25 |
+
FID_SPATIAL_NAME = "mixed_6/conv:0"
|
26 |
+
|
27 |
+
REQUIREMENTS = f"This script has the following requirements: \n" \
|
28 |
+
'tensorflow-gpu>=2.0' + "\n" + 'scipy' + "\n" + "requests" + "\n" + "tqdm"
|
29 |
+
|
30 |
+
|
31 |
+
def main():
|
32 |
+
parser = argparse.ArgumentParser()
|
33 |
+
parser.add_argument("--ref_batch", help="path to reference batch npz file")
|
34 |
+
parser.add_argument("--sample_batch", help="path to sample batch npz file")
|
35 |
+
args = parser.parse_args()
|
36 |
+
|
37 |
+
config = tf.ConfigProto(
|
38 |
+
allow_soft_placement=True # allows DecodeJpeg to run on CPU in Inception graph
|
39 |
+
)
|
40 |
+
config.gpu_options.allow_growth = True
|
41 |
+
evaluator = Evaluator(tf.Session(config=config))
|
42 |
+
|
43 |
+
print("warming up TensorFlow...")
|
44 |
+
# This will cause TF to print a bunch of verbose stuff now rather
|
45 |
+
# than after the next print(), to help prevent confusion.
|
46 |
+
evaluator.warmup()
|
47 |
+
|
48 |
+
print("computing reference batch activations...")
|
49 |
+
ref_acts = evaluator.read_activations(args.ref_batch)
|
50 |
+
print("computing/reading reference batch statistics...")
|
51 |
+
ref_stats, ref_stats_spatial = evaluator.read_statistics(args.ref_batch, ref_acts)
|
52 |
+
|
53 |
+
print("computing sample batch activations...")
|
54 |
+
sample_acts = evaluator.read_activations(args.sample_batch)
|
55 |
+
print("computing/reading sample batch statistics...")
|
56 |
+
sample_stats, sample_stats_spatial = evaluator.read_statistics(args.sample_batch, sample_acts)
|
57 |
+
|
58 |
+
print("Computing evaluations...")
|
59 |
+
is_ = evaluator.compute_inception_score(sample_acts[0])
|
60 |
+
print("Inception Score:", is_)
|
61 |
+
fid = sample_stats.frechet_distance(ref_stats)
|
62 |
+
print("FID:", fid)
|
63 |
+
sfid = sample_stats_spatial.frechet_distance(ref_stats_spatial)
|
64 |
+
print("sFID:", sfid)
|
65 |
+
prec, recall = evaluator.compute_prec_recall(ref_acts[0], sample_acts[0])
|
66 |
+
print("Precision:", prec)
|
67 |
+
print("Recall:", recall)
|
68 |
+
|
69 |
+
savepath = '/'.join(args.sample_batch.split('/')[:-1])
|
70 |
+
results_file = os.path.join(savepath,'evaluation_metrics.yaml')
|
71 |
+
print(f'Saving evaluation results to "{results_file}"')
|
72 |
+
|
73 |
+
results = {
|
74 |
+
'IS': is_,
|
75 |
+
'FID': fid,
|
76 |
+
'sFID': sfid,
|
77 |
+
'Precision:':prec,
|
78 |
+
'Recall': recall
|
79 |
+
}
|
80 |
+
|
81 |
+
with open(results_file, 'w') as f:
|
82 |
+
yaml.dump(results, f, default_flow_style=False)
|
83 |
+
|
84 |
+
class InvalidFIDException(Exception):
|
85 |
+
pass
|
86 |
+
|
87 |
+
|
88 |
+
class FIDStatistics:
|
89 |
+
def __init__(self, mu: np.ndarray, sigma: np.ndarray):
|
90 |
+
self.mu = mu
|
91 |
+
self.sigma = sigma
|
92 |
+
|
93 |
+
def frechet_distance(self, other, eps=1e-6):
|
94 |
+
"""
|
95 |
+
Compute the Frechet distance between two sets of statistics.
|
96 |
+
"""
|
97 |
+
# https://github.com/bioinf-jku/TTUR/blob/73ab375cdf952a12686d9aa7978567771084da42/fid.py#L132
|
98 |
+
mu1, sigma1 = self.mu, self.sigma
|
99 |
+
mu2, sigma2 = other.mu, other.sigma
|
100 |
+
|
101 |
+
mu1 = np.atleast_1d(mu1)
|
102 |
+
mu2 = np.atleast_1d(mu2)
|
103 |
+
|
104 |
+
sigma1 = np.atleast_2d(sigma1)
|
105 |
+
sigma2 = np.atleast_2d(sigma2)
|
106 |
+
|
107 |
+
assert (
|
108 |
+
mu1.shape == mu2.shape
|
109 |
+
), f"Training and test mean vectors have different lengths: {mu1.shape}, {mu2.shape}"
|
110 |
+
assert (
|
111 |
+
sigma1.shape == sigma2.shape
|
112 |
+
), f"Training and test covariances have different dimensions: {sigma1.shape}, {sigma2.shape}"
|
113 |
+
|
114 |
+
diff = mu1 - mu2
|
115 |
+
|
116 |
+
# product might be almost singular
|
117 |
+
covmean, _ = linalg.sqrtm(sigma1.dot(sigma2), disp=False)
|
118 |
+
if not np.isfinite(covmean).all():
|
119 |
+
msg = (
|
120 |
+
"fid calculation produces singular product; adding %s to diagonal of cov estimates"
|
121 |
+
% eps
|
122 |
+
)
|
123 |
+
warnings.warn(msg)
|
124 |
+
offset = np.eye(sigma1.shape[0]) * eps
|
125 |
+
covmean = linalg.sqrtm((sigma1 + offset).dot(sigma2 + offset))
|
126 |
+
|
127 |
+
# numerical error might give slight imaginary component
|
128 |
+
if np.iscomplexobj(covmean):
|
129 |
+
if not np.allclose(np.diagonal(covmean).imag, 0, atol=1e-3):
|
130 |
+
m = np.max(np.abs(covmean.imag))
|
131 |
+
raise ValueError("Imaginary component {}".format(m))
|
132 |
+
covmean = covmean.real
|
133 |
+
|
134 |
+
tr_covmean = np.trace(covmean)
|
135 |
+
|
136 |
+
return diff.dot(diff) + np.trace(sigma1) + np.trace(sigma2) - 2 * tr_covmean
|
137 |
+
|
138 |
+
|
139 |
+
class Evaluator:
|
140 |
+
def __init__(
|
141 |
+
self,
|
142 |
+
session,
|
143 |
+
batch_size=64,
|
144 |
+
softmax_batch_size=512,
|
145 |
+
):
|
146 |
+
self.sess = session
|
147 |
+
self.batch_size = batch_size
|
148 |
+
self.softmax_batch_size = softmax_batch_size
|
149 |
+
self.manifold_estimator = ManifoldEstimator(session)
|
150 |
+
with self.sess.graph.as_default():
|
151 |
+
self.image_input = tf.placeholder(tf.float32, shape=[None, None, None, 3])
|
152 |
+
self.softmax_input = tf.placeholder(tf.float32, shape=[None, 2048])
|
153 |
+
self.pool_features, self.spatial_features = _create_feature_graph(self.image_input)
|
154 |
+
self.softmax = _create_softmax_graph(self.softmax_input)
|
155 |
+
|
156 |
+
def warmup(self):
|
157 |
+
self.compute_activations(np.zeros([1, 8, 64, 64, 3]))
|
158 |
+
|
159 |
+
def read_activations(self, npz_path: str) -> Tuple[np.ndarray, np.ndarray]:
|
160 |
+
with open_npz_array(npz_path, "arr_0") as reader:
|
161 |
+
return self.compute_activations(reader.read_batches(self.batch_size))
|
162 |
+
|
163 |
+
def compute_activations(self, batches: Iterable[np.ndarray],silent=False) -> Tuple[np.ndarray, np.ndarray]:
|
164 |
+
"""
|
165 |
+
Compute image features for downstream evals.
|
166 |
+
|
167 |
+
:param batches: a iterator over NHWC numpy arrays in [0, 255].
|
168 |
+
:return: a tuple of numpy arrays of shape [N x X], where X is a feature
|
169 |
+
dimension. The tuple is (pool_3, spatial).
|
170 |
+
"""
|
171 |
+
preds = []
|
172 |
+
spatial_preds = []
|
173 |
+
it = batches if silent else tqdm(batches)
|
174 |
+
for batch in it:
|
175 |
+
batch = batch.astype(np.float32)
|
176 |
+
pred, spatial_pred = self.sess.run(
|
177 |
+
[self.pool_features, self.spatial_features], {self.image_input: batch}
|
178 |
+
)
|
179 |
+
preds.append(pred.reshape([pred.shape[0], -1]))
|
180 |
+
spatial_preds.append(spatial_pred.reshape([spatial_pred.shape[0], -1]))
|
181 |
+
return (
|
182 |
+
np.concatenate(preds, axis=0),
|
183 |
+
np.concatenate(spatial_preds, axis=0),
|
184 |
+
)
|
185 |
+
|
186 |
+
def read_statistics(
|
187 |
+
self, npz_path: str, activations: Tuple[np.ndarray, np.ndarray]
|
188 |
+
) -> Tuple[FIDStatistics, FIDStatistics]:
|
189 |
+
obj = np.load(npz_path)
|
190 |
+
if "mu" in list(obj.keys()):
|
191 |
+
return FIDStatistics(obj["mu"], obj["sigma"]), FIDStatistics(
|
192 |
+
obj["mu_s"], obj["sigma_s"]
|
193 |
+
)
|
194 |
+
return tuple(self.compute_statistics(x) for x in activations)
|
195 |
+
|
196 |
+
def compute_statistics(self, activations: np.ndarray) -> FIDStatistics:
|
197 |
+
mu = np.mean(activations, axis=0)
|
198 |
+
sigma = np.cov(activations, rowvar=False)
|
199 |
+
return FIDStatistics(mu, sigma)
|
200 |
+
|
201 |
+
def compute_inception_score(self, activations: np.ndarray, split_size: int = 5000) -> float:
|
202 |
+
softmax_out = []
|
203 |
+
for i in range(0, len(activations), self.softmax_batch_size):
|
204 |
+
acts = activations[i : i + self.softmax_batch_size]
|
205 |
+
softmax_out.append(self.sess.run(self.softmax, feed_dict={self.softmax_input: acts}))
|
206 |
+
preds = np.concatenate(softmax_out, axis=0)
|
207 |
+
# https://github.com/openai/improved-gan/blob/4f5d1ec5c16a7eceb206f42bfc652693601e1d5c/inception_score/model.py#L46
|
208 |
+
scores = []
|
209 |
+
for i in range(0, len(preds), split_size):
|
210 |
+
part = preds[i : i + split_size]
|
211 |
+
kl = part * (np.log(part) - np.log(np.expand_dims(np.mean(part, 0), 0)))
|
212 |
+
kl = np.mean(np.sum(kl, 1))
|
213 |
+
scores.append(np.exp(kl))
|
214 |
+
return float(np.mean(scores))
|
215 |
+
|
216 |
+
def compute_prec_recall(
|
217 |
+
self, activations_ref: np.ndarray, activations_sample: np.ndarray
|
218 |
+
) -> Tuple[float, float]:
|
219 |
+
radii_1 = self.manifold_estimator.manifold_radii(activations_ref)
|
220 |
+
radii_2 = self.manifold_estimator.manifold_radii(activations_sample)
|
221 |
+
pr = self.manifold_estimator.evaluate_pr(
|
222 |
+
activations_ref, radii_1, activations_sample, radii_2
|
223 |
+
)
|
224 |
+
return (float(pr[0][0]), float(pr[1][0]))
|
225 |
+
|
226 |
+
|
227 |
+
class ManifoldEstimator:
|
228 |
+
"""
|
229 |
+
A helper for comparing manifolds of feature vectors.
|
230 |
+
|
231 |
+
Adapted from https://github.com/kynkaat/improved-precision-and-recall-metric/blob/f60f25e5ad933a79135c783fcda53de30f42c9b9/precision_recall.py#L57
|
232 |
+
"""
|
233 |
+
|
234 |
+
def __init__(
|
235 |
+
self,
|
236 |
+
session,
|
237 |
+
row_batch_size=10000,
|
238 |
+
col_batch_size=10000,
|
239 |
+
nhood_sizes=(3,),
|
240 |
+
clamp_to_percentile=None,
|
241 |
+
eps=1e-5,
|
242 |
+
):
|
243 |
+
"""
|
244 |
+
Estimate the manifold of given feature vectors.
|
245 |
+
|
246 |
+
:param session: the TensorFlow session.
|
247 |
+
:param row_batch_size: row batch size to compute pairwise distances
|
248 |
+
(parameter to trade-off between memory usage and performance).
|
249 |
+
:param col_batch_size: column batch size to compute pairwise distances.
|
250 |
+
:param nhood_sizes: number of neighbors used to estimate the manifold.
|
251 |
+
:param clamp_to_percentile: prune hyperspheres that have radius larger than
|
252 |
+
the given percentile.
|
253 |
+
:param eps: small number for numerical stability.
|
254 |
+
"""
|
255 |
+
self.distance_block = DistanceBlock(session)
|
256 |
+
self.row_batch_size = row_batch_size
|
257 |
+
self.col_batch_size = col_batch_size
|
258 |
+
self.nhood_sizes = nhood_sizes
|
259 |
+
self.num_nhoods = len(nhood_sizes)
|
260 |
+
self.clamp_to_percentile = clamp_to_percentile
|
261 |
+
self.eps = eps
|
262 |
+
|
263 |
+
def warmup(self):
|
264 |
+
feats, radii = (
|
265 |
+
np.zeros([1, 2048], dtype=np.float32),
|
266 |
+
np.zeros([1, 1], dtype=np.float32),
|
267 |
+
)
|
268 |
+
self.evaluate_pr(feats, radii, feats, radii)
|
269 |
+
|
270 |
+
def manifold_radii(self, features: np.ndarray) -> np.ndarray:
|
271 |
+
num_images = len(features)
|
272 |
+
|
273 |
+
# Estimate manifold of features by calculating distances to k-NN of each sample.
|
274 |
+
radii = np.zeros([num_images, self.num_nhoods], dtype=np.float32)
|
275 |
+
distance_batch = np.zeros([self.row_batch_size, num_images], dtype=np.float32)
|
276 |
+
seq = np.arange(max(self.nhood_sizes) + 1, dtype=np.int32)
|
277 |
+
|
278 |
+
for begin1 in range(0, num_images, self.row_batch_size):
|
279 |
+
end1 = min(begin1 + self.row_batch_size, num_images)
|
280 |
+
row_batch = features[begin1:end1]
|
281 |
+
|
282 |
+
for begin2 in range(0, num_images, self.col_batch_size):
|
283 |
+
end2 = min(begin2 + self.col_batch_size, num_images)
|
284 |
+
col_batch = features[begin2:end2]
|
285 |
+
|
286 |
+
# Compute distances between batches.
|
287 |
+
distance_batch[
|
288 |
+
0 : end1 - begin1, begin2:end2
|
289 |
+
] = self.distance_block.pairwise_distances(row_batch, col_batch)
|
290 |
+
|
291 |
+
# Find the k-nearest neighbor from the current batch.
|
292 |
+
radii[begin1:end1, :] = np.concatenate(
|
293 |
+
[
|
294 |
+
x[:, self.nhood_sizes]
|
295 |
+
for x in _numpy_partition(distance_batch[0 : end1 - begin1, :], seq, axis=1)
|
296 |
+
],
|
297 |
+
axis=0,
|
298 |
+
)
|
299 |
+
|
300 |
+
if self.clamp_to_percentile is not None:
|
301 |
+
max_distances = np.percentile(radii, self.clamp_to_percentile, axis=0)
|
302 |
+
radii[radii > max_distances] = 0
|
303 |
+
return radii
|
304 |
+
|
305 |
+
def evaluate(self, features: np.ndarray, radii: np.ndarray, eval_features: np.ndarray):
|
306 |
+
"""
|
307 |
+
Evaluate if new feature vectors are at the manifold.
|
308 |
+
"""
|
309 |
+
num_eval_images = eval_features.shape[0]
|
310 |
+
num_ref_images = radii.shape[0]
|
311 |
+
distance_batch = np.zeros([self.row_batch_size, num_ref_images], dtype=np.float32)
|
312 |
+
batch_predictions = np.zeros([num_eval_images, self.num_nhoods], dtype=np.int32)
|
313 |
+
max_realism_score = np.zeros([num_eval_images], dtype=np.float32)
|
314 |
+
nearest_indices = np.zeros([num_eval_images], dtype=np.int32)
|
315 |
+
|
316 |
+
for begin1 in range(0, num_eval_images, self.row_batch_size):
|
317 |
+
end1 = min(begin1 + self.row_batch_size, num_eval_images)
|
318 |
+
feature_batch = eval_features[begin1:end1]
|
319 |
+
|
320 |
+
for begin2 in range(0, num_ref_images, self.col_batch_size):
|
321 |
+
end2 = min(begin2 + self.col_batch_size, num_ref_images)
|
322 |
+
ref_batch = features[begin2:end2]
|
323 |
+
|
324 |
+
distance_batch[
|
325 |
+
0 : end1 - begin1, begin2:end2
|
326 |
+
] = self.distance_block.pairwise_distances(feature_batch, ref_batch)
|
327 |
+
|
328 |
+
# From the minibatch of new feature vectors, determine if they are in the estimated manifold.
|
329 |
+
# If a feature vector is inside a hypersphere of some reference sample, then
|
330 |
+
# the new sample lies at the estimated manifold.
|
331 |
+
# The radii of the hyperspheres are determined from distances of neighborhood size k.
|
332 |
+
samples_in_manifold = distance_batch[0 : end1 - begin1, :, None] <= radii
|
333 |
+
batch_predictions[begin1:end1] = np.any(samples_in_manifold, axis=1).astype(np.int32)
|
334 |
+
|
335 |
+
max_realism_score[begin1:end1] = np.max(
|
336 |
+
radii[:, 0] / (distance_batch[0 : end1 - begin1, :] + self.eps), axis=1
|
337 |
+
)
|
338 |
+
nearest_indices[begin1:end1] = np.argmin(distance_batch[0 : end1 - begin1, :], axis=1)
|
339 |
+
|
340 |
+
return {
|
341 |
+
"fraction": float(np.mean(batch_predictions)),
|
342 |
+
"batch_predictions": batch_predictions,
|
343 |
+
"max_realisim_score": max_realism_score,
|
344 |
+
"nearest_indices": nearest_indices,
|
345 |
+
}
|
346 |
+
|
347 |
+
def evaluate_pr(
|
348 |
+
self,
|
349 |
+
features_1: np.ndarray,
|
350 |
+
radii_1: np.ndarray,
|
351 |
+
features_2: np.ndarray,
|
352 |
+
radii_2: np.ndarray,
|
353 |
+
) -> Tuple[np.ndarray, np.ndarray]:
|
354 |
+
"""
|
355 |
+
Evaluate precision and recall efficiently.
|
356 |
+
|
357 |
+
:param features_1: [N1 x D] feature vectors for reference batch.
|
358 |
+
:param radii_1: [N1 x K1] radii for reference vectors.
|
359 |
+
:param features_2: [N2 x D] feature vectors for the other batch.
|
360 |
+
:param radii_2: [N x K2] radii for other vectors.
|
361 |
+
:return: a tuple of arrays for (precision, recall):
|
362 |
+
- precision: an np.ndarray of length K1
|
363 |
+
- recall: an np.ndarray of length K2
|
364 |
+
"""
|
365 |
+
features_1_status = np.zeros([len(features_1), radii_2.shape[1]], dtype=np.bool)
|
366 |
+
features_2_status = np.zeros([len(features_2), radii_1.shape[1]], dtype=np.bool)
|
367 |
+
for begin_1 in range(0, len(features_1), self.row_batch_size):
|
368 |
+
end_1 = begin_1 + self.row_batch_size
|
369 |
+
batch_1 = features_1[begin_1:end_1]
|
370 |
+
for begin_2 in range(0, len(features_2), self.col_batch_size):
|
371 |
+
end_2 = begin_2 + self.col_batch_size
|
372 |
+
batch_2 = features_2[begin_2:end_2]
|
373 |
+
batch_1_in, batch_2_in = self.distance_block.less_thans(
|
374 |
+
batch_1, radii_1[begin_1:end_1], batch_2, radii_2[begin_2:end_2]
|
375 |
+
)
|
376 |
+
features_1_status[begin_1:end_1] |= batch_1_in
|
377 |
+
features_2_status[begin_2:end_2] |= batch_2_in
|
378 |
+
return (
|
379 |
+
np.mean(features_2_status.astype(np.float64), axis=0),
|
380 |
+
np.mean(features_1_status.astype(np.float64), axis=0),
|
381 |
+
)
|
382 |
+
|
383 |
+
|
384 |
+
class DistanceBlock:
|
385 |
+
"""
|
386 |
+
Calculate pairwise distances between vectors.
|
387 |
+
|
388 |
+
Adapted from https://github.com/kynkaat/improved-precision-and-recall-metric/blob/f60f25e5ad933a79135c783fcda53de30f42c9b9/precision_recall.py#L34
|
389 |
+
"""
|
390 |
+
|
391 |
+
def __init__(self, session):
|
392 |
+
self.session = session
|
393 |
+
|
394 |
+
# Initialize TF graph to calculate pairwise distances.
|
395 |
+
with session.graph.as_default():
|
396 |
+
self._features_batch1 = tf.placeholder(tf.float32, shape=[None, None])
|
397 |
+
self._features_batch2 = tf.placeholder(tf.float32, shape=[None, None])
|
398 |
+
distance_block_16 = _batch_pairwise_distances(
|
399 |
+
tf.cast(self._features_batch1, tf.float16),
|
400 |
+
tf.cast(self._features_batch2, tf.float16),
|
401 |
+
)
|
402 |
+
self.distance_block = tf.cond(
|
403 |
+
tf.reduce_all(tf.math.is_finite(distance_block_16)),
|
404 |
+
lambda: tf.cast(distance_block_16, tf.float32),
|
405 |
+
lambda: _batch_pairwise_distances(self._features_batch1, self._features_batch2),
|
406 |
+
)
|
407 |
+
|
408 |
+
# Extra logic for less thans.
|
409 |
+
self._radii1 = tf.placeholder(tf.float32, shape=[None, None])
|
410 |
+
self._radii2 = tf.placeholder(tf.float32, shape=[None, None])
|
411 |
+
dist32 = tf.cast(self.distance_block, tf.float32)[..., None]
|
412 |
+
self._batch_1_in = tf.math.reduce_any(dist32 <= self._radii2, axis=1)
|
413 |
+
self._batch_2_in = tf.math.reduce_any(dist32 <= self._radii1[:, None], axis=0)
|
414 |
+
|
415 |
+
def pairwise_distances(self, U, V):
|
416 |
+
"""
|
417 |
+
Evaluate pairwise distances between two batches of feature vectors.
|
418 |
+
"""
|
419 |
+
return self.session.run(
|
420 |
+
self.distance_block,
|
421 |
+
feed_dict={self._features_batch1: U, self._features_batch2: V},
|
422 |
+
)
|
423 |
+
|
424 |
+
def less_thans(self, batch_1, radii_1, batch_2, radii_2):
|
425 |
+
return self.session.run(
|
426 |
+
[self._batch_1_in, self._batch_2_in],
|
427 |
+
feed_dict={
|
428 |
+
self._features_batch1: batch_1,
|
429 |
+
self._features_batch2: batch_2,
|
430 |
+
self._radii1: radii_1,
|
431 |
+
self._radii2: radii_2,
|
432 |
+
},
|
433 |
+
)
|
434 |
+
|
435 |
+
|
436 |
+
def _batch_pairwise_distances(U, V):
|
437 |
+
"""
|
438 |
+
Compute pairwise distances between two batches of feature vectors.
|
439 |
+
"""
|
440 |
+
with tf.variable_scope("pairwise_dist_block"):
|
441 |
+
# Squared norms of each row in U and V.
|
442 |
+
norm_u = tf.reduce_sum(tf.square(U), 1)
|
443 |
+
norm_v = tf.reduce_sum(tf.square(V), 1)
|
444 |
+
|
445 |
+
# norm_u as a column and norm_v as a row vectors.
|
446 |
+
norm_u = tf.reshape(norm_u, [-1, 1])
|
447 |
+
norm_v = tf.reshape(norm_v, [1, -1])
|
448 |
+
|
449 |
+
# Pairwise squared Euclidean distances.
|
450 |
+
D = tf.maximum(norm_u - 2 * tf.matmul(U, V, False, True) + norm_v, 0.0)
|
451 |
+
|
452 |
+
return D
|
453 |
+
|
454 |
+
|
455 |
+
class NpzArrayReader(ABC):
|
456 |
+
@abstractmethod
|
457 |
+
def read_batch(self, batch_size: int) -> Optional[np.ndarray]:
|
458 |
+
pass
|
459 |
+
|
460 |
+
@abstractmethod
|
461 |
+
def remaining(self) -> int:
|
462 |
+
pass
|
463 |
+
|
464 |
+
def read_batches(self, batch_size: int) -> Iterable[np.ndarray]:
|
465 |
+
def gen_fn():
|
466 |
+
while True:
|
467 |
+
batch = self.read_batch(batch_size)
|
468 |
+
if batch is None:
|
469 |
+
break
|
470 |
+
yield batch
|
471 |
+
|
472 |
+
rem = self.remaining()
|
473 |
+
num_batches = rem // batch_size + int(rem % batch_size != 0)
|
474 |
+
return BatchIterator(gen_fn, num_batches)
|
475 |
+
|
476 |
+
|
477 |
+
class BatchIterator:
|
478 |
+
def __init__(self, gen_fn, length):
|
479 |
+
self.gen_fn = gen_fn
|
480 |
+
self.length = length
|
481 |
+
|
482 |
+
def __len__(self):
|
483 |
+
return self.length
|
484 |
+
|
485 |
+
def __iter__(self):
|
486 |
+
return self.gen_fn()
|
487 |
+
|
488 |
+
|
489 |
+
class StreamingNpzArrayReader(NpzArrayReader):
|
490 |
+
def __init__(self, arr_f, shape, dtype):
|
491 |
+
self.arr_f = arr_f
|
492 |
+
self.shape = shape
|
493 |
+
self.dtype = dtype
|
494 |
+
self.idx = 0
|
495 |
+
|
496 |
+
def read_batch(self, batch_size: int) -> Optional[np.ndarray]:
|
497 |
+
if self.idx >= self.shape[0]:
|
498 |
+
return None
|
499 |
+
|
500 |
+
bs = min(batch_size, self.shape[0] - self.idx)
|
501 |
+
self.idx += bs
|
502 |
+
|
503 |
+
if self.dtype.itemsize == 0:
|
504 |
+
return np.ndarray([bs, *self.shape[1:]], dtype=self.dtype)
|
505 |
+
|
506 |
+
read_count = bs * np.prod(self.shape[1:])
|
507 |
+
read_size = int(read_count * self.dtype.itemsize)
|
508 |
+
data = _read_bytes(self.arr_f, read_size, "array data")
|
509 |
+
return np.frombuffer(data, dtype=self.dtype).reshape([bs, *self.shape[1:]])
|
510 |
+
|
511 |
+
def remaining(self) -> int:
|
512 |
+
return max(0, self.shape[0] - self.idx)
|
513 |
+
|
514 |
+
|
515 |
+
class MemoryNpzArrayReader(NpzArrayReader):
|
516 |
+
def __init__(self, arr):
|
517 |
+
self.arr = arr
|
518 |
+
self.idx = 0
|
519 |
+
|
520 |
+
@classmethod
|
521 |
+
def load(cls, path: str, arr_name: str):
|
522 |
+
with open(path, "rb") as f:
|
523 |
+
arr = np.load(f)[arr_name]
|
524 |
+
return cls(arr)
|
525 |
+
|
526 |
+
def read_batch(self, batch_size: int) -> Optional[np.ndarray]:
|
527 |
+
if self.idx >= self.arr.shape[0]:
|
528 |
+
return None
|
529 |
+
|
530 |
+
res = self.arr[self.idx : self.idx + batch_size]
|
531 |
+
self.idx += batch_size
|
532 |
+
return res
|
533 |
+
|
534 |
+
def remaining(self) -> int:
|
535 |
+
return max(0, self.arr.shape[0] - self.idx)
|
536 |
+
|
537 |
+
|
538 |
+
@contextmanager
|
539 |
+
def open_npz_array(path: str, arr_name: str) -> NpzArrayReader:
|
540 |
+
with _open_npy_file(path, arr_name) as arr_f:
|
541 |
+
version = np.lib.format.read_magic(arr_f)
|
542 |
+
if version == (1, 0):
|
543 |
+
header = np.lib.format.read_array_header_1_0(arr_f)
|
544 |
+
elif version == (2, 0):
|
545 |
+
header = np.lib.format.read_array_header_2_0(arr_f)
|
546 |
+
else:
|
547 |
+
yield MemoryNpzArrayReader.load(path, arr_name)
|
548 |
+
return
|
549 |
+
shape, fortran, dtype = header
|
550 |
+
if fortran or dtype.hasobject:
|
551 |
+
yield MemoryNpzArrayReader.load(path, arr_name)
|
552 |
+
else:
|
553 |
+
yield StreamingNpzArrayReader(arr_f, shape, dtype)
|
554 |
+
|
555 |
+
|
556 |
+
def _read_bytes(fp, size, error_template="ran out of data"):
|
557 |
+
"""
|
558 |
+
Copied from: https://github.com/numpy/numpy/blob/fb215c76967739268de71aa4bda55dd1b062bc2e/numpy/lib/format.py#L788-L886
|
559 |
+
|
560 |
+
Read from file-like object until size bytes are read.
|
561 |
+
Raises ValueError if not EOF is encountered before size bytes are read.
|
562 |
+
Non-blocking objects only supported if they derive from io objects.
|
563 |
+
Required as e.g. ZipExtFile in python 2.6 can return less data than
|
564 |
+
requested.
|
565 |
+
"""
|
566 |
+
data = bytes()
|
567 |
+
while True:
|
568 |
+
# io files (default in python3) return None or raise on
|
569 |
+
# would-block, python2 file will truncate, probably nothing can be
|
570 |
+
# done about that. note that regular files can't be non-blocking
|
571 |
+
try:
|
572 |
+
r = fp.read(size - len(data))
|
573 |
+
data += r
|
574 |
+
if len(r) == 0 or len(data) == size:
|
575 |
+
break
|
576 |
+
except io.BlockingIOError:
|
577 |
+
pass
|
578 |
+
if len(data) != size:
|
579 |
+
msg = "EOF: reading %s, expected %d bytes got %d"
|
580 |
+
raise ValueError(msg % (error_template, size, len(data)))
|
581 |
+
else:
|
582 |
+
return data
|
583 |
+
|
584 |
+
|
585 |
+
@contextmanager
|
586 |
+
def _open_npy_file(path: str, arr_name: str):
|
587 |
+
with open(path, "rb") as f:
|
588 |
+
with zipfile.ZipFile(f, "r") as zip_f:
|
589 |
+
if f"{arr_name}.npy" not in zip_f.namelist():
|
590 |
+
raise ValueError(f"missing {arr_name} in npz file")
|
591 |
+
with zip_f.open(f"{arr_name}.npy", "r") as arr_f:
|
592 |
+
yield arr_f
|
593 |
+
|
594 |
+
|
595 |
+
def _download_inception_model():
|
596 |
+
if os.path.exists(INCEPTION_V3_PATH):
|
597 |
+
return
|
598 |
+
print("downloading InceptionV3 model...")
|
599 |
+
with requests.get(INCEPTION_V3_URL, stream=True) as r:
|
600 |
+
r.raise_for_status()
|
601 |
+
tmp_path = INCEPTION_V3_PATH + ".tmp"
|
602 |
+
with open(tmp_path, "wb") as f:
|
603 |
+
for chunk in tqdm(r.iter_content(chunk_size=8192)):
|
604 |
+
f.write(chunk)
|
605 |
+
os.rename(tmp_path, INCEPTION_V3_PATH)
|
606 |
+
|
607 |
+
|
608 |
+
def _create_feature_graph(input_batch):
|
609 |
+
_download_inception_model()
|
610 |
+
prefix = f"{random.randrange(2**32)}_{random.randrange(2**32)}"
|
611 |
+
with open(INCEPTION_V3_PATH, "rb") as f:
|
612 |
+
graph_def = tf.GraphDef()
|
613 |
+
graph_def.ParseFromString(f.read())
|
614 |
+
pool3, spatial = tf.import_graph_def(
|
615 |
+
graph_def,
|
616 |
+
input_map={f"ExpandDims:0": input_batch},
|
617 |
+
return_elements=[FID_POOL_NAME, FID_SPATIAL_NAME],
|
618 |
+
name=prefix,
|
619 |
+
)
|
620 |
+
_update_shapes(pool3)
|
621 |
+
spatial = spatial[..., :7]
|
622 |
+
return pool3, spatial
|
623 |
+
|
624 |
+
|
625 |
+
def _create_softmax_graph(input_batch):
|
626 |
+
_download_inception_model()
|
627 |
+
prefix = f"{random.randrange(2**32)}_{random.randrange(2**32)}"
|
628 |
+
with open(INCEPTION_V3_PATH, "rb") as f:
|
629 |
+
graph_def = tf.GraphDef()
|
630 |
+
graph_def.ParseFromString(f.read())
|
631 |
+
(matmul,) = tf.import_graph_def(
|
632 |
+
graph_def, return_elements=[f"softmax/logits/MatMul"], name=prefix
|
633 |
+
)
|
634 |
+
w = matmul.inputs[1]
|
635 |
+
logits = tf.matmul(input_batch, w)
|
636 |
+
return tf.nn.softmax(logits)
|
637 |
+
|
638 |
+
|
639 |
+
def _update_shapes(pool3):
|
640 |
+
# https://github.com/bioinf-jku/TTUR/blob/73ab375cdf952a12686d9aa7978567771084da42/fid.py#L50-L63
|
641 |
+
ops = pool3.graph.get_operations()
|
642 |
+
for op in ops:
|
643 |
+
for o in op.outputs:
|
644 |
+
shape = o.get_shape()
|
645 |
+
if shape._dims is not None: # pylint: disable=protected-access
|
646 |
+
# shape = [s.value for s in shape] TF 1.x
|
647 |
+
shape = [s for s in shape] # TF 2.x
|
648 |
+
new_shape = []
|
649 |
+
for j, s in enumerate(shape):
|
650 |
+
if s == 1 and j == 0:
|
651 |
+
new_shape.append(None)
|
652 |
+
else:
|
653 |
+
new_shape.append(s)
|
654 |
+
o.__dict__["_shape_val"] = tf.TensorShape(new_shape)
|
655 |
+
return pool3
|
656 |
+
|
657 |
+
|
658 |
+
def _numpy_partition(arr, kth, **kwargs):
|
659 |
+
num_workers = min(cpu_count(), len(arr))
|
660 |
+
chunk_size = len(arr) // num_workers
|
661 |
+
extra = len(arr) % num_workers
|
662 |
+
|
663 |
+
start_idx = 0
|
664 |
+
batches = []
|
665 |
+
for i in range(num_workers):
|
666 |
+
size = chunk_size + (1 if i < extra else 0)
|
667 |
+
batches.append(arr[start_idx : start_idx + size])
|
668 |
+
start_idx += size
|
669 |
+
|
670 |
+
with ThreadPool(num_workers) as pool:
|
671 |
+
return list(pool.map(partial(np.partition, kth=kth, **kwargs), batches))
|
672 |
+
|
673 |
+
|
674 |
+
if __name__ == "__main__":
|
675 |
+
print(REQUIREMENTS)
|
676 |
+
main()
|
ldm/modules/evaluate/evaluate_perceptualsim.py
ADDED
@@ -0,0 +1,630 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import argparse
|
2 |
+
import glob
|
3 |
+
import os
|
4 |
+
from tqdm import tqdm
|
5 |
+
from collections import namedtuple
|
6 |
+
|
7 |
+
import numpy as np
|
8 |
+
import torch
|
9 |
+
import torchvision.transforms as transforms
|
10 |
+
from torchvision import models
|
11 |
+
from PIL import Image
|
12 |
+
|
13 |
+
from ldm.modules.evaluate.ssim import ssim
|
14 |
+
|
15 |
+
|
16 |
+
transform = transforms.Compose([transforms.ToTensor()])
|
17 |
+
|
18 |
+
def normalize_tensor(in_feat, eps=1e-10):
|
19 |
+
norm_factor = torch.sqrt(torch.sum(in_feat ** 2, dim=1)).view(
|
20 |
+
in_feat.size()[0], 1, in_feat.size()[2], in_feat.size()[3]
|
21 |
+
)
|
22 |
+
return in_feat / (norm_factor.expand_as(in_feat) + eps)
|
23 |
+
|
24 |
+
|
25 |
+
def cos_sim(in0, in1):
|
26 |
+
in0_norm = normalize_tensor(in0)
|
27 |
+
in1_norm = normalize_tensor(in1)
|
28 |
+
N = in0.size()[0]
|
29 |
+
X = in0.size()[2]
|
30 |
+
Y = in0.size()[3]
|
31 |
+
|
32 |
+
return torch.mean(
|
33 |
+
torch.mean(
|
34 |
+
torch.sum(in0_norm * in1_norm, dim=1).view(N, 1, X, Y), dim=2
|
35 |
+
).view(N, 1, 1, Y),
|
36 |
+
dim=3,
|
37 |
+
).view(N)
|
38 |
+
|
39 |
+
|
40 |
+
class squeezenet(torch.nn.Module):
|
41 |
+
def __init__(self, requires_grad=False, pretrained=True):
|
42 |
+
super(squeezenet, self).__init__()
|
43 |
+
pretrained_features = models.squeezenet1_1(
|
44 |
+
pretrained=pretrained
|
45 |
+
).features
|
46 |
+
self.slice1 = torch.nn.Sequential()
|
47 |
+
self.slice2 = torch.nn.Sequential()
|
48 |
+
self.slice3 = torch.nn.Sequential()
|
49 |
+
self.slice4 = torch.nn.Sequential()
|
50 |
+
self.slice5 = torch.nn.Sequential()
|
51 |
+
self.slice6 = torch.nn.Sequential()
|
52 |
+
self.slice7 = torch.nn.Sequential()
|
53 |
+
self.N_slices = 7
|
54 |
+
for x in range(2):
|
55 |
+
self.slice1.add_module(str(x), pretrained_features[x])
|
56 |
+
for x in range(2, 5):
|
57 |
+
self.slice2.add_module(str(x), pretrained_features[x])
|
58 |
+
for x in range(5, 8):
|
59 |
+
self.slice3.add_module(str(x), pretrained_features[x])
|
60 |
+
for x in range(8, 10):
|
61 |
+
self.slice4.add_module(str(x), pretrained_features[x])
|
62 |
+
for x in range(10, 11):
|
63 |
+
self.slice5.add_module(str(x), pretrained_features[x])
|
64 |
+
for x in range(11, 12):
|
65 |
+
self.slice6.add_module(str(x), pretrained_features[x])
|
66 |
+
for x in range(12, 13):
|
67 |
+
self.slice7.add_module(str(x), pretrained_features[x])
|
68 |
+
if not requires_grad:
|
69 |
+
for param in self.parameters():
|
70 |
+
param.requires_grad = False
|
71 |
+
|
72 |
+
def forward(self, X):
|
73 |
+
h = self.slice1(X)
|
74 |
+
h_relu1 = h
|
75 |
+
h = self.slice2(h)
|
76 |
+
h_relu2 = h
|
77 |
+
h = self.slice3(h)
|
78 |
+
h_relu3 = h
|
79 |
+
h = self.slice4(h)
|
80 |
+
h_relu4 = h
|
81 |
+
h = self.slice5(h)
|
82 |
+
h_relu5 = h
|
83 |
+
h = self.slice6(h)
|
84 |
+
h_relu6 = h
|
85 |
+
h = self.slice7(h)
|
86 |
+
h_relu7 = h
|
87 |
+
vgg_outputs = namedtuple(
|
88 |
+
"SqueezeOutputs",
|
89 |
+
["relu1", "relu2", "relu3", "relu4", "relu5", "relu6", "relu7"],
|
90 |
+
)
|
91 |
+
out = vgg_outputs(
|
92 |
+
h_relu1, h_relu2, h_relu3, h_relu4, h_relu5, h_relu6, h_relu7
|
93 |
+
)
|
94 |
+
|
95 |
+
return out
|
96 |
+
|
97 |
+
|
98 |
+
class alexnet(torch.nn.Module):
|
99 |
+
def __init__(self, requires_grad=False, pretrained=True):
|
100 |
+
super(alexnet, self).__init__()
|
101 |
+
alexnet_pretrained_features = models.alexnet(
|
102 |
+
pretrained=pretrained
|
103 |
+
).features
|
104 |
+
self.slice1 = torch.nn.Sequential()
|
105 |
+
self.slice2 = torch.nn.Sequential()
|
106 |
+
self.slice3 = torch.nn.Sequential()
|
107 |
+
self.slice4 = torch.nn.Sequential()
|
108 |
+
self.slice5 = torch.nn.Sequential()
|
109 |
+
self.N_slices = 5
|
110 |
+
for x in range(2):
|
111 |
+
self.slice1.add_module(str(x), alexnet_pretrained_features[x])
|
112 |
+
for x in range(2, 5):
|
113 |
+
self.slice2.add_module(str(x), alexnet_pretrained_features[x])
|
114 |
+
for x in range(5, 8):
|
115 |
+
self.slice3.add_module(str(x), alexnet_pretrained_features[x])
|
116 |
+
for x in range(8, 10):
|
117 |
+
self.slice4.add_module(str(x), alexnet_pretrained_features[x])
|
118 |
+
for x in range(10, 12):
|
119 |
+
self.slice5.add_module(str(x), alexnet_pretrained_features[x])
|
120 |
+
if not requires_grad:
|
121 |
+
for param in self.parameters():
|
122 |
+
param.requires_grad = False
|
123 |
+
|
124 |
+
def forward(self, X):
|
125 |
+
h = self.slice1(X)
|
126 |
+
h_relu1 = h
|
127 |
+
h = self.slice2(h)
|
128 |
+
h_relu2 = h
|
129 |
+
h = self.slice3(h)
|
130 |
+
h_relu3 = h
|
131 |
+
h = self.slice4(h)
|
132 |
+
h_relu4 = h
|
133 |
+
h = self.slice5(h)
|
134 |
+
h_relu5 = h
|
135 |
+
alexnet_outputs = namedtuple(
|
136 |
+
"AlexnetOutputs", ["relu1", "relu2", "relu3", "relu4", "relu5"]
|
137 |
+
)
|
138 |
+
out = alexnet_outputs(h_relu1, h_relu2, h_relu3, h_relu4, h_relu5)
|
139 |
+
|
140 |
+
return out
|
141 |
+
|
142 |
+
|
143 |
+
class vgg16(torch.nn.Module):
|
144 |
+
def __init__(self, requires_grad=False, pretrained=True):
|
145 |
+
super(vgg16, self).__init__()
|
146 |
+
vgg_pretrained_features = models.vgg16(pretrained=pretrained).features
|
147 |
+
self.slice1 = torch.nn.Sequential()
|
148 |
+
self.slice2 = torch.nn.Sequential()
|
149 |
+
self.slice3 = torch.nn.Sequential()
|
150 |
+
self.slice4 = torch.nn.Sequential()
|
151 |
+
self.slice5 = torch.nn.Sequential()
|
152 |
+
self.N_slices = 5
|
153 |
+
for x in range(4):
|
154 |
+
self.slice1.add_module(str(x), vgg_pretrained_features[x])
|
155 |
+
for x in range(4, 9):
|
156 |
+
self.slice2.add_module(str(x), vgg_pretrained_features[x])
|
157 |
+
for x in range(9, 16):
|
158 |
+
self.slice3.add_module(str(x), vgg_pretrained_features[x])
|
159 |
+
for x in range(16, 23):
|
160 |
+
self.slice4.add_module(str(x), vgg_pretrained_features[x])
|
161 |
+
for x in range(23, 30):
|
162 |
+
self.slice5.add_module(str(x), vgg_pretrained_features[x])
|
163 |
+
if not requires_grad:
|
164 |
+
for param in self.parameters():
|
165 |
+
param.requires_grad = False
|
166 |
+
|
167 |
+
def forward(self, X):
|
168 |
+
h = self.slice1(X)
|
169 |
+
h_relu1_2 = h
|
170 |
+
h = self.slice2(h)
|
171 |
+
h_relu2_2 = h
|
172 |
+
h = self.slice3(h)
|
173 |
+
h_relu3_3 = h
|
174 |
+
h = self.slice4(h)
|
175 |
+
h_relu4_3 = h
|
176 |
+
h = self.slice5(h)
|
177 |
+
h_relu5_3 = h
|
178 |
+
vgg_outputs = namedtuple(
|
179 |
+
"VggOutputs",
|
180 |
+
["relu1_2", "relu2_2", "relu3_3", "relu4_3", "relu5_3"],
|
181 |
+
)
|
182 |
+
out = vgg_outputs(h_relu1_2, h_relu2_2, h_relu3_3, h_relu4_3, h_relu5_3)
|
183 |
+
|
184 |
+
return out
|
185 |
+
|
186 |
+
|
187 |
+
class resnet(torch.nn.Module):
|
188 |
+
def __init__(self, requires_grad=False, pretrained=True, num=18):
|
189 |
+
super(resnet, self).__init__()
|
190 |
+
if num == 18:
|
191 |
+
self.net = models.resnet18(pretrained=pretrained)
|
192 |
+
elif num == 34:
|
193 |
+
self.net = models.resnet34(pretrained=pretrained)
|
194 |
+
elif num == 50:
|
195 |
+
self.net = models.resnet50(pretrained=pretrained)
|
196 |
+
elif num == 101:
|
197 |
+
self.net = models.resnet101(pretrained=pretrained)
|
198 |
+
elif num == 152:
|
199 |
+
self.net = models.resnet152(pretrained=pretrained)
|
200 |
+
self.N_slices = 5
|
201 |
+
|
202 |
+
self.conv1 = self.net.conv1
|
203 |
+
self.bn1 = self.net.bn1
|
204 |
+
self.relu = self.net.relu
|
205 |
+
self.maxpool = self.net.maxpool
|
206 |
+
self.layer1 = self.net.layer1
|
207 |
+
self.layer2 = self.net.layer2
|
208 |
+
self.layer3 = self.net.layer3
|
209 |
+
self.layer4 = self.net.layer4
|
210 |
+
|
211 |
+
def forward(self, X):
|
212 |
+
h = self.conv1(X)
|
213 |
+
h = self.bn1(h)
|
214 |
+
h = self.relu(h)
|
215 |
+
h_relu1 = h
|
216 |
+
h = self.maxpool(h)
|
217 |
+
h = self.layer1(h)
|
218 |
+
h_conv2 = h
|
219 |
+
h = self.layer2(h)
|
220 |
+
h_conv3 = h
|
221 |
+
h = self.layer3(h)
|
222 |
+
h_conv4 = h
|
223 |
+
h = self.layer4(h)
|
224 |
+
h_conv5 = h
|
225 |
+
|
226 |
+
outputs = namedtuple(
|
227 |
+
"Outputs", ["relu1", "conv2", "conv3", "conv4", "conv5"]
|
228 |
+
)
|
229 |
+
out = outputs(h_relu1, h_conv2, h_conv3, h_conv4, h_conv5)
|
230 |
+
|
231 |
+
return out
|
232 |
+
|
233 |
+
# Off-the-shelf deep network
|
234 |
+
class PNet(torch.nn.Module):
|
235 |
+
"""Pre-trained network with all channels equally weighted by default"""
|
236 |
+
|
237 |
+
def __init__(self, pnet_type="vgg", pnet_rand=False, use_gpu=True):
|
238 |
+
super(PNet, self).__init__()
|
239 |
+
|
240 |
+
self.use_gpu = use_gpu
|
241 |
+
|
242 |
+
self.pnet_type = pnet_type
|
243 |
+
self.pnet_rand = pnet_rand
|
244 |
+
|
245 |
+
self.shift = torch.Tensor([-0.030, -0.088, -0.188]).view(1, 3, 1, 1)
|
246 |
+
self.scale = torch.Tensor([0.458, 0.448, 0.450]).view(1, 3, 1, 1)
|
247 |
+
|
248 |
+
if self.pnet_type in ["vgg", "vgg16"]:
|
249 |
+
self.net = vgg16(pretrained=not self.pnet_rand, requires_grad=False)
|
250 |
+
elif self.pnet_type == "alex":
|
251 |
+
self.net = alexnet(
|
252 |
+
pretrained=not self.pnet_rand, requires_grad=False
|
253 |
+
)
|
254 |
+
elif self.pnet_type[:-2] == "resnet":
|
255 |
+
self.net = resnet(
|
256 |
+
pretrained=not self.pnet_rand,
|
257 |
+
requires_grad=False,
|
258 |
+
num=int(self.pnet_type[-2:]),
|
259 |
+
)
|
260 |
+
elif self.pnet_type == "squeeze":
|
261 |
+
self.net = squeezenet(
|
262 |
+
pretrained=not self.pnet_rand, requires_grad=False
|
263 |
+
)
|
264 |
+
|
265 |
+
self.L = self.net.N_slices
|
266 |
+
|
267 |
+
if use_gpu:
|
268 |
+
self.net.cuda()
|
269 |
+
self.shift = self.shift.cuda()
|
270 |
+
self.scale = self.scale.cuda()
|
271 |
+
|
272 |
+
def forward(self, in0, in1, retPerLayer=False):
|
273 |
+
in0_sc = (in0 - self.shift.expand_as(in0)) / self.scale.expand_as(in0)
|
274 |
+
in1_sc = (in1 - self.shift.expand_as(in0)) / self.scale.expand_as(in0)
|
275 |
+
|
276 |
+
outs0 = self.net.forward(in0_sc)
|
277 |
+
outs1 = self.net.forward(in1_sc)
|
278 |
+
|
279 |
+
if retPerLayer:
|
280 |
+
all_scores = []
|
281 |
+
for (kk, out0) in enumerate(outs0):
|
282 |
+
cur_score = 1.0 - cos_sim(outs0[kk], outs1[kk])
|
283 |
+
if kk == 0:
|
284 |
+
val = 1.0 * cur_score
|
285 |
+
else:
|
286 |
+
val = val + cur_score
|
287 |
+
if retPerLayer:
|
288 |
+
all_scores += [cur_score]
|
289 |
+
|
290 |
+
if retPerLayer:
|
291 |
+
return (val, all_scores)
|
292 |
+
else:
|
293 |
+
return val
|
294 |
+
|
295 |
+
|
296 |
+
|
297 |
+
|
298 |
+
# The SSIM metric
|
299 |
+
def ssim_metric(img1, img2, mask=None):
|
300 |
+
return ssim(img1, img2, mask=mask, size_average=False)
|
301 |
+
|
302 |
+
|
303 |
+
# The PSNR metric
|
304 |
+
def psnr(img1, img2, mask=None,reshape=False):
|
305 |
+
b = img1.size(0)
|
306 |
+
if not (mask is None):
|
307 |
+
b = img1.size(0)
|
308 |
+
mse_err = (img1 - img2).pow(2) * mask
|
309 |
+
if reshape:
|
310 |
+
mse_err = mse_err.reshape(b, -1).sum(dim=1) / (
|
311 |
+
3 * mask.reshape(b, -1).sum(dim=1).clamp(min=1)
|
312 |
+
)
|
313 |
+
else:
|
314 |
+
mse_err = mse_err.view(b, -1).sum(dim=1) / (
|
315 |
+
3 * mask.view(b, -1).sum(dim=1).clamp(min=1)
|
316 |
+
)
|
317 |
+
else:
|
318 |
+
if reshape:
|
319 |
+
mse_err = (img1 - img2).pow(2).reshape(b, -1).mean(dim=1)
|
320 |
+
else:
|
321 |
+
mse_err = (img1 - img2).pow(2).view(b, -1).mean(dim=1)
|
322 |
+
|
323 |
+
psnr = 10 * (1 / mse_err).log10()
|
324 |
+
return psnr
|
325 |
+
|
326 |
+
|
327 |
+
# The perceptual similarity metric
|
328 |
+
def perceptual_sim(img1, img2, vgg16):
|
329 |
+
# First extract features
|
330 |
+
dist = vgg16(img1 * 2 - 1, img2 * 2 - 1)
|
331 |
+
|
332 |
+
return dist
|
333 |
+
|
334 |
+
def load_img(img_name, size=None):
|
335 |
+
try:
|
336 |
+
img = Image.open(img_name)
|
337 |
+
|
338 |
+
if type(size) == int:
|
339 |
+
img = img.resize((size, size))
|
340 |
+
elif size is not None:
|
341 |
+
img = img.resize((size[1], size[0]))
|
342 |
+
|
343 |
+
img = transform(img).cuda()
|
344 |
+
img = img.unsqueeze(0)
|
345 |
+
except Exception as e:
|
346 |
+
print("Failed at loading %s " % img_name)
|
347 |
+
print(e)
|
348 |
+
img = torch.zeros(1, 3, 256, 256).cuda()
|
349 |
+
raise
|
350 |
+
return img
|
351 |
+
|
352 |
+
|
353 |
+
def compute_perceptual_similarity(folder, pred_img, tgt_img, take_every_other):
|
354 |
+
|
355 |
+
# Load VGG16 for feature similarity
|
356 |
+
vgg16 = PNet().to("cuda")
|
357 |
+
vgg16.eval()
|
358 |
+
vgg16.cuda()
|
359 |
+
|
360 |
+
values_percsim = []
|
361 |
+
values_ssim = []
|
362 |
+
values_psnr = []
|
363 |
+
folders = os.listdir(folder)
|
364 |
+
for i, f in tqdm(enumerate(sorted(folders))):
|
365 |
+
pred_imgs = glob.glob(folder + f + "/" + pred_img)
|
366 |
+
tgt_imgs = glob.glob(folder + f + "/" + tgt_img)
|
367 |
+
assert len(tgt_imgs) == 1
|
368 |
+
|
369 |
+
perc_sim = 10000
|
370 |
+
ssim_sim = -10
|
371 |
+
psnr_sim = -10
|
372 |
+
for p_img in pred_imgs:
|
373 |
+
t_img = load_img(tgt_imgs[0])
|
374 |
+
p_img = load_img(p_img, size=t_img.shape[2:])
|
375 |
+
t_perc_sim = perceptual_sim(p_img, t_img, vgg16).item()
|
376 |
+
perc_sim = min(perc_sim, t_perc_sim)
|
377 |
+
|
378 |
+
ssim_sim = max(ssim_sim, ssim_metric(p_img, t_img).item())
|
379 |
+
psnr_sim = max(psnr_sim, psnr(p_img, t_img).item())
|
380 |
+
|
381 |
+
values_percsim += [perc_sim]
|
382 |
+
values_ssim += [ssim_sim]
|
383 |
+
values_psnr += [psnr_sim]
|
384 |
+
|
385 |
+
if take_every_other:
|
386 |
+
n_valuespercsim = []
|
387 |
+
n_valuesssim = []
|
388 |
+
n_valuespsnr = []
|
389 |
+
for i in range(0, len(values_percsim) // 2):
|
390 |
+
n_valuespercsim += [
|
391 |
+
min(values_percsim[2 * i], values_percsim[2 * i + 1])
|
392 |
+
]
|
393 |
+
n_valuespsnr += [max(values_psnr[2 * i], values_psnr[2 * i + 1])]
|
394 |
+
n_valuesssim += [max(values_ssim[2 * i], values_ssim[2 * i + 1])]
|
395 |
+
|
396 |
+
values_percsim = n_valuespercsim
|
397 |
+
values_ssim = n_valuesssim
|
398 |
+
values_psnr = n_valuespsnr
|
399 |
+
|
400 |
+
avg_percsim = np.mean(np.array(values_percsim))
|
401 |
+
std_percsim = np.std(np.array(values_percsim))
|
402 |
+
|
403 |
+
avg_psnr = np.mean(np.array(values_psnr))
|
404 |
+
std_psnr = np.std(np.array(values_psnr))
|
405 |
+
|
406 |
+
avg_ssim = np.mean(np.array(values_ssim))
|
407 |
+
std_ssim = np.std(np.array(values_ssim))
|
408 |
+
|
409 |
+
return {
|
410 |
+
"Perceptual similarity": (avg_percsim, std_percsim),
|
411 |
+
"PSNR": (avg_psnr, std_psnr),
|
412 |
+
"SSIM": (avg_ssim, std_ssim),
|
413 |
+
}
|
414 |
+
|
415 |
+
|
416 |
+
def compute_perceptual_similarity_from_list(pred_imgs_list, tgt_imgs_list,
|
417 |
+
take_every_other,
|
418 |
+
simple_format=True):
|
419 |
+
|
420 |
+
# Load VGG16 for feature similarity
|
421 |
+
vgg16 = PNet().to("cuda")
|
422 |
+
vgg16.eval()
|
423 |
+
vgg16.cuda()
|
424 |
+
|
425 |
+
values_percsim = []
|
426 |
+
values_ssim = []
|
427 |
+
values_psnr = []
|
428 |
+
equal_count = 0
|
429 |
+
ambig_count = 0
|
430 |
+
for i, tgt_img in enumerate(tqdm(tgt_imgs_list)):
|
431 |
+
pred_imgs = pred_imgs_list[i]
|
432 |
+
tgt_imgs = [tgt_img]
|
433 |
+
assert len(tgt_imgs) == 1
|
434 |
+
|
435 |
+
if type(pred_imgs) != list:
|
436 |
+
pred_imgs = [pred_imgs]
|
437 |
+
|
438 |
+
perc_sim = 10000
|
439 |
+
ssim_sim = -10
|
440 |
+
psnr_sim = -10
|
441 |
+
assert len(pred_imgs)>0
|
442 |
+
for p_img in pred_imgs:
|
443 |
+
t_img = load_img(tgt_imgs[0])
|
444 |
+
p_img = load_img(p_img, size=t_img.shape[2:])
|
445 |
+
t_perc_sim = perceptual_sim(p_img, t_img, vgg16).item()
|
446 |
+
perc_sim = min(perc_sim, t_perc_sim)
|
447 |
+
|
448 |
+
ssim_sim = max(ssim_sim, ssim_metric(p_img, t_img).item())
|
449 |
+
psnr_sim = max(psnr_sim, psnr(p_img, t_img).item())
|
450 |
+
|
451 |
+
values_percsim += [perc_sim]
|
452 |
+
values_ssim += [ssim_sim]
|
453 |
+
if psnr_sim != np.float("inf"):
|
454 |
+
values_psnr += [psnr_sim]
|
455 |
+
else:
|
456 |
+
if torch.allclose(p_img, t_img):
|
457 |
+
equal_count += 1
|
458 |
+
print("{} equal src and wrp images.".format(equal_count))
|
459 |
+
else:
|
460 |
+
ambig_count += 1
|
461 |
+
print("{} ambiguous src and wrp images.".format(ambig_count))
|
462 |
+
|
463 |
+
if take_every_other:
|
464 |
+
n_valuespercsim = []
|
465 |
+
n_valuesssim = []
|
466 |
+
n_valuespsnr = []
|
467 |
+
for i in range(0, len(values_percsim) // 2):
|
468 |
+
n_valuespercsim += [
|
469 |
+
min(values_percsim[2 * i], values_percsim[2 * i + 1])
|
470 |
+
]
|
471 |
+
n_valuespsnr += [max(values_psnr[2 * i], values_psnr[2 * i + 1])]
|
472 |
+
n_valuesssim += [max(values_ssim[2 * i], values_ssim[2 * i + 1])]
|
473 |
+
|
474 |
+
values_percsim = n_valuespercsim
|
475 |
+
values_ssim = n_valuesssim
|
476 |
+
values_psnr = n_valuespsnr
|
477 |
+
|
478 |
+
avg_percsim = np.mean(np.array(values_percsim))
|
479 |
+
std_percsim = np.std(np.array(values_percsim))
|
480 |
+
|
481 |
+
avg_psnr = np.mean(np.array(values_psnr))
|
482 |
+
std_psnr = np.std(np.array(values_psnr))
|
483 |
+
|
484 |
+
avg_ssim = np.mean(np.array(values_ssim))
|
485 |
+
std_ssim = np.std(np.array(values_ssim))
|
486 |
+
|
487 |
+
if simple_format:
|
488 |
+
# just to make yaml formatting readable
|
489 |
+
return {
|
490 |
+
"Perceptual similarity": [float(avg_percsim), float(std_percsim)],
|
491 |
+
"PSNR": [float(avg_psnr), float(std_psnr)],
|
492 |
+
"SSIM": [float(avg_ssim), float(std_ssim)],
|
493 |
+
}
|
494 |
+
else:
|
495 |
+
return {
|
496 |
+
"Perceptual similarity": (avg_percsim, std_percsim),
|
497 |
+
"PSNR": (avg_psnr, std_psnr),
|
498 |
+
"SSIM": (avg_ssim, std_ssim),
|
499 |
+
}
|
500 |
+
|
501 |
+
|
502 |
+
def compute_perceptual_similarity_from_list_topk(pred_imgs_list, tgt_imgs_list,
|
503 |
+
take_every_other, resize=False):
|
504 |
+
|
505 |
+
# Load VGG16 for feature similarity
|
506 |
+
vgg16 = PNet().to("cuda")
|
507 |
+
vgg16.eval()
|
508 |
+
vgg16.cuda()
|
509 |
+
|
510 |
+
values_percsim = []
|
511 |
+
values_ssim = []
|
512 |
+
values_psnr = []
|
513 |
+
individual_percsim = []
|
514 |
+
individual_ssim = []
|
515 |
+
individual_psnr = []
|
516 |
+
for i, tgt_img in enumerate(tqdm(tgt_imgs_list)):
|
517 |
+
pred_imgs = pred_imgs_list[i]
|
518 |
+
tgt_imgs = [tgt_img]
|
519 |
+
assert len(tgt_imgs) == 1
|
520 |
+
|
521 |
+
if type(pred_imgs) != list:
|
522 |
+
assert False
|
523 |
+
pred_imgs = [pred_imgs]
|
524 |
+
|
525 |
+
perc_sim = 10000
|
526 |
+
ssim_sim = -10
|
527 |
+
psnr_sim = -10
|
528 |
+
sample_percsim = list()
|
529 |
+
sample_ssim = list()
|
530 |
+
sample_psnr = list()
|
531 |
+
for p_img in pred_imgs:
|
532 |
+
if resize:
|
533 |
+
t_img = load_img(tgt_imgs[0], size=(256,256))
|
534 |
+
else:
|
535 |
+
t_img = load_img(tgt_imgs[0])
|
536 |
+
p_img = load_img(p_img, size=t_img.shape[2:])
|
537 |
+
|
538 |
+
t_perc_sim = perceptual_sim(p_img, t_img, vgg16).item()
|
539 |
+
sample_percsim.append(t_perc_sim)
|
540 |
+
perc_sim = min(perc_sim, t_perc_sim)
|
541 |
+
|
542 |
+
t_ssim = ssim_metric(p_img, t_img).item()
|
543 |
+
sample_ssim.append(t_ssim)
|
544 |
+
ssim_sim = max(ssim_sim, t_ssim)
|
545 |
+
|
546 |
+
t_psnr = psnr(p_img, t_img).item()
|
547 |
+
sample_psnr.append(t_psnr)
|
548 |
+
psnr_sim = max(psnr_sim, t_psnr)
|
549 |
+
|
550 |
+
values_percsim += [perc_sim]
|
551 |
+
values_ssim += [ssim_sim]
|
552 |
+
values_psnr += [psnr_sim]
|
553 |
+
individual_percsim.append(sample_percsim)
|
554 |
+
individual_ssim.append(sample_ssim)
|
555 |
+
individual_psnr.append(sample_psnr)
|
556 |
+
|
557 |
+
if take_every_other:
|
558 |
+
assert False, "Do this later, after specifying topk to get proper results"
|
559 |
+
n_valuespercsim = []
|
560 |
+
n_valuesssim = []
|
561 |
+
n_valuespsnr = []
|
562 |
+
for i in range(0, len(values_percsim) // 2):
|
563 |
+
n_valuespercsim += [
|
564 |
+
min(values_percsim[2 * i], values_percsim[2 * i + 1])
|
565 |
+
]
|
566 |
+
n_valuespsnr += [max(values_psnr[2 * i], values_psnr[2 * i + 1])]
|
567 |
+
n_valuesssim += [max(values_ssim[2 * i], values_ssim[2 * i + 1])]
|
568 |
+
|
569 |
+
values_percsim = n_valuespercsim
|
570 |
+
values_ssim = n_valuesssim
|
571 |
+
values_psnr = n_valuespsnr
|
572 |
+
|
573 |
+
avg_percsim = np.mean(np.array(values_percsim))
|
574 |
+
std_percsim = np.std(np.array(values_percsim))
|
575 |
+
|
576 |
+
avg_psnr = np.mean(np.array(values_psnr))
|
577 |
+
std_psnr = np.std(np.array(values_psnr))
|
578 |
+
|
579 |
+
avg_ssim = np.mean(np.array(values_ssim))
|
580 |
+
std_ssim = np.std(np.array(values_ssim))
|
581 |
+
|
582 |
+
individual_percsim = np.array(individual_percsim)
|
583 |
+
individual_psnr = np.array(individual_psnr)
|
584 |
+
individual_ssim = np.array(individual_ssim)
|
585 |
+
|
586 |
+
return {
|
587 |
+
"avg_of_best": {
|
588 |
+
"Perceptual similarity": [float(avg_percsim), float(std_percsim)],
|
589 |
+
"PSNR": [float(avg_psnr), float(std_psnr)],
|
590 |
+
"SSIM": [float(avg_ssim), float(std_ssim)],
|
591 |
+
},
|
592 |
+
"individual": {
|
593 |
+
"PSIM": individual_percsim,
|
594 |
+
"PSNR": individual_psnr,
|
595 |
+
"SSIM": individual_ssim,
|
596 |
+
}
|
597 |
+
}
|
598 |
+
|
599 |
+
|
600 |
+
if __name__ == "__main__":
|
601 |
+
args = argparse.ArgumentParser()
|
602 |
+
args.add_argument("--folder", type=str, default="")
|
603 |
+
args.add_argument("--pred_image", type=str, default="")
|
604 |
+
args.add_argument("--target_image", type=str, default="")
|
605 |
+
args.add_argument("--take_every_other", action="store_true", default=False)
|
606 |
+
args.add_argument("--output_file", type=str, default="")
|
607 |
+
|
608 |
+
opts = args.parse_args()
|
609 |
+
|
610 |
+
folder = opts.folder
|
611 |
+
pred_img = opts.pred_image
|
612 |
+
tgt_img = opts.target_image
|
613 |
+
|
614 |
+
results = compute_perceptual_similarity(
|
615 |
+
folder, pred_img, tgt_img, opts.take_every_other
|
616 |
+
)
|
617 |
+
|
618 |
+
f = open(opts.output_file, 'w')
|
619 |
+
for key in results:
|
620 |
+
print("%s for %s: \n" % (key, opts.folder))
|
621 |
+
print(
|
622 |
+
"\t {:0.4f} | {:0.4f} \n".format(results[key][0], results[key][1])
|
623 |
+
)
|
624 |
+
|
625 |
+
f.write("%s for %s: \n" % (key, opts.folder))
|
626 |
+
f.write(
|
627 |
+
"\t {:0.4f} | {:0.4f} \n".format(results[key][0], results[key][1])
|
628 |
+
)
|
629 |
+
|
630 |
+
f.close()
|
ldm/modules/evaluate/frechet_video_distance.py
ADDED
@@ -0,0 +1,147 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Copyright 2022 The Google Research Authors.
|
3 |
+
#
|
4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
+
# you may not use this file except in compliance with the License.
|
6 |
+
# You may obtain a copy of the License at
|
7 |
+
#
|
8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
+
#
|
10 |
+
# Unless required by applicable law or agreed to in writing, software
|
11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
+
# See the License for the specific language governing permissions and
|
14 |
+
# limitations under the License.
|
15 |
+
|
16 |
+
# Lint as: python2, python3
|
17 |
+
"""Minimal Reference implementation for the Frechet Video Distance (FVD).
|
18 |
+
|
19 |
+
FVD is a metric for the quality of video generation models. It is inspired by
|
20 |
+
the FID (Frechet Inception Distance) used for images, but uses a different
|
21 |
+
embedding to be better suitable for videos.
|
22 |
+
"""
|
23 |
+
|
24 |
+
from __future__ import absolute_import
|
25 |
+
from __future__ import division
|
26 |
+
from __future__ import print_function
|
27 |
+
|
28 |
+
|
29 |
+
import six
|
30 |
+
import tensorflow.compat.v1 as tf
|
31 |
+
import tensorflow_gan as tfgan
|
32 |
+
import tensorflow_hub as hub
|
33 |
+
|
34 |
+
|
35 |
+
def preprocess(videos, target_resolution):
|
36 |
+
"""Runs some preprocessing on the videos for I3D model.
|
37 |
+
|
38 |
+
Args:
|
39 |
+
videos: <T>[batch_size, num_frames, height, width, depth] The videos to be
|
40 |
+
preprocessed. We don't care about the specific dtype of the videos, it can
|
41 |
+
be anything that tf.image.resize_bilinear accepts. Values are expected to
|
42 |
+
be in the range 0-255.
|
43 |
+
target_resolution: (width, height): target video resolution
|
44 |
+
|
45 |
+
Returns:
|
46 |
+
videos: <float32>[batch_size, num_frames, height, width, depth]
|
47 |
+
"""
|
48 |
+
videos_shape = list(videos.shape)
|
49 |
+
all_frames = tf.reshape(videos, [-1] + videos_shape[-3:])
|
50 |
+
resized_videos = tf.image.resize_bilinear(all_frames, size=target_resolution)
|
51 |
+
target_shape = [videos_shape[0], -1] + list(target_resolution) + [3]
|
52 |
+
output_videos = tf.reshape(resized_videos, target_shape)
|
53 |
+
scaled_videos = 2. * tf.cast(output_videos, tf.float32) / 255. - 1
|
54 |
+
return scaled_videos
|
55 |
+
|
56 |
+
|
57 |
+
def _is_in_graph(tensor_name):
|
58 |
+
"""Checks whether a given tensor does exists in the graph."""
|
59 |
+
try:
|
60 |
+
tf.get_default_graph().get_tensor_by_name(tensor_name)
|
61 |
+
except KeyError:
|
62 |
+
return False
|
63 |
+
return True
|
64 |
+
|
65 |
+
|
66 |
+
def create_id3_embedding(videos,warmup=False,batch_size=16):
|
67 |
+
"""Embeds the given videos using the Inflated 3D Convolution ne twork.
|
68 |
+
|
69 |
+
Downloads the graph of the I3D from tf.hub and adds it to the graph on the
|
70 |
+
first call.
|
71 |
+
|
72 |
+
Args:
|
73 |
+
videos: <float32>[batch_size, num_frames, height=224, width=224, depth=3].
|
74 |
+
Expected range is [-1, 1].
|
75 |
+
|
76 |
+
Returns:
|
77 |
+
embedding: <float32>[batch_size, embedding_size]. embedding_size depends
|
78 |
+
on the model used.
|
79 |
+
|
80 |
+
Raises:
|
81 |
+
ValueError: when a provided embedding_layer is not supported.
|
82 |
+
"""
|
83 |
+
|
84 |
+
# batch_size = 16
|
85 |
+
module_spec = "https://tfhub.dev/deepmind/i3d-kinetics-400/1"
|
86 |
+
|
87 |
+
|
88 |
+
# Making sure that we import the graph separately for
|
89 |
+
# each different input video tensor.
|
90 |
+
module_name = "fvd_kinetics-400_id3_module_" + six.ensure_str(
|
91 |
+
videos.name).replace(":", "_")
|
92 |
+
|
93 |
+
|
94 |
+
|
95 |
+
assert_ops = [
|
96 |
+
tf.Assert(
|
97 |
+
tf.reduce_max(videos) <= 1.001,
|
98 |
+
["max value in frame is > 1", videos]),
|
99 |
+
tf.Assert(
|
100 |
+
tf.reduce_min(videos) >= -1.001,
|
101 |
+
["min value in frame is < -1", videos]),
|
102 |
+
tf.assert_equal(
|
103 |
+
tf.shape(videos)[0],
|
104 |
+
batch_size, ["invalid frame batch size: ",
|
105 |
+
tf.shape(videos)],
|
106 |
+
summarize=6),
|
107 |
+
]
|
108 |
+
with tf.control_dependencies(assert_ops):
|
109 |
+
videos = tf.identity(videos)
|
110 |
+
|
111 |
+
module_scope = "%s_apply_default/" % module_name
|
112 |
+
|
113 |
+
# To check whether the module has already been loaded into the graph, we look
|
114 |
+
# for a given tensor name. If this tensor name exists, we assume the function
|
115 |
+
# has been called before and the graph was imported. Otherwise we import it.
|
116 |
+
# Note: in theory, the tensor could exist, but have wrong shapes.
|
117 |
+
# This will happen if create_id3_embedding is called with a frames_placehoder
|
118 |
+
# of wrong size/batch size, because even though that will throw a tf.Assert
|
119 |
+
# on graph-execution time, it will insert the tensor (with wrong shape) into
|
120 |
+
# the graph. This is why we need the following assert.
|
121 |
+
if warmup:
|
122 |
+
video_batch_size = int(videos.shape[0])
|
123 |
+
assert video_batch_size in [batch_size, -1, None], f"Invalid batch size {video_batch_size}"
|
124 |
+
tensor_name = module_scope + "RGB/inception_i3d/Mean:0"
|
125 |
+
if not _is_in_graph(tensor_name):
|
126 |
+
i3d_model = hub.Module(module_spec, name=module_name)
|
127 |
+
i3d_model(videos)
|
128 |
+
|
129 |
+
# gets the kinetics-i3d-400-logits layer
|
130 |
+
tensor_name = module_scope + "RGB/inception_i3d/Mean:0"
|
131 |
+
tensor = tf.get_default_graph().get_tensor_by_name(tensor_name)
|
132 |
+
return tensor
|
133 |
+
|
134 |
+
|
135 |
+
def calculate_fvd(real_activations,
|
136 |
+
generated_activations):
|
137 |
+
"""Returns a list of ops that compute metrics as funcs of activations.
|
138 |
+
|
139 |
+
Args:
|
140 |
+
real_activations: <float32>[num_samples, embedding_size]
|
141 |
+
generated_activations: <float32>[num_samples, embedding_size]
|
142 |
+
|
143 |
+
Returns:
|
144 |
+
A scalar that contains the requested FVD.
|
145 |
+
"""
|
146 |
+
return tfgan.eval.frechet_classifier_distance_from_activations(
|
147 |
+
real_activations, generated_activations)
|
ldm/modules/evaluate/ssim.py
ADDED
@@ -0,0 +1,124 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# MIT Licence
|
2 |
+
|
3 |
+
# Methods to predict the SSIM, taken from
|
4 |
+
# https://github.com/Po-Hsun-Su/pytorch-ssim/blob/master/pytorch_ssim/__init__.py
|
5 |
+
|
6 |
+
from math import exp
|
7 |
+
|
8 |
+
import torch
|
9 |
+
import torch.nn.functional as F
|
10 |
+
from torch.autograd import Variable
|
11 |
+
|
12 |
+
def gaussian(window_size, sigma):
|
13 |
+
gauss = torch.Tensor(
|
14 |
+
[
|
15 |
+
exp(-((x - window_size // 2) ** 2) / float(2 * sigma ** 2))
|
16 |
+
for x in range(window_size)
|
17 |
+
]
|
18 |
+
)
|
19 |
+
return gauss / gauss.sum()
|
20 |
+
|
21 |
+
|
22 |
+
def create_window(window_size, channel):
|
23 |
+
_1D_window = gaussian(window_size, 1.5).unsqueeze(1)
|
24 |
+
_2D_window = _1D_window.mm(_1D_window.t()).float().unsqueeze(0).unsqueeze(0)
|
25 |
+
window = Variable(
|
26 |
+
_2D_window.expand(channel, 1, window_size, window_size).contiguous()
|
27 |
+
)
|
28 |
+
return window
|
29 |
+
|
30 |
+
|
31 |
+
def _ssim(
|
32 |
+
img1, img2, window, window_size, channel, mask=None, size_average=True
|
33 |
+
):
|
34 |
+
mu1 = F.conv2d(img1, window, padding=window_size // 2, groups=channel)
|
35 |
+
mu2 = F.conv2d(img2, window, padding=window_size // 2, groups=channel)
|
36 |
+
|
37 |
+
mu1_sq = mu1.pow(2)
|
38 |
+
mu2_sq = mu2.pow(2)
|
39 |
+
mu1_mu2 = mu1 * mu2
|
40 |
+
|
41 |
+
sigma1_sq = (
|
42 |
+
F.conv2d(img1 * img1, window, padding=window_size // 2, groups=channel)
|
43 |
+
- mu1_sq
|
44 |
+
)
|
45 |
+
sigma2_sq = (
|
46 |
+
F.conv2d(img2 * img2, window, padding=window_size // 2, groups=channel)
|
47 |
+
- mu2_sq
|
48 |
+
)
|
49 |
+
sigma12 = (
|
50 |
+
F.conv2d(img1 * img2, window, padding=window_size // 2, groups=channel)
|
51 |
+
- mu1_mu2
|
52 |
+
)
|
53 |
+
|
54 |
+
C1 = (0.01) ** 2
|
55 |
+
C2 = (0.03) ** 2
|
56 |
+
|
57 |
+
ssim_map = ((2 * mu1_mu2 + C1) * (2 * sigma12 + C2)) / (
|
58 |
+
(mu1_sq + mu2_sq + C1) * (sigma1_sq + sigma2_sq + C2)
|
59 |
+
)
|
60 |
+
|
61 |
+
if not (mask is None):
|
62 |
+
b = mask.size(0)
|
63 |
+
ssim_map = ssim_map.mean(dim=1, keepdim=True) * mask
|
64 |
+
ssim_map = ssim_map.view(b, -1).sum(dim=1) / mask.view(b, -1).sum(
|
65 |
+
dim=1
|
66 |
+
).clamp(min=1)
|
67 |
+
return ssim_map
|
68 |
+
|
69 |
+
import pdb
|
70 |
+
|
71 |
+
pdb.set_trace
|
72 |
+
|
73 |
+
if size_average:
|
74 |
+
return ssim_map.mean()
|
75 |
+
else:
|
76 |
+
return ssim_map.mean(1).mean(1).mean(1)
|
77 |
+
|
78 |
+
|
79 |
+
class SSIM(torch.nn.Module):
|
80 |
+
def __init__(self, window_size=11, size_average=True):
|
81 |
+
super(SSIM, self).__init__()
|
82 |
+
self.window_size = window_size
|
83 |
+
self.size_average = size_average
|
84 |
+
self.channel = 1
|
85 |
+
self.window = create_window(window_size, self.channel)
|
86 |
+
|
87 |
+
def forward(self, img1, img2, mask=None):
|
88 |
+
(_, channel, _, _) = img1.size()
|
89 |
+
|
90 |
+
if (
|
91 |
+
channel == self.channel
|
92 |
+
and self.window.data.type() == img1.data.type()
|
93 |
+
):
|
94 |
+
window = self.window
|
95 |
+
else:
|
96 |
+
window = create_window(self.window_size, channel)
|
97 |
+
|
98 |
+
if img1.is_cuda:
|
99 |
+
window = window.cuda(img1.get_device())
|
100 |
+
window = window.type_as(img1)
|
101 |
+
|
102 |
+
self.window = window
|
103 |
+
self.channel = channel
|
104 |
+
|
105 |
+
return _ssim(
|
106 |
+
img1,
|
107 |
+
img2,
|
108 |
+
window,
|
109 |
+
self.window_size,
|
110 |
+
channel,
|
111 |
+
mask,
|
112 |
+
self.size_average,
|
113 |
+
)
|
114 |
+
|
115 |
+
|
116 |
+
def ssim(img1, img2, window_size=11, mask=None, size_average=True):
|
117 |
+
(_, channel, _, _) = img1.size()
|
118 |
+
window = create_window(window_size, channel)
|
119 |
+
|
120 |
+
if img1.is_cuda:
|
121 |
+
window = window.cuda(img1.get_device())
|
122 |
+
window = window.type_as(img1)
|
123 |
+
|
124 |
+
return _ssim(img1, img2, window, window_size, channel, mask, size_average)
|
ldm/modules/evaluate/torch_frechet_video_distance.py
ADDED
@@ -0,0 +1,294 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# based on https://github.com/universome/fvd-comparison/blob/master/compare_models.py; huge thanks!
|
2 |
+
import os
|
3 |
+
import numpy as np
|
4 |
+
import io
|
5 |
+
import re
|
6 |
+
import requests
|
7 |
+
import html
|
8 |
+
import hashlib
|
9 |
+
import urllib
|
10 |
+
import urllib.request
|
11 |
+
import scipy.linalg
|
12 |
+
import multiprocessing as mp
|
13 |
+
import glob
|
14 |
+
|
15 |
+
|
16 |
+
from tqdm import tqdm
|
17 |
+
from typing import Any, List, Tuple, Union, Dict, Callable
|
18 |
+
|
19 |
+
from torchvision.io import read_video
|
20 |
+
import torch; torch.set_grad_enabled(False)
|
21 |
+
from einops import rearrange
|
22 |
+
|
23 |
+
from nitro.util import isvideo
|
24 |
+
|
25 |
+
def compute_frechet_distance(mu_sample,sigma_sample,mu_ref,sigma_ref) -> float:
|
26 |
+
print('Calculate frechet distance...')
|
27 |
+
m = np.square(mu_sample - mu_ref).sum()
|
28 |
+
s, _ = scipy.linalg.sqrtm(np.dot(sigma_sample, sigma_ref), disp=False) # pylint: disable=no-member
|
29 |
+
fid = np.real(m + np.trace(sigma_sample + sigma_ref - s * 2))
|
30 |
+
|
31 |
+
return float(fid)
|
32 |
+
|
33 |
+
|
34 |
+
def compute_stats(feats: np.ndarray) -> Tuple[np.ndarray, np.ndarray]:
|
35 |
+
mu = feats.mean(axis=0) # [d]
|
36 |
+
sigma = np.cov(feats, rowvar=False) # [d, d]
|
37 |
+
|
38 |
+
return mu, sigma
|
39 |
+
|
40 |
+
|
41 |
+
def open_url(url: str, num_attempts: int = 10, verbose: bool = True, return_filename: bool = False) -> Any:
|
42 |
+
"""Download the given URL and return a binary-mode file object to access the data."""
|
43 |
+
assert num_attempts >= 1
|
44 |
+
|
45 |
+
# Doesn't look like an URL scheme so interpret it as a local filename.
|
46 |
+
if not re.match('^[a-z]+://', url):
|
47 |
+
return url if return_filename else open(url, "rb")
|
48 |
+
|
49 |
+
# Handle file URLs. This code handles unusual file:// patterns that
|
50 |
+
# arise on Windows:
|
51 |
+
#
|
52 |
+
# file:///c:/foo.txt
|
53 |
+
#
|
54 |
+
# which would translate to a local '/c:/foo.txt' filename that's
|
55 |
+
# invalid. Drop the forward slash for such pathnames.
|
56 |
+
#
|
57 |
+
# If you touch this code path, you should test it on both Linux and
|
58 |
+
# Windows.
|
59 |
+
#
|
60 |
+
# Some internet resources suggest using urllib.request.url2pathname() but
|
61 |
+
# but that converts forward slashes to backslashes and this causes
|
62 |
+
# its own set of problems.
|
63 |
+
if url.startswith('file://'):
|
64 |
+
filename = urllib.parse.urlparse(url).path
|
65 |
+
if re.match(r'^/[a-zA-Z]:', filename):
|
66 |
+
filename = filename[1:]
|
67 |
+
return filename if return_filename else open(filename, "rb")
|
68 |
+
|
69 |
+
url_md5 = hashlib.md5(url.encode("utf-8")).hexdigest()
|
70 |
+
|
71 |
+
# Download.
|
72 |
+
url_name = None
|
73 |
+
url_data = None
|
74 |
+
with requests.Session() as session:
|
75 |
+
if verbose:
|
76 |
+
print("Downloading %s ..." % url, end="", flush=True)
|
77 |
+
for attempts_left in reversed(range(num_attempts)):
|
78 |
+
try:
|
79 |
+
with session.get(url) as res:
|
80 |
+
res.raise_for_status()
|
81 |
+
if len(res.content) == 0:
|
82 |
+
raise IOError("No data received")
|
83 |
+
|
84 |
+
if len(res.content) < 8192:
|
85 |
+
content_str = res.content.decode("utf-8")
|
86 |
+
if "download_warning" in res.headers.get("Set-Cookie", ""):
|
87 |
+
links = [html.unescape(link) for link in content_str.split('"') if "export=download" in link]
|
88 |
+
if len(links) == 1:
|
89 |
+
url = requests.compat.urljoin(url, links[0])
|
90 |
+
raise IOError("Google Drive virus checker nag")
|
91 |
+
if "Google Drive - Quota exceeded" in content_str:
|
92 |
+
raise IOError("Google Drive download quota exceeded -- please try again later")
|
93 |
+
|
94 |
+
match = re.search(r'filename="([^"]*)"', res.headers.get("Content-Disposition", ""))
|
95 |
+
url_name = match[1] if match else url
|
96 |
+
url_data = res.content
|
97 |
+
if verbose:
|
98 |
+
print(" done")
|
99 |
+
break
|
100 |
+
except KeyboardInterrupt:
|
101 |
+
raise
|
102 |
+
except:
|
103 |
+
if not attempts_left:
|
104 |
+
if verbose:
|
105 |
+
print(" failed")
|
106 |
+
raise
|
107 |
+
if verbose:
|
108 |
+
print(".", end="", flush=True)
|
109 |
+
|
110 |
+
# Return data as file object.
|
111 |
+
assert not return_filename
|
112 |
+
return io.BytesIO(url_data)
|
113 |
+
|
114 |
+
def load_video(ip):
|
115 |
+
vid, *_ = read_video(ip)
|
116 |
+
vid = rearrange(vid, 't h w c -> t c h w').to(torch.uint8)
|
117 |
+
return vid
|
118 |
+
|
119 |
+
def get_data_from_str(input_str,nprc = None):
|
120 |
+
assert os.path.isdir(input_str), f'Specified input folder "{input_str}" is not a directory'
|
121 |
+
vid_filelist = glob.glob(os.path.join(input_str,'*.mp4'))
|
122 |
+
print(f'Found {len(vid_filelist)} videos in dir {input_str}')
|
123 |
+
|
124 |
+
if nprc is None:
|
125 |
+
try:
|
126 |
+
nprc = mp.cpu_count()
|
127 |
+
except NotImplementedError:
|
128 |
+
print('WARNING: cpu_count() not avlailable, using only 1 cpu for video loading')
|
129 |
+
nprc = 1
|
130 |
+
|
131 |
+
pool = mp.Pool(processes=nprc)
|
132 |
+
|
133 |
+
vids = []
|
134 |
+
for v in tqdm(pool.imap_unordered(load_video,vid_filelist),total=len(vid_filelist),desc='Loading videos...'):
|
135 |
+
vids.append(v)
|
136 |
+
|
137 |
+
|
138 |
+
vids = torch.stack(vids,dim=0).float()
|
139 |
+
|
140 |
+
return vids
|
141 |
+
|
142 |
+
def get_stats(stats):
|
143 |
+
assert os.path.isfile(stats) and stats.endswith('.npz'), f'no stats found under {stats}'
|
144 |
+
|
145 |
+
print(f'Using precomputed statistics under {stats}')
|
146 |
+
stats = np.load(stats)
|
147 |
+
stats = {key: stats[key] for key in stats.files}
|
148 |
+
|
149 |
+
return stats
|
150 |
+
|
151 |
+
|
152 |
+
|
153 |
+
|
154 |
+
@torch.no_grad()
|
155 |
+
def compute_fvd(ref_input, sample_input, bs=32,
|
156 |
+
ref_stats=None,
|
157 |
+
sample_stats=None,
|
158 |
+
nprc_load=None):
|
159 |
+
|
160 |
+
|
161 |
+
|
162 |
+
calc_stats = ref_stats is None or sample_stats is None
|
163 |
+
|
164 |
+
if calc_stats:
|
165 |
+
|
166 |
+
only_ref = sample_stats is not None
|
167 |
+
only_sample = ref_stats is not None
|
168 |
+
|
169 |
+
|
170 |
+
if isinstance(ref_input,str) and not only_sample:
|
171 |
+
ref_input = get_data_from_str(ref_input,nprc_load)
|
172 |
+
|
173 |
+
if isinstance(sample_input, str) and not only_ref:
|
174 |
+
sample_input = get_data_from_str(sample_input, nprc_load)
|
175 |
+
|
176 |
+
stats = compute_statistics(sample_input,ref_input,
|
177 |
+
device='cuda' if torch.cuda.is_available() else 'cpu',
|
178 |
+
bs=bs,
|
179 |
+
only_ref=only_ref,
|
180 |
+
only_sample=only_sample)
|
181 |
+
|
182 |
+
if only_ref:
|
183 |
+
stats.update(get_stats(sample_stats))
|
184 |
+
elif only_sample:
|
185 |
+
stats.update(get_stats(ref_stats))
|
186 |
+
|
187 |
+
|
188 |
+
|
189 |
+
else:
|
190 |
+
stats = get_stats(sample_stats)
|
191 |
+
stats.update(get_stats(ref_stats))
|
192 |
+
|
193 |
+
fvd = compute_frechet_distance(**stats)
|
194 |
+
|
195 |
+
return {'FVD' : fvd,}
|
196 |
+
|
197 |
+
|
198 |
+
@torch.no_grad()
|
199 |
+
def compute_statistics(videos_fake, videos_real, device: str='cuda', bs=32, only_ref=False,only_sample=False) -> Dict:
|
200 |
+
detector_url = 'https://www.dropbox.com/s/ge9e5ujwgetktms/i3d_torchscript.pt?dl=1'
|
201 |
+
detector_kwargs = dict(rescale=True, resize=True, return_features=True) # Return raw features before the softmax layer.
|
202 |
+
|
203 |
+
with open_url(detector_url, verbose=False) as f:
|
204 |
+
detector = torch.jit.load(f).eval().to(device)
|
205 |
+
|
206 |
+
|
207 |
+
|
208 |
+
assert not (only_sample and only_ref), 'only_ref and only_sample arguments are mutually exclusive'
|
209 |
+
|
210 |
+
ref_embed, sample_embed = [], []
|
211 |
+
|
212 |
+
info = f'Computing I3D activations for FVD score with batch size {bs}'
|
213 |
+
|
214 |
+
if only_ref:
|
215 |
+
|
216 |
+
if not isvideo(videos_real):
|
217 |
+
# if not is video we assume to have numpy arrays pf shape (n_vids, t, h, w, c) in range [0,255]
|
218 |
+
videos_real = torch.from_numpy(videos_real).permute(0, 4, 1, 2, 3).float()
|
219 |
+
print(videos_real.shape)
|
220 |
+
|
221 |
+
if videos_real.shape[0] % bs == 0:
|
222 |
+
n_secs = videos_real.shape[0] // bs
|
223 |
+
else:
|
224 |
+
n_secs = videos_real.shape[0] // bs + 1
|
225 |
+
|
226 |
+
videos_real = torch.tensor_split(videos_real, n_secs, dim=0)
|
227 |
+
|
228 |
+
for ref_v in tqdm(videos_real, total=len(videos_real),desc=info):
|
229 |
+
|
230 |
+
feats_ref = detector(ref_v.to(device).contiguous(), **detector_kwargs).cpu().numpy()
|
231 |
+
ref_embed.append(feats_ref)
|
232 |
+
|
233 |
+
elif only_sample:
|
234 |
+
|
235 |
+
if not isvideo(videos_fake):
|
236 |
+
# if not is video we assume to have numpy arrays pf shape (n_vids, t, h, w, c) in range [0,255]
|
237 |
+
videos_fake = torch.from_numpy(videos_fake).permute(0, 4, 1, 2, 3).float()
|
238 |
+
print(videos_fake.shape)
|
239 |
+
|
240 |
+
if videos_fake.shape[0] % bs == 0:
|
241 |
+
n_secs = videos_fake.shape[0] // bs
|
242 |
+
else:
|
243 |
+
n_secs = videos_fake.shape[0] // bs + 1
|
244 |
+
|
245 |
+
videos_real = torch.tensor_split(videos_real, n_secs, dim=0)
|
246 |
+
|
247 |
+
for sample_v in tqdm(videos_fake, total=len(videos_real),desc=info):
|
248 |
+
feats_sample = detector(sample_v.to(device).contiguous(), **detector_kwargs).cpu().numpy()
|
249 |
+
sample_embed.append(feats_sample)
|
250 |
+
|
251 |
+
|
252 |
+
else:
|
253 |
+
|
254 |
+
if not isvideo(videos_real):
|
255 |
+
# if not is video we assume to have numpy arrays pf shape (n_vids, t, h, w, c) in range [0,255]
|
256 |
+
videos_real = torch.from_numpy(videos_real).permute(0, 4, 1, 2, 3).float()
|
257 |
+
|
258 |
+
if not isvideo(videos_fake):
|
259 |
+
videos_fake = torch.from_numpy(videos_fake).permute(0, 4, 1, 2, 3).float()
|
260 |
+
|
261 |
+
if videos_fake.shape[0] % bs == 0:
|
262 |
+
n_secs = videos_fake.shape[0] // bs
|
263 |
+
else:
|
264 |
+
n_secs = videos_fake.shape[0] // bs + 1
|
265 |
+
|
266 |
+
videos_real = torch.tensor_split(videos_real, n_secs, dim=0)
|
267 |
+
videos_fake = torch.tensor_split(videos_fake, n_secs, dim=0)
|
268 |
+
|
269 |
+
for ref_v, sample_v in tqdm(zip(videos_real,videos_fake),total=len(videos_fake),desc=info):
|
270 |
+
# print(ref_v.shape)
|
271 |
+
# ref_v = torch.nn.functional.interpolate(ref_v, size=(sample_v.shape[2], 256, 256), mode='trilinear', align_corners=False)
|
272 |
+
# sample_v = torch.nn.functional.interpolate(sample_v, size=(sample_v.shape[2], 256, 256), mode='trilinear', align_corners=False)
|
273 |
+
|
274 |
+
|
275 |
+
feats_sample = detector(sample_v.to(device).contiguous(), **detector_kwargs).cpu().numpy()
|
276 |
+
feats_ref = detector(ref_v.to(device).contiguous(), **detector_kwargs).cpu().numpy()
|
277 |
+
sample_embed.append(feats_sample)
|
278 |
+
ref_embed.append(feats_ref)
|
279 |
+
|
280 |
+
out = dict()
|
281 |
+
if len(sample_embed) > 0:
|
282 |
+
sample_embed = np.concatenate(sample_embed,axis=0)
|
283 |
+
mu_sample, sigma_sample = compute_stats(sample_embed)
|
284 |
+
out.update({'mu_sample': mu_sample,
|
285 |
+
'sigma_sample': sigma_sample})
|
286 |
+
|
287 |
+
if len(ref_embed) > 0:
|
288 |
+
ref_embed = np.concatenate(ref_embed,axis=0)
|
289 |
+
mu_ref, sigma_ref = compute_stats(ref_embed)
|
290 |
+
out.update({'mu_ref': mu_ref,
|
291 |
+
'sigma_ref': sigma_ref})
|
292 |
+
|
293 |
+
|
294 |
+
return out
|
ldm/modules/image_degradation/__init__.py
ADDED
@@ -0,0 +1,2 @@
|
|
|
|
|
|
|
1 |
+
from ldm.modules.image_degradation.bsrgan import degradation_bsrgan_variant as degradation_fn_bsr
|
2 |
+
from ldm.modules.image_degradation.bsrgan_light import degradation_bsrgan_variant as degradation_fn_bsr_light
|
ldm/modules/image_degradation/bsrgan.py
ADDED
@@ -0,0 +1,730 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# -*- coding: utf-8 -*-
|
2 |
+
"""
|
3 |
+
# --------------------------------------------
|
4 |
+
# Super-Resolution
|
5 |
+
# --------------------------------------------
|
6 |
+
#
|
7 |
+
# Kai Zhang ([email protected])
|
8 |
+
# https://github.com/cszn
|
9 |
+
# From 2019/03--2021/08
|
10 |
+
# --------------------------------------------
|
11 |
+
"""
|
12 |
+
|
13 |
+
import numpy as np
|
14 |
+
import cv2
|
15 |
+
import torch
|
16 |
+
|
17 |
+
from functools import partial
|
18 |
+
import random
|
19 |
+
from scipy import ndimage
|
20 |
+
import scipy
|
21 |
+
import scipy.stats as ss
|
22 |
+
from scipy.interpolate import interp2d
|
23 |
+
from scipy.linalg import orth
|
24 |
+
import albumentations
|
25 |
+
|
26 |
+
import ldm.modules.image_degradation.utils_image as util
|
27 |
+
|
28 |
+
|
29 |
+
def modcrop_np(img, sf):
|
30 |
+
'''
|
31 |
+
Args:
|
32 |
+
img: numpy image, WxH or WxHxC
|
33 |
+
sf: scale factor
|
34 |
+
Return:
|
35 |
+
cropped image
|
36 |
+
'''
|
37 |
+
w, h = img.shape[:2]
|
38 |
+
im = np.copy(img)
|
39 |
+
return im[:w - w % sf, :h - h % sf, ...]
|
40 |
+
|
41 |
+
|
42 |
+
"""
|
43 |
+
# --------------------------------------------
|
44 |
+
# anisotropic Gaussian kernels
|
45 |
+
# --------------------------------------------
|
46 |
+
"""
|
47 |
+
|
48 |
+
|
49 |
+
def analytic_kernel(k):
|
50 |
+
"""Calculate the X4 kernel from the X2 kernel (for proof see appendix in paper)"""
|
51 |
+
k_size = k.shape[0]
|
52 |
+
# Calculate the big kernels size
|
53 |
+
big_k = np.zeros((3 * k_size - 2, 3 * k_size - 2))
|
54 |
+
# Loop over the small kernel to fill the big one
|
55 |
+
for r in range(k_size):
|
56 |
+
for c in range(k_size):
|
57 |
+
big_k[2 * r:2 * r + k_size, 2 * c:2 * c + k_size] += k[r, c] * k
|
58 |
+
# Crop the edges of the big kernel to ignore very small values and increase run time of SR
|
59 |
+
crop = k_size // 2
|
60 |
+
cropped_big_k = big_k[crop:-crop, crop:-crop]
|
61 |
+
# Normalize to 1
|
62 |
+
return cropped_big_k / cropped_big_k.sum()
|
63 |
+
|
64 |
+
|
65 |
+
def anisotropic_Gaussian(ksize=15, theta=np.pi, l1=6, l2=6):
|
66 |
+
""" generate an anisotropic Gaussian kernel
|
67 |
+
Args:
|
68 |
+
ksize : e.g., 15, kernel size
|
69 |
+
theta : [0, pi], rotation angle range
|
70 |
+
l1 : [0.1,50], scaling of eigenvalues
|
71 |
+
l2 : [0.1,l1], scaling of eigenvalues
|
72 |
+
If l1 = l2, will get an isotropic Gaussian kernel.
|
73 |
+
Returns:
|
74 |
+
k : kernel
|
75 |
+
"""
|
76 |
+
|
77 |
+
v = np.dot(np.array([[np.cos(theta), -np.sin(theta)], [np.sin(theta), np.cos(theta)]]), np.array([1., 0.]))
|
78 |
+
V = np.array([[v[0], v[1]], [v[1], -v[0]]])
|
79 |
+
D = np.array([[l1, 0], [0, l2]])
|
80 |
+
Sigma = np.dot(np.dot(V, D), np.linalg.inv(V))
|
81 |
+
k = gm_blur_kernel(mean=[0, 0], cov=Sigma, size=ksize)
|
82 |
+
|
83 |
+
return k
|
84 |
+
|
85 |
+
|
86 |
+
def gm_blur_kernel(mean, cov, size=15):
|
87 |
+
center = size / 2.0 + 0.5
|
88 |
+
k = np.zeros([size, size])
|
89 |
+
for y in range(size):
|
90 |
+
for x in range(size):
|
91 |
+
cy = y - center + 1
|
92 |
+
cx = x - center + 1
|
93 |
+
k[y, x] = ss.multivariate_normal.pdf([cx, cy], mean=mean, cov=cov)
|
94 |
+
|
95 |
+
k = k / np.sum(k)
|
96 |
+
return k
|
97 |
+
|
98 |
+
|
99 |
+
def shift_pixel(x, sf, upper_left=True):
|
100 |
+
"""shift pixel for super-resolution with different scale factors
|
101 |
+
Args:
|
102 |
+
x: WxHxC or WxH
|
103 |
+
sf: scale factor
|
104 |
+
upper_left: shift direction
|
105 |
+
"""
|
106 |
+
h, w = x.shape[:2]
|
107 |
+
shift = (sf - 1) * 0.5
|
108 |
+
xv, yv = np.arange(0, w, 1.0), np.arange(0, h, 1.0)
|
109 |
+
if upper_left:
|
110 |
+
x1 = xv + shift
|
111 |
+
y1 = yv + shift
|
112 |
+
else:
|
113 |
+
x1 = xv - shift
|
114 |
+
y1 = yv - shift
|
115 |
+
|
116 |
+
x1 = np.clip(x1, 0, w - 1)
|
117 |
+
y1 = np.clip(y1, 0, h - 1)
|
118 |
+
|
119 |
+
if x.ndim == 2:
|
120 |
+
x = interp2d(xv, yv, x)(x1, y1)
|
121 |
+
if x.ndim == 3:
|
122 |
+
for i in range(x.shape[-1]):
|
123 |
+
x[:, :, i] = interp2d(xv, yv, x[:, :, i])(x1, y1)
|
124 |
+
|
125 |
+
return x
|
126 |
+
|
127 |
+
|
128 |
+
def blur(x, k):
|
129 |
+
'''
|
130 |
+
x: image, NxcxHxW
|
131 |
+
k: kernel, Nx1xhxw
|
132 |
+
'''
|
133 |
+
n, c = x.shape[:2]
|
134 |
+
p1, p2 = (k.shape[-2] - 1) // 2, (k.shape[-1] - 1) // 2
|
135 |
+
x = torch.nn.functional.pad(x, pad=(p1, p2, p1, p2), mode='replicate')
|
136 |
+
k = k.repeat(1, c, 1, 1)
|
137 |
+
k = k.view(-1, 1, k.shape[2], k.shape[3])
|
138 |
+
x = x.view(1, -1, x.shape[2], x.shape[3])
|
139 |
+
x = torch.nn.functional.conv2d(x, k, bias=None, stride=1, padding=0, groups=n * c)
|
140 |
+
x = x.view(n, c, x.shape[2], x.shape[3])
|
141 |
+
|
142 |
+
return x
|
143 |
+
|
144 |
+
|
145 |
+
def gen_kernel(k_size=np.array([15, 15]), scale_factor=np.array([4, 4]), min_var=0.6, max_var=10., noise_level=0):
|
146 |
+
""""
|
147 |
+
# modified version of https://github.com/assafshocher/BlindSR_dataset_generator
|
148 |
+
# Kai Zhang
|
149 |
+
# min_var = 0.175 * sf # variance of the gaussian kernel will be sampled between min_var and max_var
|
150 |
+
# max_var = 2.5 * sf
|
151 |
+
"""
|
152 |
+
# Set random eigen-vals (lambdas) and angle (theta) for COV matrix
|
153 |
+
lambda_1 = min_var + np.random.rand() * (max_var - min_var)
|
154 |
+
lambda_2 = min_var + np.random.rand() * (max_var - min_var)
|
155 |
+
theta = np.random.rand() * np.pi # random theta
|
156 |
+
noise = -noise_level + np.random.rand(*k_size) * noise_level * 2
|
157 |
+
|
158 |
+
# Set COV matrix using Lambdas and Theta
|
159 |
+
LAMBDA = np.diag([lambda_1, lambda_2])
|
160 |
+
Q = np.array([[np.cos(theta), -np.sin(theta)],
|
161 |
+
[np.sin(theta), np.cos(theta)]])
|
162 |
+
SIGMA = Q @ LAMBDA @ Q.T
|
163 |
+
INV_SIGMA = np.linalg.inv(SIGMA)[None, None, :, :]
|
164 |
+
|
165 |
+
# Set expectation position (shifting kernel for aligned image)
|
166 |
+
MU = k_size // 2 - 0.5 * (scale_factor - 1) # - 0.5 * (scale_factor - k_size % 2)
|
167 |
+
MU = MU[None, None, :, None]
|
168 |
+
|
169 |
+
# Create meshgrid for Gaussian
|
170 |
+
[X, Y] = np.meshgrid(range(k_size[0]), range(k_size[1]))
|
171 |
+
Z = np.stack([X, Y], 2)[:, :, :, None]
|
172 |
+
|
173 |
+
# Calcualte Gaussian for every pixel of the kernel
|
174 |
+
ZZ = Z - MU
|
175 |
+
ZZ_t = ZZ.transpose(0, 1, 3, 2)
|
176 |
+
raw_kernel = np.exp(-0.5 * np.squeeze(ZZ_t @ INV_SIGMA @ ZZ)) * (1 + noise)
|
177 |
+
|
178 |
+
# shift the kernel so it will be centered
|
179 |
+
# raw_kernel_centered = kernel_shift(raw_kernel, scale_factor)
|
180 |
+
|
181 |
+
# Normalize the kernel and return
|
182 |
+
# kernel = raw_kernel_centered / np.sum(raw_kernel_centered)
|
183 |
+
kernel = raw_kernel / np.sum(raw_kernel)
|
184 |
+
return kernel
|
185 |
+
|
186 |
+
|
187 |
+
def fspecial_gaussian(hsize, sigma):
|
188 |
+
hsize = [hsize, hsize]
|
189 |
+
siz = [(hsize[0] - 1.0) / 2.0, (hsize[1] - 1.0) / 2.0]
|
190 |
+
std = sigma
|
191 |
+
[x, y] = np.meshgrid(np.arange(-siz[1], siz[1] + 1), np.arange(-siz[0], siz[0] + 1))
|
192 |
+
arg = -(x * x + y * y) / (2 * std * std)
|
193 |
+
h = np.exp(arg)
|
194 |
+
h[h < scipy.finfo(float).eps * h.max()] = 0
|
195 |
+
sumh = h.sum()
|
196 |
+
if sumh != 0:
|
197 |
+
h = h / sumh
|
198 |
+
return h
|
199 |
+
|
200 |
+
|
201 |
+
def fspecial_laplacian(alpha):
|
202 |
+
alpha = max([0, min([alpha, 1])])
|
203 |
+
h1 = alpha / (alpha + 1)
|
204 |
+
h2 = (1 - alpha) / (alpha + 1)
|
205 |
+
h = [[h1, h2, h1], [h2, -4 / (alpha + 1), h2], [h1, h2, h1]]
|
206 |
+
h = np.array(h)
|
207 |
+
return h
|
208 |
+
|
209 |
+
|
210 |
+
def fspecial(filter_type, *args, **kwargs):
|
211 |
+
'''
|
212 |
+
python code from:
|
213 |
+
https://github.com/ronaldosena/imagens-medicas-2/blob/40171a6c259edec7827a6693a93955de2bd39e76/Aulas/aula_2_-_uniform_filter/matlab_fspecial.py
|
214 |
+
'''
|
215 |
+
if filter_type == 'gaussian':
|
216 |
+
return fspecial_gaussian(*args, **kwargs)
|
217 |
+
if filter_type == 'laplacian':
|
218 |
+
return fspecial_laplacian(*args, **kwargs)
|
219 |
+
|
220 |
+
|
221 |
+
"""
|
222 |
+
# --------------------------------------------
|
223 |
+
# degradation models
|
224 |
+
# --------------------------------------------
|
225 |
+
"""
|
226 |
+
|
227 |
+
|
228 |
+
def bicubic_degradation(x, sf=3):
|
229 |
+
'''
|
230 |
+
Args:
|
231 |
+
x: HxWxC image, [0, 1]
|
232 |
+
sf: down-scale factor
|
233 |
+
Return:
|
234 |
+
bicubicly downsampled LR image
|
235 |
+
'''
|
236 |
+
x = util.imresize_np(x, scale=1 / sf)
|
237 |
+
return x
|
238 |
+
|
239 |
+
|
240 |
+
def srmd_degradation(x, k, sf=3):
|
241 |
+
''' blur + bicubic downsampling
|
242 |
+
Args:
|
243 |
+
x: HxWxC image, [0, 1]
|
244 |
+
k: hxw, double
|
245 |
+
sf: down-scale factor
|
246 |
+
Return:
|
247 |
+
downsampled LR image
|
248 |
+
Reference:
|
249 |
+
@inproceedings{zhang2018learning,
|
250 |
+
title={Learning a single convolutional super-resolution network for multiple degradations},
|
251 |
+
author={Zhang, Kai and Zuo, Wangmeng and Zhang, Lei},
|
252 |
+
booktitle={IEEE Conference on Computer Vision and Pattern Recognition},
|
253 |
+
pages={3262--3271},
|
254 |
+
year={2018}
|
255 |
+
}
|
256 |
+
'''
|
257 |
+
x = ndimage.filters.convolve(x, np.expand_dims(k, axis=2), mode='wrap') # 'nearest' | 'mirror'
|
258 |
+
x = bicubic_degradation(x, sf=sf)
|
259 |
+
return x
|
260 |
+
|
261 |
+
|
262 |
+
def dpsr_degradation(x, k, sf=3):
|
263 |
+
''' bicubic downsampling + blur
|
264 |
+
Args:
|
265 |
+
x: HxWxC image, [0, 1]
|
266 |
+
k: hxw, double
|
267 |
+
sf: down-scale factor
|
268 |
+
Return:
|
269 |
+
downsampled LR image
|
270 |
+
Reference:
|
271 |
+
@inproceedings{zhang2019deep,
|
272 |
+
title={Deep Plug-and-Play Super-Resolution for Arbitrary Blur Kernels},
|
273 |
+
author={Zhang, Kai and Zuo, Wangmeng and Zhang, Lei},
|
274 |
+
booktitle={IEEE Conference on Computer Vision and Pattern Recognition},
|
275 |
+
pages={1671--1681},
|
276 |
+
year={2019}
|
277 |
+
}
|
278 |
+
'''
|
279 |
+
x = bicubic_degradation(x, sf=sf)
|
280 |
+
x = ndimage.filters.convolve(x, np.expand_dims(k, axis=2), mode='wrap')
|
281 |
+
return x
|
282 |
+
|
283 |
+
|
284 |
+
def classical_degradation(x, k, sf=3):
|
285 |
+
''' blur + downsampling
|
286 |
+
Args:
|
287 |
+
x: HxWxC image, [0, 1]/[0, 255]
|
288 |
+
k: hxw, double
|
289 |
+
sf: down-scale factor
|
290 |
+
Return:
|
291 |
+
downsampled LR image
|
292 |
+
'''
|
293 |
+
x = ndimage.filters.convolve(x, np.expand_dims(k, axis=2), mode='wrap')
|
294 |
+
# x = filters.correlate(x, np.expand_dims(np.flip(k), axis=2))
|
295 |
+
st = 0
|
296 |
+
return x[st::sf, st::sf, ...]
|
297 |
+
|
298 |
+
|
299 |
+
def add_sharpening(img, weight=0.5, radius=50, threshold=10):
|
300 |
+
"""USM sharpening. borrowed from real-ESRGAN
|
301 |
+
Input image: I; Blurry image: B.
|
302 |
+
1. K = I + weight * (I - B)
|
303 |
+
2. Mask = 1 if abs(I - B) > threshold, else: 0
|
304 |
+
3. Blur mask:
|
305 |
+
4. Out = Mask * K + (1 - Mask) * I
|
306 |
+
Args:
|
307 |
+
img (Numpy array): Input image, HWC, BGR; float32, [0, 1].
|
308 |
+
weight (float): Sharp weight. Default: 1.
|
309 |
+
radius (float): Kernel size of Gaussian blur. Default: 50.
|
310 |
+
threshold (int):
|
311 |
+
"""
|
312 |
+
if radius % 2 == 0:
|
313 |
+
radius += 1
|
314 |
+
blur = cv2.GaussianBlur(img, (radius, radius), 0)
|
315 |
+
residual = img - blur
|
316 |
+
mask = np.abs(residual) * 255 > threshold
|
317 |
+
mask = mask.astype('float32')
|
318 |
+
soft_mask = cv2.GaussianBlur(mask, (radius, radius), 0)
|
319 |
+
|
320 |
+
K = img + weight * residual
|
321 |
+
K = np.clip(K, 0, 1)
|
322 |
+
return soft_mask * K + (1 - soft_mask) * img
|
323 |
+
|
324 |
+
|
325 |
+
def add_blur(img, sf=4):
|
326 |
+
wd2 = 4.0 + sf
|
327 |
+
wd = 2.0 + 0.2 * sf
|
328 |
+
if random.random() < 0.5:
|
329 |
+
l1 = wd2 * random.random()
|
330 |
+
l2 = wd2 * random.random()
|
331 |
+
k = anisotropic_Gaussian(ksize=2 * random.randint(2, 11) + 3, theta=random.random() * np.pi, l1=l1, l2=l2)
|
332 |
+
else:
|
333 |
+
k = fspecial('gaussian', 2 * random.randint(2, 11) + 3, wd * random.random())
|
334 |
+
img = ndimage.filters.convolve(img, np.expand_dims(k, axis=2), mode='mirror')
|
335 |
+
|
336 |
+
return img
|
337 |
+
|
338 |
+
|
339 |
+
def add_resize(img, sf=4):
|
340 |
+
rnum = np.random.rand()
|
341 |
+
if rnum > 0.8: # up
|
342 |
+
sf1 = random.uniform(1, 2)
|
343 |
+
elif rnum < 0.7: # down
|
344 |
+
sf1 = random.uniform(0.5 / sf, 1)
|
345 |
+
else:
|
346 |
+
sf1 = 1.0
|
347 |
+
img = cv2.resize(img, (int(sf1 * img.shape[1]), int(sf1 * img.shape[0])), interpolation=random.choice([1, 2, 3]))
|
348 |
+
img = np.clip(img, 0.0, 1.0)
|
349 |
+
|
350 |
+
return img
|
351 |
+
|
352 |
+
|
353 |
+
# def add_Gaussian_noise(img, noise_level1=2, noise_level2=25):
|
354 |
+
# noise_level = random.randint(noise_level1, noise_level2)
|
355 |
+
# rnum = np.random.rand()
|
356 |
+
# if rnum > 0.6: # add color Gaussian noise
|
357 |
+
# img += np.random.normal(0, noise_level / 255.0, img.shape).astype(np.float32)
|
358 |
+
# elif rnum < 0.4: # add grayscale Gaussian noise
|
359 |
+
# img += np.random.normal(0, noise_level / 255.0, (*img.shape[:2], 1)).astype(np.float32)
|
360 |
+
# else: # add noise
|
361 |
+
# L = noise_level2 / 255.
|
362 |
+
# D = np.diag(np.random.rand(3))
|
363 |
+
# U = orth(np.random.rand(3, 3))
|
364 |
+
# conv = np.dot(np.dot(np.transpose(U), D), U)
|
365 |
+
# img += np.random.multivariate_normal([0, 0, 0], np.abs(L ** 2 * conv), img.shape[:2]).astype(np.float32)
|
366 |
+
# img = np.clip(img, 0.0, 1.0)
|
367 |
+
# return img
|
368 |
+
|
369 |
+
def add_Gaussian_noise(img, noise_level1=2, noise_level2=25):
|
370 |
+
noise_level = random.randint(noise_level1, noise_level2)
|
371 |
+
rnum = np.random.rand()
|
372 |
+
if rnum > 0.6: # add color Gaussian noise
|
373 |
+
img = img + np.random.normal(0, noise_level / 255.0, img.shape).astype(np.float32)
|
374 |
+
elif rnum < 0.4: # add grayscale Gaussian noise
|
375 |
+
img = img + np.random.normal(0, noise_level / 255.0, (*img.shape[:2], 1)).astype(np.float32)
|
376 |
+
else: # add noise
|
377 |
+
L = noise_level2 / 255.
|
378 |
+
D = np.diag(np.random.rand(3))
|
379 |
+
U = orth(np.random.rand(3, 3))
|
380 |
+
conv = np.dot(np.dot(np.transpose(U), D), U)
|
381 |
+
img = img + np.random.multivariate_normal([0, 0, 0], np.abs(L ** 2 * conv), img.shape[:2]).astype(np.float32)
|
382 |
+
img = np.clip(img, 0.0, 1.0)
|
383 |
+
return img
|
384 |
+
|
385 |
+
|
386 |
+
def add_speckle_noise(img, noise_level1=2, noise_level2=25):
|
387 |
+
noise_level = random.randint(noise_level1, noise_level2)
|
388 |
+
img = np.clip(img, 0.0, 1.0)
|
389 |
+
rnum = random.random()
|
390 |
+
if rnum > 0.6:
|
391 |
+
img += img * np.random.normal(0, noise_level / 255.0, img.shape).astype(np.float32)
|
392 |
+
elif rnum < 0.4:
|
393 |
+
img += img * np.random.normal(0, noise_level / 255.0, (*img.shape[:2], 1)).astype(np.float32)
|
394 |
+
else:
|
395 |
+
L = noise_level2 / 255.
|
396 |
+
D = np.diag(np.random.rand(3))
|
397 |
+
U = orth(np.random.rand(3, 3))
|
398 |
+
conv = np.dot(np.dot(np.transpose(U), D), U)
|
399 |
+
img += img * np.random.multivariate_normal([0, 0, 0], np.abs(L ** 2 * conv), img.shape[:2]).astype(np.float32)
|
400 |
+
img = np.clip(img, 0.0, 1.0)
|
401 |
+
return img
|
402 |
+
|
403 |
+
|
404 |
+
def add_Poisson_noise(img):
|
405 |
+
img = np.clip((img * 255.0).round(), 0, 255) / 255.
|
406 |
+
vals = 10 ** (2 * random.random() + 2.0) # [2, 4]
|
407 |
+
if random.random() < 0.5:
|
408 |
+
img = np.random.poisson(img * vals).astype(np.float32) / vals
|
409 |
+
else:
|
410 |
+
img_gray = np.dot(img[..., :3], [0.299, 0.587, 0.114])
|
411 |
+
img_gray = np.clip((img_gray * 255.0).round(), 0, 255) / 255.
|
412 |
+
noise_gray = np.random.poisson(img_gray * vals).astype(np.float32) / vals - img_gray
|
413 |
+
img += noise_gray[:, :, np.newaxis]
|
414 |
+
img = np.clip(img, 0.0, 1.0)
|
415 |
+
return img
|
416 |
+
|
417 |
+
|
418 |
+
def add_JPEG_noise(img):
|
419 |
+
quality_factor = random.randint(30, 95)
|
420 |
+
img = cv2.cvtColor(util.single2uint(img), cv2.COLOR_RGB2BGR)
|
421 |
+
result, encimg = cv2.imencode('.jpg', img, [int(cv2.IMWRITE_JPEG_QUALITY), quality_factor])
|
422 |
+
img = cv2.imdecode(encimg, 1)
|
423 |
+
img = cv2.cvtColor(util.uint2single(img), cv2.COLOR_BGR2RGB)
|
424 |
+
return img
|
425 |
+
|
426 |
+
|
427 |
+
def random_crop(lq, hq, sf=4, lq_patchsize=64):
|
428 |
+
h, w = lq.shape[:2]
|
429 |
+
rnd_h = random.randint(0, h - lq_patchsize)
|
430 |
+
rnd_w = random.randint(0, w - lq_patchsize)
|
431 |
+
lq = lq[rnd_h:rnd_h + lq_patchsize, rnd_w:rnd_w + lq_patchsize, :]
|
432 |
+
|
433 |
+
rnd_h_H, rnd_w_H = int(rnd_h * sf), int(rnd_w * sf)
|
434 |
+
hq = hq[rnd_h_H:rnd_h_H + lq_patchsize * sf, rnd_w_H:rnd_w_H + lq_patchsize * sf, :]
|
435 |
+
return lq, hq
|
436 |
+
|
437 |
+
|
438 |
+
def degradation_bsrgan(img, sf=4, lq_patchsize=72, isp_model=None):
|
439 |
+
"""
|
440 |
+
This is the degradation model of BSRGAN from the paper
|
441 |
+
"Designing a Practical Degradation Model for Deep Blind Image Super-Resolution"
|
442 |
+
----------
|
443 |
+
img: HXWXC, [0, 1], its size should be large than (lq_patchsizexsf)x(lq_patchsizexsf)
|
444 |
+
sf: scale factor
|
445 |
+
isp_model: camera ISP model
|
446 |
+
Returns
|
447 |
+
-------
|
448 |
+
img: low-quality patch, size: lq_patchsizeXlq_patchsizeXC, range: [0, 1]
|
449 |
+
hq: corresponding high-quality patch, size: (lq_patchsizexsf)X(lq_patchsizexsf)XC, range: [0, 1]
|
450 |
+
"""
|
451 |
+
isp_prob, jpeg_prob, scale2_prob = 0.25, 0.9, 0.25
|
452 |
+
sf_ori = sf
|
453 |
+
|
454 |
+
h1, w1 = img.shape[:2]
|
455 |
+
img = img.copy()[:w1 - w1 % sf, :h1 - h1 % sf, ...] # mod crop
|
456 |
+
h, w = img.shape[:2]
|
457 |
+
|
458 |
+
if h < lq_patchsize * sf or w < lq_patchsize * sf:
|
459 |
+
raise ValueError(f'img size ({h1}X{w1}) is too small!')
|
460 |
+
|
461 |
+
hq = img.copy()
|
462 |
+
|
463 |
+
if sf == 4 and random.random() < scale2_prob: # downsample1
|
464 |
+
if np.random.rand() < 0.5:
|
465 |
+
img = cv2.resize(img, (int(1 / 2 * img.shape[1]), int(1 / 2 * img.shape[0])),
|
466 |
+
interpolation=random.choice([1, 2, 3]))
|
467 |
+
else:
|
468 |
+
img = util.imresize_np(img, 1 / 2, True)
|
469 |
+
img = np.clip(img, 0.0, 1.0)
|
470 |
+
sf = 2
|
471 |
+
|
472 |
+
shuffle_order = random.sample(range(7), 7)
|
473 |
+
idx1, idx2 = shuffle_order.index(2), shuffle_order.index(3)
|
474 |
+
if idx1 > idx2: # keep downsample3 last
|
475 |
+
shuffle_order[idx1], shuffle_order[idx2] = shuffle_order[idx2], shuffle_order[idx1]
|
476 |
+
|
477 |
+
for i in shuffle_order:
|
478 |
+
|
479 |
+
if i == 0:
|
480 |
+
img = add_blur(img, sf=sf)
|
481 |
+
|
482 |
+
elif i == 1:
|
483 |
+
img = add_blur(img, sf=sf)
|
484 |
+
|
485 |
+
elif i == 2:
|
486 |
+
a, b = img.shape[1], img.shape[0]
|
487 |
+
# downsample2
|
488 |
+
if random.random() < 0.75:
|
489 |
+
sf1 = random.uniform(1, 2 * sf)
|
490 |
+
img = cv2.resize(img, (int(1 / sf1 * img.shape[1]), int(1 / sf1 * img.shape[0])),
|
491 |
+
interpolation=random.choice([1, 2, 3]))
|
492 |
+
else:
|
493 |
+
k = fspecial('gaussian', 25, random.uniform(0.1, 0.6 * sf))
|
494 |
+
k_shifted = shift_pixel(k, sf)
|
495 |
+
k_shifted = k_shifted / k_shifted.sum() # blur with shifted kernel
|
496 |
+
img = ndimage.filters.convolve(img, np.expand_dims(k_shifted, axis=2), mode='mirror')
|
497 |
+
img = img[0::sf, 0::sf, ...] # nearest downsampling
|
498 |
+
img = np.clip(img, 0.0, 1.0)
|
499 |
+
|
500 |
+
elif i == 3:
|
501 |
+
# downsample3
|
502 |
+
img = cv2.resize(img, (int(1 / sf * a), int(1 / sf * b)), interpolation=random.choice([1, 2, 3]))
|
503 |
+
img = np.clip(img, 0.0, 1.0)
|
504 |
+
|
505 |
+
elif i == 4:
|
506 |
+
# add Gaussian noise
|
507 |
+
img = add_Gaussian_noise(img, noise_level1=2, noise_level2=25)
|
508 |
+
|
509 |
+
elif i == 5:
|
510 |
+
# add JPEG noise
|
511 |
+
if random.random() < jpeg_prob:
|
512 |
+
img = add_JPEG_noise(img)
|
513 |
+
|
514 |
+
elif i == 6:
|
515 |
+
# add processed camera sensor noise
|
516 |
+
if random.random() < isp_prob and isp_model is not None:
|
517 |
+
with torch.no_grad():
|
518 |
+
img, hq = isp_model.forward(img.copy(), hq)
|
519 |
+
|
520 |
+
# add final JPEG compression noise
|
521 |
+
img = add_JPEG_noise(img)
|
522 |
+
|
523 |
+
# random crop
|
524 |
+
img, hq = random_crop(img, hq, sf_ori, lq_patchsize)
|
525 |
+
|
526 |
+
return img, hq
|
527 |
+
|
528 |
+
|
529 |
+
# todo no isp_model?
|
530 |
+
def degradation_bsrgan_variant(image, sf=4, isp_model=None):
|
531 |
+
"""
|
532 |
+
This is the degradation model of BSRGAN from the paper
|
533 |
+
"Designing a Practical Degradation Model for Deep Blind Image Super-Resolution"
|
534 |
+
----------
|
535 |
+
sf: scale factor
|
536 |
+
isp_model: camera ISP model
|
537 |
+
Returns
|
538 |
+
-------
|
539 |
+
img: low-quality patch, size: lq_patchsizeXlq_patchsizeXC, range: [0, 1]
|
540 |
+
hq: corresponding high-quality patch, size: (lq_patchsizexsf)X(lq_patchsizexsf)XC, range: [0, 1]
|
541 |
+
"""
|
542 |
+
image = util.uint2single(image)
|
543 |
+
isp_prob, jpeg_prob, scale2_prob = 0.25, 0.9, 0.25
|
544 |
+
sf_ori = sf
|
545 |
+
|
546 |
+
h1, w1 = image.shape[:2]
|
547 |
+
image = image.copy()[:w1 - w1 % sf, :h1 - h1 % sf, ...] # mod crop
|
548 |
+
h, w = image.shape[:2]
|
549 |
+
|
550 |
+
hq = image.copy()
|
551 |
+
|
552 |
+
if sf == 4 and random.random() < scale2_prob: # downsample1
|
553 |
+
if np.random.rand() < 0.5:
|
554 |
+
image = cv2.resize(image, (int(1 / 2 * image.shape[1]), int(1 / 2 * image.shape[0])),
|
555 |
+
interpolation=random.choice([1, 2, 3]))
|
556 |
+
else:
|
557 |
+
image = util.imresize_np(image, 1 / 2, True)
|
558 |
+
image = np.clip(image, 0.0, 1.0)
|
559 |
+
sf = 2
|
560 |
+
|
561 |
+
shuffle_order = random.sample(range(7), 7)
|
562 |
+
idx1, idx2 = shuffle_order.index(2), shuffle_order.index(3)
|
563 |
+
if idx1 > idx2: # keep downsample3 last
|
564 |
+
shuffle_order[idx1], shuffle_order[idx2] = shuffle_order[idx2], shuffle_order[idx1]
|
565 |
+
|
566 |
+
for i in shuffle_order:
|
567 |
+
|
568 |
+
if i == 0:
|
569 |
+
image = add_blur(image, sf=sf)
|
570 |
+
|
571 |
+
elif i == 1:
|
572 |
+
image = add_blur(image, sf=sf)
|
573 |
+
|
574 |
+
elif i == 2:
|
575 |
+
a, b = image.shape[1], image.shape[0]
|
576 |
+
# downsample2
|
577 |
+
if random.random() < 0.75:
|
578 |
+
sf1 = random.uniform(1, 2 * sf)
|
579 |
+
image = cv2.resize(image, (int(1 / sf1 * image.shape[1]), int(1 / sf1 * image.shape[0])),
|
580 |
+
interpolation=random.choice([1, 2, 3]))
|
581 |
+
else:
|
582 |
+
k = fspecial('gaussian', 25, random.uniform(0.1, 0.6 * sf))
|
583 |
+
k_shifted = shift_pixel(k, sf)
|
584 |
+
k_shifted = k_shifted / k_shifted.sum() # blur with shifted kernel
|
585 |
+
image = ndimage.filters.convolve(image, np.expand_dims(k_shifted, axis=2), mode='mirror')
|
586 |
+
image = image[0::sf, 0::sf, ...] # nearest downsampling
|
587 |
+
image = np.clip(image, 0.0, 1.0)
|
588 |
+
|
589 |
+
elif i == 3:
|
590 |
+
# downsample3
|
591 |
+
image = cv2.resize(image, (int(1 / sf * a), int(1 / sf * b)), interpolation=random.choice([1, 2, 3]))
|
592 |
+
image = np.clip(image, 0.0, 1.0)
|
593 |
+
|
594 |
+
elif i == 4:
|
595 |
+
# add Gaussian noise
|
596 |
+
image = add_Gaussian_noise(image, noise_level1=2, noise_level2=25)
|
597 |
+
|
598 |
+
elif i == 5:
|
599 |
+
# add JPEG noise
|
600 |
+
if random.random() < jpeg_prob:
|
601 |
+
image = add_JPEG_noise(image)
|
602 |
+
|
603 |
+
# elif i == 6:
|
604 |
+
# # add processed camera sensor noise
|
605 |
+
# if random.random() < isp_prob and isp_model is not None:
|
606 |
+
# with torch.no_grad():
|
607 |
+
# img, hq = isp_model.forward(img.copy(), hq)
|
608 |
+
|
609 |
+
# add final JPEG compression noise
|
610 |
+
image = add_JPEG_noise(image)
|
611 |
+
image = util.single2uint(image)
|
612 |
+
example = {"image":image}
|
613 |
+
return example
|
614 |
+
|
615 |
+
|
616 |
+
# TODO incase there is a pickle error one needs to replace a += x with a = a + x in add_speckle_noise etc...
|
617 |
+
def degradation_bsrgan_plus(img, sf=4, shuffle_prob=0.5, use_sharp=True, lq_patchsize=64, isp_model=None):
|
618 |
+
"""
|
619 |
+
This is an extended degradation model by combining
|
620 |
+
the degradation models of BSRGAN and Real-ESRGAN
|
621 |
+
----------
|
622 |
+
img: HXWXC, [0, 1], its size should be large than (lq_patchsizexsf)x(lq_patchsizexsf)
|
623 |
+
sf: scale factor
|
624 |
+
use_shuffle: the degradation shuffle
|
625 |
+
use_sharp: sharpening the img
|
626 |
+
Returns
|
627 |
+
-------
|
628 |
+
img: low-quality patch, size: lq_patchsizeXlq_patchsizeXC, range: [0, 1]
|
629 |
+
hq: corresponding high-quality patch, size: (lq_patchsizexsf)X(lq_patchsizexsf)XC, range: [0, 1]
|
630 |
+
"""
|
631 |
+
|
632 |
+
h1, w1 = img.shape[:2]
|
633 |
+
img = img.copy()[:w1 - w1 % sf, :h1 - h1 % sf, ...] # mod crop
|
634 |
+
h, w = img.shape[:2]
|
635 |
+
|
636 |
+
if h < lq_patchsize * sf or w < lq_patchsize * sf:
|
637 |
+
raise ValueError(f'img size ({h1}X{w1}) is too small!')
|
638 |
+
|
639 |
+
if use_sharp:
|
640 |
+
img = add_sharpening(img)
|
641 |
+
hq = img.copy()
|
642 |
+
|
643 |
+
if random.random() < shuffle_prob:
|
644 |
+
shuffle_order = random.sample(range(13), 13)
|
645 |
+
else:
|
646 |
+
shuffle_order = list(range(13))
|
647 |
+
# local shuffle for noise, JPEG is always the last one
|
648 |
+
shuffle_order[2:6] = random.sample(shuffle_order[2:6], len(range(2, 6)))
|
649 |
+
shuffle_order[9:13] = random.sample(shuffle_order[9:13], len(range(9, 13)))
|
650 |
+
|
651 |
+
poisson_prob, speckle_prob, isp_prob = 0.1, 0.1, 0.1
|
652 |
+
|
653 |
+
for i in shuffle_order:
|
654 |
+
if i == 0:
|
655 |
+
img = add_blur(img, sf=sf)
|
656 |
+
elif i == 1:
|
657 |
+
img = add_resize(img, sf=sf)
|
658 |
+
elif i == 2:
|
659 |
+
img = add_Gaussian_noise(img, noise_level1=2, noise_level2=25)
|
660 |
+
elif i == 3:
|
661 |
+
if random.random() < poisson_prob:
|
662 |
+
img = add_Poisson_noise(img)
|
663 |
+
elif i == 4:
|
664 |
+
if random.random() < speckle_prob:
|
665 |
+
img = add_speckle_noise(img)
|
666 |
+
elif i == 5:
|
667 |
+
if random.random() < isp_prob and isp_model is not None:
|
668 |
+
with torch.no_grad():
|
669 |
+
img, hq = isp_model.forward(img.copy(), hq)
|
670 |
+
elif i == 6:
|
671 |
+
img = add_JPEG_noise(img)
|
672 |
+
elif i == 7:
|
673 |
+
img = add_blur(img, sf=sf)
|
674 |
+
elif i == 8:
|
675 |
+
img = add_resize(img, sf=sf)
|
676 |
+
elif i == 9:
|
677 |
+
img = add_Gaussian_noise(img, noise_level1=2, noise_level2=25)
|
678 |
+
elif i == 10:
|
679 |
+
if random.random() < poisson_prob:
|
680 |
+
img = add_Poisson_noise(img)
|
681 |
+
elif i == 11:
|
682 |
+
if random.random() < speckle_prob:
|
683 |
+
img = add_speckle_noise(img)
|
684 |
+
elif i == 12:
|
685 |
+
if random.random() < isp_prob and isp_model is not None:
|
686 |
+
with torch.no_grad():
|
687 |
+
img, hq = isp_model.forward(img.copy(), hq)
|
688 |
+
else:
|
689 |
+
print('check the shuffle!')
|
690 |
+
|
691 |
+
# resize to desired size
|
692 |
+
img = cv2.resize(img, (int(1 / sf * hq.shape[1]), int(1 / sf * hq.shape[0])),
|
693 |
+
interpolation=random.choice([1, 2, 3]))
|
694 |
+
|
695 |
+
# add final JPEG compression noise
|
696 |
+
img = add_JPEG_noise(img)
|
697 |
+
|
698 |
+
# random crop
|
699 |
+
img, hq = random_crop(img, hq, sf, lq_patchsize)
|
700 |
+
|
701 |
+
return img, hq
|
702 |
+
|
703 |
+
|
704 |
+
if __name__ == '__main__':
|
705 |
+
print("hey")
|
706 |
+
img = util.imread_uint('utils/test.png', 3)
|
707 |
+
print(img)
|
708 |
+
img = util.uint2single(img)
|
709 |
+
print(img)
|
710 |
+
img = img[:448, :448]
|
711 |
+
h = img.shape[0] // 4
|
712 |
+
print("resizing to", h)
|
713 |
+
sf = 4
|
714 |
+
deg_fn = partial(degradation_bsrgan_variant, sf=sf)
|
715 |
+
for i in range(20):
|
716 |
+
print(i)
|
717 |
+
img_lq = deg_fn(img)
|
718 |
+
print(img_lq)
|
719 |
+
img_lq_bicubic = albumentations.SmallestMaxSize(max_size=h, interpolation=cv2.INTER_CUBIC)(image=img)["image"]
|
720 |
+
print(img_lq.shape)
|
721 |
+
print("bicubic", img_lq_bicubic.shape)
|
722 |
+
print(img_hq.shape)
|
723 |
+
lq_nearest = cv2.resize(util.single2uint(img_lq), (int(sf * img_lq.shape[1]), int(sf * img_lq.shape[0])),
|
724 |
+
interpolation=0)
|
725 |
+
lq_bicubic_nearest = cv2.resize(util.single2uint(img_lq_bicubic), (int(sf * img_lq.shape[1]), int(sf * img_lq.shape[0])),
|
726 |
+
interpolation=0)
|
727 |
+
img_concat = np.concatenate([lq_bicubic_nearest, lq_nearest, util.single2uint(img_hq)], axis=1)
|
728 |
+
util.imsave(img_concat, str(i) + '.png')
|
729 |
+
|
730 |
+
|
ldm/modules/image_degradation/bsrgan_light.py
ADDED
@@ -0,0 +1,650 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# -*- coding: utf-8 -*-
|
2 |
+
import numpy as np
|
3 |
+
import cv2
|
4 |
+
import torch
|
5 |
+
|
6 |
+
from functools import partial
|
7 |
+
import random
|
8 |
+
from scipy import ndimage
|
9 |
+
import scipy
|
10 |
+
import scipy.stats as ss
|
11 |
+
from scipy.interpolate import interp2d
|
12 |
+
from scipy.linalg import orth
|
13 |
+
import albumentations
|
14 |
+
|
15 |
+
import ldm.modules.image_degradation.utils_image as util
|
16 |
+
|
17 |
+
"""
|
18 |
+
# --------------------------------------------
|
19 |
+
# Super-Resolution
|
20 |
+
# --------------------------------------------
|
21 |
+
#
|
22 |
+
# Kai Zhang ([email protected])
|
23 |
+
# https://github.com/cszn
|
24 |
+
# From 2019/03--2021/08
|
25 |
+
# --------------------------------------------
|
26 |
+
"""
|
27 |
+
|
28 |
+
|
29 |
+
def modcrop_np(img, sf):
|
30 |
+
'''
|
31 |
+
Args:
|
32 |
+
img: numpy image, WxH or WxHxC
|
33 |
+
sf: scale factor
|
34 |
+
Return:
|
35 |
+
cropped image
|
36 |
+
'''
|
37 |
+
w, h = img.shape[:2]
|
38 |
+
im = np.copy(img)
|
39 |
+
return im[:w - w % sf, :h - h % sf, ...]
|
40 |
+
|
41 |
+
|
42 |
+
"""
|
43 |
+
# --------------------------------------------
|
44 |
+
# anisotropic Gaussian kernels
|
45 |
+
# --------------------------------------------
|
46 |
+
"""
|
47 |
+
|
48 |
+
|
49 |
+
def analytic_kernel(k):
|
50 |
+
"""Calculate the X4 kernel from the X2 kernel (for proof see appendix in paper)"""
|
51 |
+
k_size = k.shape[0]
|
52 |
+
# Calculate the big kernels size
|
53 |
+
big_k = np.zeros((3 * k_size - 2, 3 * k_size - 2))
|
54 |
+
# Loop over the small kernel to fill the big one
|
55 |
+
for r in range(k_size):
|
56 |
+
for c in range(k_size):
|
57 |
+
big_k[2 * r:2 * r + k_size, 2 * c:2 * c + k_size] += k[r, c] * k
|
58 |
+
# Crop the edges of the big kernel to ignore very small values and increase run time of SR
|
59 |
+
crop = k_size // 2
|
60 |
+
cropped_big_k = big_k[crop:-crop, crop:-crop]
|
61 |
+
# Normalize to 1
|
62 |
+
return cropped_big_k / cropped_big_k.sum()
|
63 |
+
|
64 |
+
|
65 |
+
def anisotropic_Gaussian(ksize=15, theta=np.pi, l1=6, l2=6):
|
66 |
+
""" generate an anisotropic Gaussian kernel
|
67 |
+
Args:
|
68 |
+
ksize : e.g., 15, kernel size
|
69 |
+
theta : [0, pi], rotation angle range
|
70 |
+
l1 : [0.1,50], scaling of eigenvalues
|
71 |
+
l2 : [0.1,l1], scaling of eigenvalues
|
72 |
+
If l1 = l2, will get an isotropic Gaussian kernel.
|
73 |
+
Returns:
|
74 |
+
k : kernel
|
75 |
+
"""
|
76 |
+
|
77 |
+
v = np.dot(np.array([[np.cos(theta), -np.sin(theta)], [np.sin(theta), np.cos(theta)]]), np.array([1., 0.]))
|
78 |
+
V = np.array([[v[0], v[1]], [v[1], -v[0]]])
|
79 |
+
D = np.array([[l1, 0], [0, l2]])
|
80 |
+
Sigma = np.dot(np.dot(V, D), np.linalg.inv(V))
|
81 |
+
k = gm_blur_kernel(mean=[0, 0], cov=Sigma, size=ksize)
|
82 |
+
|
83 |
+
return k
|
84 |
+
|
85 |
+
|
86 |
+
def gm_blur_kernel(mean, cov, size=15):
|
87 |
+
center = size / 2.0 + 0.5
|
88 |
+
k = np.zeros([size, size])
|
89 |
+
for y in range(size):
|
90 |
+
for x in range(size):
|
91 |
+
cy = y - center + 1
|
92 |
+
cx = x - center + 1
|
93 |
+
k[y, x] = ss.multivariate_normal.pdf([cx, cy], mean=mean, cov=cov)
|
94 |
+
|
95 |
+
k = k / np.sum(k)
|
96 |
+
return k
|
97 |
+
|
98 |
+
|
99 |
+
def shift_pixel(x, sf, upper_left=True):
|
100 |
+
"""shift pixel for super-resolution with different scale factors
|
101 |
+
Args:
|
102 |
+
x: WxHxC or WxH
|
103 |
+
sf: scale factor
|
104 |
+
upper_left: shift direction
|
105 |
+
"""
|
106 |
+
h, w = x.shape[:2]
|
107 |
+
shift = (sf - 1) * 0.5
|
108 |
+
xv, yv = np.arange(0, w, 1.0), np.arange(0, h, 1.0)
|
109 |
+
if upper_left:
|
110 |
+
x1 = xv + shift
|
111 |
+
y1 = yv + shift
|
112 |
+
else:
|
113 |
+
x1 = xv - shift
|
114 |
+
y1 = yv - shift
|
115 |
+
|
116 |
+
x1 = np.clip(x1, 0, w - 1)
|
117 |
+
y1 = np.clip(y1, 0, h - 1)
|
118 |
+
|
119 |
+
if x.ndim == 2:
|
120 |
+
x = interp2d(xv, yv, x)(x1, y1)
|
121 |
+
if x.ndim == 3:
|
122 |
+
for i in range(x.shape[-1]):
|
123 |
+
x[:, :, i] = interp2d(xv, yv, x[:, :, i])(x1, y1)
|
124 |
+
|
125 |
+
return x
|
126 |
+
|
127 |
+
|
128 |
+
def blur(x, k):
|
129 |
+
'''
|
130 |
+
x: image, NxcxHxW
|
131 |
+
k: kernel, Nx1xhxw
|
132 |
+
'''
|
133 |
+
n, c = x.shape[:2]
|
134 |
+
p1, p2 = (k.shape[-2] - 1) // 2, (k.shape[-1] - 1) // 2
|
135 |
+
x = torch.nn.functional.pad(x, pad=(p1, p2, p1, p2), mode='replicate')
|
136 |
+
k = k.repeat(1, c, 1, 1)
|
137 |
+
k = k.view(-1, 1, k.shape[2], k.shape[3])
|
138 |
+
x = x.view(1, -1, x.shape[2], x.shape[3])
|
139 |
+
x = torch.nn.functional.conv2d(x, k, bias=None, stride=1, padding=0, groups=n * c)
|
140 |
+
x = x.view(n, c, x.shape[2], x.shape[3])
|
141 |
+
|
142 |
+
return x
|
143 |
+
|
144 |
+
|
145 |
+
def gen_kernel(k_size=np.array([15, 15]), scale_factor=np.array([4, 4]), min_var=0.6, max_var=10., noise_level=0):
|
146 |
+
""""
|
147 |
+
# modified version of https://github.com/assafshocher/BlindSR_dataset_generator
|
148 |
+
# Kai Zhang
|
149 |
+
# min_var = 0.175 * sf # variance of the gaussian kernel will be sampled between min_var and max_var
|
150 |
+
# max_var = 2.5 * sf
|
151 |
+
"""
|
152 |
+
# Set random eigen-vals (lambdas) and angle (theta) for COV matrix
|
153 |
+
lambda_1 = min_var + np.random.rand() * (max_var - min_var)
|
154 |
+
lambda_2 = min_var + np.random.rand() * (max_var - min_var)
|
155 |
+
theta = np.random.rand() * np.pi # random theta
|
156 |
+
noise = -noise_level + np.random.rand(*k_size) * noise_level * 2
|
157 |
+
|
158 |
+
# Set COV matrix using Lambdas and Theta
|
159 |
+
LAMBDA = np.diag([lambda_1, lambda_2])
|
160 |
+
Q = np.array([[np.cos(theta), -np.sin(theta)],
|
161 |
+
[np.sin(theta), np.cos(theta)]])
|
162 |
+
SIGMA = Q @ LAMBDA @ Q.T
|
163 |
+
INV_SIGMA = np.linalg.inv(SIGMA)[None, None, :, :]
|
164 |
+
|
165 |
+
# Set expectation position (shifting kernel for aligned image)
|
166 |
+
MU = k_size // 2 - 0.5 * (scale_factor - 1) # - 0.5 * (scale_factor - k_size % 2)
|
167 |
+
MU = MU[None, None, :, None]
|
168 |
+
|
169 |
+
# Create meshgrid for Gaussian
|
170 |
+
[X, Y] = np.meshgrid(range(k_size[0]), range(k_size[1]))
|
171 |
+
Z = np.stack([X, Y], 2)[:, :, :, None]
|
172 |
+
|
173 |
+
# Calcualte Gaussian for every pixel of the kernel
|
174 |
+
ZZ = Z - MU
|
175 |
+
ZZ_t = ZZ.transpose(0, 1, 3, 2)
|
176 |
+
raw_kernel = np.exp(-0.5 * np.squeeze(ZZ_t @ INV_SIGMA @ ZZ)) * (1 + noise)
|
177 |
+
|
178 |
+
# shift the kernel so it will be centered
|
179 |
+
# raw_kernel_centered = kernel_shift(raw_kernel, scale_factor)
|
180 |
+
|
181 |
+
# Normalize the kernel and return
|
182 |
+
# kernel = raw_kernel_centered / np.sum(raw_kernel_centered)
|
183 |
+
kernel = raw_kernel / np.sum(raw_kernel)
|
184 |
+
return kernel
|
185 |
+
|
186 |
+
|
187 |
+
def fspecial_gaussian(hsize, sigma):
|
188 |
+
hsize = [hsize, hsize]
|
189 |
+
siz = [(hsize[0] - 1.0) / 2.0, (hsize[1] - 1.0) / 2.0]
|
190 |
+
std = sigma
|
191 |
+
[x, y] = np.meshgrid(np.arange(-siz[1], siz[1] + 1), np.arange(-siz[0], siz[0] + 1))
|
192 |
+
arg = -(x * x + y * y) / (2 * std * std)
|
193 |
+
h = np.exp(arg)
|
194 |
+
h[h < scipy.finfo(float).eps * h.max()] = 0
|
195 |
+
sumh = h.sum()
|
196 |
+
if sumh != 0:
|
197 |
+
h = h / sumh
|
198 |
+
return h
|
199 |
+
|
200 |
+
|
201 |
+
def fspecial_laplacian(alpha):
|
202 |
+
alpha = max([0, min([alpha, 1])])
|
203 |
+
h1 = alpha / (alpha + 1)
|
204 |
+
h2 = (1 - alpha) / (alpha + 1)
|
205 |
+
h = [[h1, h2, h1], [h2, -4 / (alpha + 1), h2], [h1, h2, h1]]
|
206 |
+
h = np.array(h)
|
207 |
+
return h
|
208 |
+
|
209 |
+
|
210 |
+
def fspecial(filter_type, *args, **kwargs):
|
211 |
+
'''
|
212 |
+
python code from:
|
213 |
+
https://github.com/ronaldosena/imagens-medicas-2/blob/40171a6c259edec7827a6693a93955de2bd39e76/Aulas/aula_2_-_uniform_filter/matlab_fspecial.py
|
214 |
+
'''
|
215 |
+
if filter_type == 'gaussian':
|
216 |
+
return fspecial_gaussian(*args, **kwargs)
|
217 |
+
if filter_type == 'laplacian':
|
218 |
+
return fspecial_laplacian(*args, **kwargs)
|
219 |
+
|
220 |
+
|
221 |
+
"""
|
222 |
+
# --------------------------------------------
|
223 |
+
# degradation models
|
224 |
+
# --------------------------------------------
|
225 |
+
"""
|
226 |
+
|
227 |
+
|
228 |
+
def bicubic_degradation(x, sf=3):
|
229 |
+
'''
|
230 |
+
Args:
|
231 |
+
x: HxWxC image, [0, 1]
|
232 |
+
sf: down-scale factor
|
233 |
+
Return:
|
234 |
+
bicubicly downsampled LR image
|
235 |
+
'''
|
236 |
+
x = util.imresize_np(x, scale=1 / sf)
|
237 |
+
return x
|
238 |
+
|
239 |
+
|
240 |
+
def srmd_degradation(x, k, sf=3):
|
241 |
+
''' blur + bicubic downsampling
|
242 |
+
Args:
|
243 |
+
x: HxWxC image, [0, 1]
|
244 |
+
k: hxw, double
|
245 |
+
sf: down-scale factor
|
246 |
+
Return:
|
247 |
+
downsampled LR image
|
248 |
+
Reference:
|
249 |
+
@inproceedings{zhang2018learning,
|
250 |
+
title={Learning a single convolutional super-resolution network for multiple degradations},
|
251 |
+
author={Zhang, Kai and Zuo, Wangmeng and Zhang, Lei},
|
252 |
+
booktitle={IEEE Conference on Computer Vision and Pattern Recognition},
|
253 |
+
pages={3262--3271},
|
254 |
+
year={2018}
|
255 |
+
}
|
256 |
+
'''
|
257 |
+
x = ndimage.convolve(x, np.expand_dims(k, axis=2), mode='wrap') # 'nearest' | 'mirror'
|
258 |
+
x = bicubic_degradation(x, sf=sf)
|
259 |
+
return x
|
260 |
+
|
261 |
+
|
262 |
+
def dpsr_degradation(x, k, sf=3):
|
263 |
+
''' bicubic downsampling + blur
|
264 |
+
Args:
|
265 |
+
x: HxWxC image, [0, 1]
|
266 |
+
k: hxw, double
|
267 |
+
sf: down-scale factor
|
268 |
+
Return:
|
269 |
+
downsampled LR image
|
270 |
+
Reference:
|
271 |
+
@inproceedings{zhang2019deep,
|
272 |
+
title={Deep Plug-and-Play Super-Resolution for Arbitrary Blur Kernels},
|
273 |
+
author={Zhang, Kai and Zuo, Wangmeng and Zhang, Lei},
|
274 |
+
booktitle={IEEE Conference on Computer Vision and Pattern Recognition},
|
275 |
+
pages={1671--1681},
|
276 |
+
year={2019}
|
277 |
+
}
|
278 |
+
'''
|
279 |
+
x = bicubic_degradation(x, sf=sf)
|
280 |
+
x = ndimage.convolve(x, np.expand_dims(k, axis=2), mode='wrap')
|
281 |
+
return x
|
282 |
+
|
283 |
+
|
284 |
+
def classical_degradation(x, k, sf=3):
|
285 |
+
''' blur + downsampling
|
286 |
+
Args:
|
287 |
+
x: HxWxC image, [0, 1]/[0, 255]
|
288 |
+
k: hxw, double
|
289 |
+
sf: down-scale factor
|
290 |
+
Return:
|
291 |
+
downsampled LR image
|
292 |
+
'''
|
293 |
+
x = ndimage.convolve(x, np.expand_dims(k, axis=2), mode='wrap')
|
294 |
+
# x = filters.correlate(x, np.expand_dims(np.flip(k), axis=2))
|
295 |
+
st = 0
|
296 |
+
return x[st::sf, st::sf, ...]
|
297 |
+
|
298 |
+
|
299 |
+
def add_sharpening(img, weight=0.5, radius=50, threshold=10):
|
300 |
+
"""USM sharpening. borrowed from real-ESRGAN
|
301 |
+
Input image: I; Blurry image: B.
|
302 |
+
1. K = I + weight * (I - B)
|
303 |
+
2. Mask = 1 if abs(I - B) > threshold, else: 0
|
304 |
+
3. Blur mask:
|
305 |
+
4. Out = Mask * K + (1 - Mask) * I
|
306 |
+
Args:
|
307 |
+
img (Numpy array): Input image, HWC, BGR; float32, [0, 1].
|
308 |
+
weight (float): Sharp weight. Default: 1.
|
309 |
+
radius (float): Kernel size of Gaussian blur. Default: 50.
|
310 |
+
threshold (int):
|
311 |
+
"""
|
312 |
+
if radius % 2 == 0:
|
313 |
+
radius += 1
|
314 |
+
blur = cv2.GaussianBlur(img, (radius, radius), 0)
|
315 |
+
residual = img - blur
|
316 |
+
mask = np.abs(residual) * 255 > threshold
|
317 |
+
mask = mask.astype('float32')
|
318 |
+
soft_mask = cv2.GaussianBlur(mask, (radius, radius), 0)
|
319 |
+
|
320 |
+
K = img + weight * residual
|
321 |
+
K = np.clip(K, 0, 1)
|
322 |
+
return soft_mask * K + (1 - soft_mask) * img
|
323 |
+
|
324 |
+
|
325 |
+
def add_blur(img, sf=4):
|
326 |
+
wd2 = 4.0 + sf
|
327 |
+
wd = 2.0 + 0.2 * sf
|
328 |
+
|
329 |
+
wd2 = wd2/4
|
330 |
+
wd = wd/4
|
331 |
+
|
332 |
+
if random.random() < 0.5:
|
333 |
+
l1 = wd2 * random.random()
|
334 |
+
l2 = wd2 * random.random()
|
335 |
+
k = anisotropic_Gaussian(ksize=random.randint(2, 11) + 3, theta=random.random() * np.pi, l1=l1, l2=l2)
|
336 |
+
else:
|
337 |
+
k = fspecial('gaussian', random.randint(2, 4) + 3, wd * random.random())
|
338 |
+
img = ndimage.convolve(img, np.expand_dims(k, axis=2), mode='mirror')
|
339 |
+
|
340 |
+
return img
|
341 |
+
|
342 |
+
|
343 |
+
def add_resize(img, sf=4):
|
344 |
+
rnum = np.random.rand()
|
345 |
+
if rnum > 0.8: # up
|
346 |
+
sf1 = random.uniform(1, 2)
|
347 |
+
elif rnum < 0.7: # down
|
348 |
+
sf1 = random.uniform(0.5 / sf, 1)
|
349 |
+
else:
|
350 |
+
sf1 = 1.0
|
351 |
+
img = cv2.resize(img, (int(sf1 * img.shape[1]), int(sf1 * img.shape[0])), interpolation=random.choice([1, 2, 3]))
|
352 |
+
img = np.clip(img, 0.0, 1.0)
|
353 |
+
|
354 |
+
return img
|
355 |
+
|
356 |
+
|
357 |
+
# def add_Gaussian_noise(img, noise_level1=2, noise_level2=25):
|
358 |
+
# noise_level = random.randint(noise_level1, noise_level2)
|
359 |
+
# rnum = np.random.rand()
|
360 |
+
# if rnum > 0.6: # add color Gaussian noise
|
361 |
+
# img += np.random.normal(0, noise_level / 255.0, img.shape).astype(np.float32)
|
362 |
+
# elif rnum < 0.4: # add grayscale Gaussian noise
|
363 |
+
# img += np.random.normal(0, noise_level / 255.0, (*img.shape[:2], 1)).astype(np.float32)
|
364 |
+
# else: # add noise
|
365 |
+
# L = noise_level2 / 255.
|
366 |
+
# D = np.diag(np.random.rand(3))
|
367 |
+
# U = orth(np.random.rand(3, 3))
|
368 |
+
# conv = np.dot(np.dot(np.transpose(U), D), U)
|
369 |
+
# img += np.random.multivariate_normal([0, 0, 0], np.abs(L ** 2 * conv), img.shape[:2]).astype(np.float32)
|
370 |
+
# img = np.clip(img, 0.0, 1.0)
|
371 |
+
# return img
|
372 |
+
|
373 |
+
def add_Gaussian_noise(img, noise_level1=2, noise_level2=25):
|
374 |
+
noise_level = random.randint(noise_level1, noise_level2)
|
375 |
+
rnum = np.random.rand()
|
376 |
+
if rnum > 0.6: # add color Gaussian noise
|
377 |
+
img = img + np.random.normal(0, noise_level / 255.0, img.shape).astype(np.float32)
|
378 |
+
elif rnum < 0.4: # add grayscale Gaussian noise
|
379 |
+
img = img + np.random.normal(0, noise_level / 255.0, (*img.shape[:2], 1)).astype(np.float32)
|
380 |
+
else: # add noise
|
381 |
+
L = noise_level2 / 255.
|
382 |
+
D = np.diag(np.random.rand(3))
|
383 |
+
U = orth(np.random.rand(3, 3))
|
384 |
+
conv = np.dot(np.dot(np.transpose(U), D), U)
|
385 |
+
img = img + np.random.multivariate_normal([0, 0, 0], np.abs(L ** 2 * conv), img.shape[:2]).astype(np.float32)
|
386 |
+
img = np.clip(img, 0.0, 1.0)
|
387 |
+
return img
|
388 |
+
|
389 |
+
|
390 |
+
def add_speckle_noise(img, noise_level1=2, noise_level2=25):
|
391 |
+
noise_level = random.randint(noise_level1, noise_level2)
|
392 |
+
img = np.clip(img, 0.0, 1.0)
|
393 |
+
rnum = random.random()
|
394 |
+
if rnum > 0.6:
|
395 |
+
img += img * np.random.normal(0, noise_level / 255.0, img.shape).astype(np.float32)
|
396 |
+
elif rnum < 0.4:
|
397 |
+
img += img * np.random.normal(0, noise_level / 255.0, (*img.shape[:2], 1)).astype(np.float32)
|
398 |
+
else:
|
399 |
+
L = noise_level2 / 255.
|
400 |
+
D = np.diag(np.random.rand(3))
|
401 |
+
U = orth(np.random.rand(3, 3))
|
402 |
+
conv = np.dot(np.dot(np.transpose(U), D), U)
|
403 |
+
img += img * np.random.multivariate_normal([0, 0, 0], np.abs(L ** 2 * conv), img.shape[:2]).astype(np.float32)
|
404 |
+
img = np.clip(img, 0.0, 1.0)
|
405 |
+
return img
|
406 |
+
|
407 |
+
|
408 |
+
def add_Poisson_noise(img):
|
409 |
+
img = np.clip((img * 255.0).round(), 0, 255) / 255.
|
410 |
+
vals = 10 ** (2 * random.random() + 2.0) # [2, 4]
|
411 |
+
if random.random() < 0.5:
|
412 |
+
img = np.random.poisson(img * vals).astype(np.float32) / vals
|
413 |
+
else:
|
414 |
+
img_gray = np.dot(img[..., :3], [0.299, 0.587, 0.114])
|
415 |
+
img_gray = np.clip((img_gray * 255.0).round(), 0, 255) / 255.
|
416 |
+
noise_gray = np.random.poisson(img_gray * vals).astype(np.float32) / vals - img_gray
|
417 |
+
img += noise_gray[:, :, np.newaxis]
|
418 |
+
img = np.clip(img, 0.0, 1.0)
|
419 |
+
return img
|
420 |
+
|
421 |
+
|
422 |
+
def add_JPEG_noise(img):
|
423 |
+
quality_factor = random.randint(80, 95)
|
424 |
+
img = cv2.cvtColor(util.single2uint(img), cv2.COLOR_RGB2BGR)
|
425 |
+
result, encimg = cv2.imencode('.jpg', img, [int(cv2.IMWRITE_JPEG_QUALITY), quality_factor])
|
426 |
+
img = cv2.imdecode(encimg, 1)
|
427 |
+
img = cv2.cvtColor(util.uint2single(img), cv2.COLOR_BGR2RGB)
|
428 |
+
return img
|
429 |
+
|
430 |
+
|
431 |
+
def random_crop(lq, hq, sf=4, lq_patchsize=64):
|
432 |
+
h, w = lq.shape[:2]
|
433 |
+
rnd_h = random.randint(0, h - lq_patchsize)
|
434 |
+
rnd_w = random.randint(0, w - lq_patchsize)
|
435 |
+
lq = lq[rnd_h:rnd_h + lq_patchsize, rnd_w:rnd_w + lq_patchsize, :]
|
436 |
+
|
437 |
+
rnd_h_H, rnd_w_H = int(rnd_h * sf), int(rnd_w * sf)
|
438 |
+
hq = hq[rnd_h_H:rnd_h_H + lq_patchsize * sf, rnd_w_H:rnd_w_H + lq_patchsize * sf, :]
|
439 |
+
return lq, hq
|
440 |
+
|
441 |
+
|
442 |
+
def degradation_bsrgan(img, sf=4, lq_patchsize=72, isp_model=None):
|
443 |
+
"""
|
444 |
+
This is the degradation model of BSRGAN from the paper
|
445 |
+
"Designing a Practical Degradation Model for Deep Blind Image Super-Resolution"
|
446 |
+
----------
|
447 |
+
img: HXWXC, [0, 1], its size should be large than (lq_patchsizexsf)x(lq_patchsizexsf)
|
448 |
+
sf: scale factor
|
449 |
+
isp_model: camera ISP model
|
450 |
+
Returns
|
451 |
+
-------
|
452 |
+
img: low-quality patch, size: lq_patchsizeXlq_patchsizeXC, range: [0, 1]
|
453 |
+
hq: corresponding high-quality patch, size: (lq_patchsizexsf)X(lq_patchsizexsf)XC, range: [0, 1]
|
454 |
+
"""
|
455 |
+
isp_prob, jpeg_prob, scale2_prob = 0.25, 0.9, 0.25
|
456 |
+
sf_ori = sf
|
457 |
+
|
458 |
+
h1, w1 = img.shape[:2]
|
459 |
+
img = img.copy()[:w1 - w1 % sf, :h1 - h1 % sf, ...] # mod crop
|
460 |
+
h, w = img.shape[:2]
|
461 |
+
|
462 |
+
if h < lq_patchsize * sf or w < lq_patchsize * sf:
|
463 |
+
raise ValueError(f'img size ({h1}X{w1}) is too small!')
|
464 |
+
|
465 |
+
hq = img.copy()
|
466 |
+
|
467 |
+
if sf == 4 and random.random() < scale2_prob: # downsample1
|
468 |
+
if np.random.rand() < 0.5:
|
469 |
+
img = cv2.resize(img, (int(1 / 2 * img.shape[1]), int(1 / 2 * img.shape[0])),
|
470 |
+
interpolation=random.choice([1, 2, 3]))
|
471 |
+
else:
|
472 |
+
img = util.imresize_np(img, 1 / 2, True)
|
473 |
+
img = np.clip(img, 0.0, 1.0)
|
474 |
+
sf = 2
|
475 |
+
|
476 |
+
shuffle_order = random.sample(range(7), 7)
|
477 |
+
idx1, idx2 = shuffle_order.index(2), shuffle_order.index(3)
|
478 |
+
if idx1 > idx2: # keep downsample3 last
|
479 |
+
shuffle_order[idx1], shuffle_order[idx2] = shuffle_order[idx2], shuffle_order[idx1]
|
480 |
+
|
481 |
+
for i in shuffle_order:
|
482 |
+
|
483 |
+
if i == 0:
|
484 |
+
img = add_blur(img, sf=sf)
|
485 |
+
|
486 |
+
elif i == 1:
|
487 |
+
img = add_blur(img, sf=sf)
|
488 |
+
|
489 |
+
elif i == 2:
|
490 |
+
a, b = img.shape[1], img.shape[0]
|
491 |
+
# downsample2
|
492 |
+
if random.random() < 0.75:
|
493 |
+
sf1 = random.uniform(1, 2 * sf)
|
494 |
+
img = cv2.resize(img, (int(1 / sf1 * img.shape[1]), int(1 / sf1 * img.shape[0])),
|
495 |
+
interpolation=random.choice([1, 2, 3]))
|
496 |
+
else:
|
497 |
+
k = fspecial('gaussian', 25, random.uniform(0.1, 0.6 * sf))
|
498 |
+
k_shifted = shift_pixel(k, sf)
|
499 |
+
k_shifted = k_shifted / k_shifted.sum() # blur with shifted kernel
|
500 |
+
img = ndimage.convolve(img, np.expand_dims(k_shifted, axis=2), mode='mirror')
|
501 |
+
img = img[0::sf, 0::sf, ...] # nearest downsampling
|
502 |
+
img = np.clip(img, 0.0, 1.0)
|
503 |
+
|
504 |
+
elif i == 3:
|
505 |
+
# downsample3
|
506 |
+
img = cv2.resize(img, (int(1 / sf * a), int(1 / sf * b)), interpolation=random.choice([1, 2, 3]))
|
507 |
+
img = np.clip(img, 0.0, 1.0)
|
508 |
+
|
509 |
+
elif i == 4:
|
510 |
+
# add Gaussian noise
|
511 |
+
img = add_Gaussian_noise(img, noise_level1=2, noise_level2=8)
|
512 |
+
|
513 |
+
elif i == 5:
|
514 |
+
# add JPEG noise
|
515 |
+
if random.random() < jpeg_prob:
|
516 |
+
img = add_JPEG_noise(img)
|
517 |
+
|
518 |
+
elif i == 6:
|
519 |
+
# add processed camera sensor noise
|
520 |
+
if random.random() < isp_prob and isp_model is not None:
|
521 |
+
with torch.no_grad():
|
522 |
+
img, hq = isp_model.forward(img.copy(), hq)
|
523 |
+
|
524 |
+
# add final JPEG compression noise
|
525 |
+
img = add_JPEG_noise(img)
|
526 |
+
|
527 |
+
# random crop
|
528 |
+
img, hq = random_crop(img, hq, sf_ori, lq_patchsize)
|
529 |
+
|
530 |
+
return img, hq
|
531 |
+
|
532 |
+
|
533 |
+
# todo no isp_model?
|
534 |
+
def degradation_bsrgan_variant(image, sf=4, isp_model=None):
|
535 |
+
"""
|
536 |
+
This is the degradation model of BSRGAN from the paper
|
537 |
+
"Designing a Practical Degradation Model for Deep Blind Image Super-Resolution"
|
538 |
+
----------
|
539 |
+
sf: scale factor
|
540 |
+
isp_model: camera ISP model
|
541 |
+
Returns
|
542 |
+
-------
|
543 |
+
img: low-quality patch, size: lq_patchsizeXlq_patchsizeXC, range: [0, 1]
|
544 |
+
hq: corresponding high-quality patch, size: (lq_patchsizexsf)X(lq_patchsizexsf)XC, range: [0, 1]
|
545 |
+
"""
|
546 |
+
image = util.uint2single(image)
|
547 |
+
isp_prob, jpeg_prob, scale2_prob = 0.25, 0.9, 0.25
|
548 |
+
sf_ori = sf
|
549 |
+
|
550 |
+
h1, w1 = image.shape[:2]
|
551 |
+
image = image.copy()[:w1 - w1 % sf, :h1 - h1 % sf, ...] # mod crop
|
552 |
+
h, w = image.shape[:2]
|
553 |
+
|
554 |
+
hq = image.copy()
|
555 |
+
|
556 |
+
if sf == 4 and random.random() < scale2_prob: # downsample1
|
557 |
+
if np.random.rand() < 0.5:
|
558 |
+
image = cv2.resize(image, (int(1 / 2 * image.shape[1]), int(1 / 2 * image.shape[0])),
|
559 |
+
interpolation=random.choice([1, 2, 3]))
|
560 |
+
else:
|
561 |
+
image = util.imresize_np(image, 1 / 2, True)
|
562 |
+
image = np.clip(image, 0.0, 1.0)
|
563 |
+
sf = 2
|
564 |
+
|
565 |
+
shuffle_order = random.sample(range(7), 7)
|
566 |
+
idx1, idx2 = shuffle_order.index(2), shuffle_order.index(3)
|
567 |
+
if idx1 > idx2: # keep downsample3 last
|
568 |
+
shuffle_order[idx1], shuffle_order[idx2] = shuffle_order[idx2], shuffle_order[idx1]
|
569 |
+
|
570 |
+
for i in shuffle_order:
|
571 |
+
|
572 |
+
if i == 0:
|
573 |
+
image = add_blur(image, sf=sf)
|
574 |
+
|
575 |
+
# elif i == 1:
|
576 |
+
# image = add_blur(image, sf=sf)
|
577 |
+
|
578 |
+
if i == 0:
|
579 |
+
pass
|
580 |
+
|
581 |
+
elif i == 2:
|
582 |
+
a, b = image.shape[1], image.shape[0]
|
583 |
+
# downsample2
|
584 |
+
if random.random() < 0.8:
|
585 |
+
sf1 = random.uniform(1, 2 * sf)
|
586 |
+
image = cv2.resize(image, (int(1 / sf1 * image.shape[1]), int(1 / sf1 * image.shape[0])),
|
587 |
+
interpolation=random.choice([1, 2, 3]))
|
588 |
+
else:
|
589 |
+
k = fspecial('gaussian', 25, random.uniform(0.1, 0.6 * sf))
|
590 |
+
k_shifted = shift_pixel(k, sf)
|
591 |
+
k_shifted = k_shifted / k_shifted.sum() # blur with shifted kernel
|
592 |
+
image = ndimage.convolve(image, np.expand_dims(k_shifted, axis=2), mode='mirror')
|
593 |
+
image = image[0::sf, 0::sf, ...] # nearest downsampling
|
594 |
+
|
595 |
+
image = np.clip(image, 0.0, 1.0)
|
596 |
+
|
597 |
+
elif i == 3:
|
598 |
+
# downsample3
|
599 |
+
image = cv2.resize(image, (int(1 / sf * a), int(1 / sf * b)), interpolation=random.choice([1, 2, 3]))
|
600 |
+
image = np.clip(image, 0.0, 1.0)
|
601 |
+
|
602 |
+
elif i == 4:
|
603 |
+
# add Gaussian noise
|
604 |
+
image = add_Gaussian_noise(image, noise_level1=1, noise_level2=2)
|
605 |
+
|
606 |
+
elif i == 5:
|
607 |
+
# add JPEG noise
|
608 |
+
if random.random() < jpeg_prob:
|
609 |
+
image = add_JPEG_noise(image)
|
610 |
+
#
|
611 |
+
# elif i == 6:
|
612 |
+
# # add processed camera sensor noise
|
613 |
+
# if random.random() < isp_prob and isp_model is not None:
|
614 |
+
# with torch.no_grad():
|
615 |
+
# img, hq = isp_model.forward(img.copy(), hq)
|
616 |
+
|
617 |
+
# add final JPEG compression noise
|
618 |
+
image = add_JPEG_noise(image)
|
619 |
+
image = util.single2uint(image)
|
620 |
+
example = {"image": image}
|
621 |
+
return example
|
622 |
+
|
623 |
+
|
624 |
+
|
625 |
+
|
626 |
+
if __name__ == '__main__':
|
627 |
+
print("hey")
|
628 |
+
img = util.imread_uint('utils/test.png', 3)
|
629 |
+
img = img[:448, :448]
|
630 |
+
h = img.shape[0] // 4
|
631 |
+
print("resizing to", h)
|
632 |
+
sf = 4
|
633 |
+
deg_fn = partial(degradation_bsrgan_variant, sf=sf)
|
634 |
+
for i in range(20):
|
635 |
+
print(i)
|
636 |
+
img_hq = img
|
637 |
+
img_lq = deg_fn(img)["image"]
|
638 |
+
img_hq, img_lq = util.uint2single(img_hq), util.uint2single(img_lq)
|
639 |
+
print(img_lq)
|
640 |
+
img_lq_bicubic = albumentations.SmallestMaxSize(max_size=h, interpolation=cv2.INTER_CUBIC)(image=img_hq)["image"]
|
641 |
+
print(img_lq.shape)
|
642 |
+
print("bicubic", img_lq_bicubic.shape)
|
643 |
+
print(img_hq.shape)
|
644 |
+
lq_nearest = cv2.resize(util.single2uint(img_lq), (int(sf * img_lq.shape[1]), int(sf * img_lq.shape[0])),
|
645 |
+
interpolation=0)
|
646 |
+
lq_bicubic_nearest = cv2.resize(util.single2uint(img_lq_bicubic),
|
647 |
+
(int(sf * img_lq.shape[1]), int(sf * img_lq.shape[0])),
|
648 |
+
interpolation=0)
|
649 |
+
img_concat = np.concatenate([lq_bicubic_nearest, lq_nearest, util.single2uint(img_hq)], axis=1)
|
650 |
+
util.imsave(img_concat, str(i) + '.png')
|
ldm/modules/image_degradation/utils/test.png
ADDED
ldm/modules/image_degradation/utils_image.py
ADDED
@@ -0,0 +1,916 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import math
|
3 |
+
import random
|
4 |
+
import numpy as np
|
5 |
+
import torch
|
6 |
+
import cv2
|
7 |
+
from torchvision.utils import make_grid
|
8 |
+
from datetime import datetime
|
9 |
+
#import matplotlib.pyplot as plt # TODO: check with Dominik, also bsrgan.py vs bsrgan_light.py
|
10 |
+
|
11 |
+
|
12 |
+
os.environ["KMP_DUPLICATE_LIB_OK"]="TRUE"
|
13 |
+
|
14 |
+
|
15 |
+
'''
|
16 |
+
# --------------------------------------------
|
17 |
+
# Kai Zhang (github: https://github.com/cszn)
|
18 |
+
# 03/Mar/2019
|
19 |
+
# --------------------------------------------
|
20 |
+
# https://github.com/twhui/SRGAN-pyTorch
|
21 |
+
# https://github.com/xinntao/BasicSR
|
22 |
+
# --------------------------------------------
|
23 |
+
'''
|
24 |
+
|
25 |
+
|
26 |
+
IMG_EXTENSIONS = ['.jpg', '.JPG', '.jpeg', '.JPEG', '.png', '.PNG', '.ppm', '.PPM', '.bmp', '.BMP', '.tif']
|
27 |
+
|
28 |
+
|
29 |
+
def is_image_file(filename):
|
30 |
+
return any(filename.endswith(extension) for extension in IMG_EXTENSIONS)
|
31 |
+
|
32 |
+
|
33 |
+
def get_timestamp():
|
34 |
+
return datetime.now().strftime('%y%m%d-%H%M%S')
|
35 |
+
|
36 |
+
|
37 |
+
def imshow(x, title=None, cbar=False, figsize=None):
|
38 |
+
plt.figure(figsize=figsize)
|
39 |
+
plt.imshow(np.squeeze(x), interpolation='nearest', cmap='gray')
|
40 |
+
if title:
|
41 |
+
plt.title(title)
|
42 |
+
if cbar:
|
43 |
+
plt.colorbar()
|
44 |
+
plt.show()
|
45 |
+
|
46 |
+
|
47 |
+
def surf(Z, cmap='rainbow', figsize=None):
|
48 |
+
plt.figure(figsize=figsize)
|
49 |
+
ax3 = plt.axes(projection='3d')
|
50 |
+
|
51 |
+
w, h = Z.shape[:2]
|
52 |
+
xx = np.arange(0,w,1)
|
53 |
+
yy = np.arange(0,h,1)
|
54 |
+
X, Y = np.meshgrid(xx, yy)
|
55 |
+
ax3.plot_surface(X,Y,Z,cmap=cmap)
|
56 |
+
#ax3.contour(X,Y,Z, zdim='z',offset=-2,cmap=cmap)
|
57 |
+
plt.show()
|
58 |
+
|
59 |
+
|
60 |
+
'''
|
61 |
+
# --------------------------------------------
|
62 |
+
# get image pathes
|
63 |
+
# --------------------------------------------
|
64 |
+
'''
|
65 |
+
|
66 |
+
|
67 |
+
def get_image_paths(dataroot):
|
68 |
+
paths = None # return None if dataroot is None
|
69 |
+
if dataroot is not None:
|
70 |
+
paths = sorted(_get_paths_from_images(dataroot))
|
71 |
+
return paths
|
72 |
+
|
73 |
+
|
74 |
+
def _get_paths_from_images(path):
|
75 |
+
assert os.path.isdir(path), '{:s} is not a valid directory'.format(path)
|
76 |
+
images = []
|
77 |
+
for dirpath, _, fnames in sorted(os.walk(path)):
|
78 |
+
for fname in sorted(fnames):
|
79 |
+
if is_image_file(fname):
|
80 |
+
img_path = os.path.join(dirpath, fname)
|
81 |
+
images.append(img_path)
|
82 |
+
assert images, '{:s} has no valid image file'.format(path)
|
83 |
+
return images
|
84 |
+
|
85 |
+
|
86 |
+
'''
|
87 |
+
# --------------------------------------------
|
88 |
+
# split large images into small images
|
89 |
+
# --------------------------------------------
|
90 |
+
'''
|
91 |
+
|
92 |
+
|
93 |
+
def patches_from_image(img, p_size=512, p_overlap=64, p_max=800):
|
94 |
+
w, h = img.shape[:2]
|
95 |
+
patches = []
|
96 |
+
if w > p_max and h > p_max:
|
97 |
+
w1 = list(np.arange(0, w-p_size, p_size-p_overlap, dtype=np.int))
|
98 |
+
h1 = list(np.arange(0, h-p_size, p_size-p_overlap, dtype=np.int))
|
99 |
+
w1.append(w-p_size)
|
100 |
+
h1.append(h-p_size)
|
101 |
+
# print(w1)
|
102 |
+
# print(h1)
|
103 |
+
for i in w1:
|
104 |
+
for j in h1:
|
105 |
+
patches.append(img[i:i+p_size, j:j+p_size,:])
|
106 |
+
else:
|
107 |
+
patches.append(img)
|
108 |
+
|
109 |
+
return patches
|
110 |
+
|
111 |
+
|
112 |
+
def imssave(imgs, img_path):
|
113 |
+
"""
|
114 |
+
imgs: list, N images of size WxHxC
|
115 |
+
"""
|
116 |
+
img_name, ext = os.path.splitext(os.path.basename(img_path))
|
117 |
+
|
118 |
+
for i, img in enumerate(imgs):
|
119 |
+
if img.ndim == 3:
|
120 |
+
img = img[:, :, [2, 1, 0]]
|
121 |
+
new_path = os.path.join(os.path.dirname(img_path), img_name+str('_s{:04d}'.format(i))+'.png')
|
122 |
+
cv2.imwrite(new_path, img)
|
123 |
+
|
124 |
+
|
125 |
+
def split_imageset(original_dataroot, taget_dataroot, n_channels=3, p_size=800, p_overlap=96, p_max=1000):
|
126 |
+
"""
|
127 |
+
split the large images from original_dataroot into small overlapped images with size (p_size)x(p_size),
|
128 |
+
and save them into taget_dataroot; only the images with larger size than (p_max)x(p_max)
|
129 |
+
will be splitted.
|
130 |
+
Args:
|
131 |
+
original_dataroot:
|
132 |
+
taget_dataroot:
|
133 |
+
p_size: size of small images
|
134 |
+
p_overlap: patch size in training is a good choice
|
135 |
+
p_max: images with smaller size than (p_max)x(p_max) keep unchanged.
|
136 |
+
"""
|
137 |
+
paths = get_image_paths(original_dataroot)
|
138 |
+
for img_path in paths:
|
139 |
+
# img_name, ext = os.path.splitext(os.path.basename(img_path))
|
140 |
+
img = imread_uint(img_path, n_channels=n_channels)
|
141 |
+
patches = patches_from_image(img, p_size, p_overlap, p_max)
|
142 |
+
imssave(patches, os.path.join(taget_dataroot,os.path.basename(img_path)))
|
143 |
+
#if original_dataroot == taget_dataroot:
|
144 |
+
#del img_path
|
145 |
+
|
146 |
+
'''
|
147 |
+
# --------------------------------------------
|
148 |
+
# makedir
|
149 |
+
# --------------------------------------------
|
150 |
+
'''
|
151 |
+
|
152 |
+
|
153 |
+
def mkdir(path):
|
154 |
+
if not os.path.exists(path):
|
155 |
+
os.makedirs(path)
|
156 |
+
|
157 |
+
|
158 |
+
def mkdirs(paths):
|
159 |
+
if isinstance(paths, str):
|
160 |
+
mkdir(paths)
|
161 |
+
else:
|
162 |
+
for path in paths:
|
163 |
+
mkdir(path)
|
164 |
+
|
165 |
+
|
166 |
+
def mkdir_and_rename(path):
|
167 |
+
if os.path.exists(path):
|
168 |
+
new_name = path + '_archived_' + get_timestamp()
|
169 |
+
print('Path already exists. Rename it to [{:s}]'.format(new_name))
|
170 |
+
os.rename(path, new_name)
|
171 |
+
os.makedirs(path)
|
172 |
+
|
173 |
+
|
174 |
+
'''
|
175 |
+
# --------------------------------------------
|
176 |
+
# read image from path
|
177 |
+
# opencv is fast, but read BGR numpy image
|
178 |
+
# --------------------------------------------
|
179 |
+
'''
|
180 |
+
|
181 |
+
|
182 |
+
# --------------------------------------------
|
183 |
+
# get uint8 image of size HxWxn_channles (RGB)
|
184 |
+
# --------------------------------------------
|
185 |
+
def imread_uint(path, n_channels=3):
|
186 |
+
# input: path
|
187 |
+
# output: HxWx3(RGB or GGG), or HxWx1 (G)
|
188 |
+
if n_channels == 1:
|
189 |
+
img = cv2.imread(path, 0) # cv2.IMREAD_GRAYSCALE
|
190 |
+
img = np.expand_dims(img, axis=2) # HxWx1
|
191 |
+
elif n_channels == 3:
|
192 |
+
img = cv2.imread(path, cv2.IMREAD_UNCHANGED) # BGR or G
|
193 |
+
if img.ndim == 2:
|
194 |
+
img = cv2.cvtColor(img, cv2.COLOR_GRAY2RGB) # GGG
|
195 |
+
else:
|
196 |
+
img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB) # RGB
|
197 |
+
return img
|
198 |
+
|
199 |
+
|
200 |
+
# --------------------------------------------
|
201 |
+
# matlab's imwrite
|
202 |
+
# --------------------------------------------
|
203 |
+
def imsave(img, img_path):
|
204 |
+
img = np.squeeze(img)
|
205 |
+
if img.ndim == 3:
|
206 |
+
img = img[:, :, [2, 1, 0]]
|
207 |
+
cv2.imwrite(img_path, img)
|
208 |
+
|
209 |
+
def imwrite(img, img_path):
|
210 |
+
img = np.squeeze(img)
|
211 |
+
if img.ndim == 3:
|
212 |
+
img = img[:, :, [2, 1, 0]]
|
213 |
+
cv2.imwrite(img_path, img)
|
214 |
+
|
215 |
+
|
216 |
+
|
217 |
+
# --------------------------------------------
|
218 |
+
# get single image of size HxWxn_channles (BGR)
|
219 |
+
# --------------------------------------------
|
220 |
+
def read_img(path):
|
221 |
+
# read image by cv2
|
222 |
+
# return: Numpy float32, HWC, BGR, [0,1]
|
223 |
+
img = cv2.imread(path, cv2.IMREAD_UNCHANGED) # cv2.IMREAD_GRAYSCALE
|
224 |
+
img = img.astype(np.float32) / 255.
|
225 |
+
if img.ndim == 2:
|
226 |
+
img = np.expand_dims(img, axis=2)
|
227 |
+
# some images have 4 channels
|
228 |
+
if img.shape[2] > 3:
|
229 |
+
img = img[:, :, :3]
|
230 |
+
return img
|
231 |
+
|
232 |
+
|
233 |
+
'''
|
234 |
+
# --------------------------------------------
|
235 |
+
# image format conversion
|
236 |
+
# --------------------------------------------
|
237 |
+
# numpy(single) <---> numpy(unit)
|
238 |
+
# numpy(single) <---> tensor
|
239 |
+
# numpy(unit) <---> tensor
|
240 |
+
# --------------------------------------------
|
241 |
+
'''
|
242 |
+
|
243 |
+
|
244 |
+
# --------------------------------------------
|
245 |
+
# numpy(single) [0, 1] <---> numpy(unit)
|
246 |
+
# --------------------------------------------
|
247 |
+
|
248 |
+
|
249 |
+
def uint2single(img):
|
250 |
+
|
251 |
+
return np.float32(img/255.)
|
252 |
+
|
253 |
+
|
254 |
+
def single2uint(img):
|
255 |
+
|
256 |
+
return np.uint8((img.clip(0, 1)*255.).round())
|
257 |
+
|
258 |
+
|
259 |
+
def uint162single(img):
|
260 |
+
|
261 |
+
return np.float32(img/65535.)
|
262 |
+
|
263 |
+
|
264 |
+
def single2uint16(img):
|
265 |
+
|
266 |
+
return np.uint16((img.clip(0, 1)*65535.).round())
|
267 |
+
|
268 |
+
|
269 |
+
# --------------------------------------------
|
270 |
+
# numpy(unit) (HxWxC or HxW) <---> tensor
|
271 |
+
# --------------------------------------------
|
272 |
+
|
273 |
+
|
274 |
+
# convert uint to 4-dimensional torch tensor
|
275 |
+
def uint2tensor4(img):
|
276 |
+
if img.ndim == 2:
|
277 |
+
img = np.expand_dims(img, axis=2)
|
278 |
+
return torch.from_numpy(np.ascontiguousarray(img)).permute(2, 0, 1).float().div(255.).unsqueeze(0)
|
279 |
+
|
280 |
+
|
281 |
+
# convert uint to 3-dimensional torch tensor
|
282 |
+
def uint2tensor3(img):
|
283 |
+
if img.ndim == 2:
|
284 |
+
img = np.expand_dims(img, axis=2)
|
285 |
+
return torch.from_numpy(np.ascontiguousarray(img)).permute(2, 0, 1).float().div(255.)
|
286 |
+
|
287 |
+
|
288 |
+
# convert 2/3/4-dimensional torch tensor to uint
|
289 |
+
def tensor2uint(img):
|
290 |
+
img = img.data.squeeze().float().clamp_(0, 1).cpu().numpy()
|
291 |
+
if img.ndim == 3:
|
292 |
+
img = np.transpose(img, (1, 2, 0))
|
293 |
+
return np.uint8((img*255.0).round())
|
294 |
+
|
295 |
+
|
296 |
+
# --------------------------------------------
|
297 |
+
# numpy(single) (HxWxC) <---> tensor
|
298 |
+
# --------------------------------------------
|
299 |
+
|
300 |
+
|
301 |
+
# convert single (HxWxC) to 3-dimensional torch tensor
|
302 |
+
def single2tensor3(img):
|
303 |
+
return torch.from_numpy(np.ascontiguousarray(img)).permute(2, 0, 1).float()
|
304 |
+
|
305 |
+
|
306 |
+
# convert single (HxWxC) to 4-dimensional torch tensor
|
307 |
+
def single2tensor4(img):
|
308 |
+
return torch.from_numpy(np.ascontiguousarray(img)).permute(2, 0, 1).float().unsqueeze(0)
|
309 |
+
|
310 |
+
|
311 |
+
# convert torch tensor to single
|
312 |
+
def tensor2single(img):
|
313 |
+
img = img.data.squeeze().float().cpu().numpy()
|
314 |
+
if img.ndim == 3:
|
315 |
+
img = np.transpose(img, (1, 2, 0))
|
316 |
+
|
317 |
+
return img
|
318 |
+
|
319 |
+
# convert torch tensor to single
|
320 |
+
def tensor2single3(img):
|
321 |
+
img = img.data.squeeze().float().cpu().numpy()
|
322 |
+
if img.ndim == 3:
|
323 |
+
img = np.transpose(img, (1, 2, 0))
|
324 |
+
elif img.ndim == 2:
|
325 |
+
img = np.expand_dims(img, axis=2)
|
326 |
+
return img
|
327 |
+
|
328 |
+
|
329 |
+
def single2tensor5(img):
|
330 |
+
return torch.from_numpy(np.ascontiguousarray(img)).permute(2, 0, 1, 3).float().unsqueeze(0)
|
331 |
+
|
332 |
+
|
333 |
+
def single32tensor5(img):
|
334 |
+
return torch.from_numpy(np.ascontiguousarray(img)).float().unsqueeze(0).unsqueeze(0)
|
335 |
+
|
336 |
+
|
337 |
+
def single42tensor4(img):
|
338 |
+
return torch.from_numpy(np.ascontiguousarray(img)).permute(2, 0, 1, 3).float()
|
339 |
+
|
340 |
+
|
341 |
+
# from skimage.io import imread, imsave
|
342 |
+
def tensor2img(tensor, out_type=np.uint8, min_max=(0, 1)):
|
343 |
+
'''
|
344 |
+
Converts a torch Tensor into an image Numpy array of BGR channel order
|
345 |
+
Input: 4D(B,(3/1),H,W), 3D(C,H,W), or 2D(H,W), any range, RGB channel order
|
346 |
+
Output: 3D(H,W,C) or 2D(H,W), [0,255], np.uint8 (default)
|
347 |
+
'''
|
348 |
+
tensor = tensor.squeeze().float().cpu().clamp_(*min_max) # squeeze first, then clamp
|
349 |
+
tensor = (tensor - min_max[0]) / (min_max[1] - min_max[0]) # to range [0,1]
|
350 |
+
n_dim = tensor.dim()
|
351 |
+
if n_dim == 4:
|
352 |
+
n_img = len(tensor)
|
353 |
+
img_np = make_grid(tensor, nrow=int(math.sqrt(n_img)), normalize=False).numpy()
|
354 |
+
img_np = np.transpose(img_np[[2, 1, 0], :, :], (1, 2, 0)) # HWC, BGR
|
355 |
+
elif n_dim == 3:
|
356 |
+
img_np = tensor.numpy()
|
357 |
+
img_np = np.transpose(img_np[[2, 1, 0], :, :], (1, 2, 0)) # HWC, BGR
|
358 |
+
elif n_dim == 2:
|
359 |
+
img_np = tensor.numpy()
|
360 |
+
else:
|
361 |
+
raise TypeError(
|
362 |
+
'Only support 4D, 3D and 2D tensor. But received with dimension: {:d}'.format(n_dim))
|
363 |
+
if out_type == np.uint8:
|
364 |
+
img_np = (img_np * 255.0).round()
|
365 |
+
# Important. Unlike matlab, numpy.unit8() WILL NOT round by default.
|
366 |
+
return img_np.astype(out_type)
|
367 |
+
|
368 |
+
|
369 |
+
'''
|
370 |
+
# --------------------------------------------
|
371 |
+
# Augmentation, flipe and/or rotate
|
372 |
+
# --------------------------------------------
|
373 |
+
# The following two are enough.
|
374 |
+
# (1) augmet_img: numpy image of WxHxC or WxH
|
375 |
+
# (2) augment_img_tensor4: tensor image 1xCxWxH
|
376 |
+
# --------------------------------------------
|
377 |
+
'''
|
378 |
+
|
379 |
+
|
380 |
+
def augment_img(img, mode=0):
|
381 |
+
'''Kai Zhang (github: https://github.com/cszn)
|
382 |
+
'''
|
383 |
+
if mode == 0:
|
384 |
+
return img
|
385 |
+
elif mode == 1:
|
386 |
+
return np.flipud(np.rot90(img))
|
387 |
+
elif mode == 2:
|
388 |
+
return np.flipud(img)
|
389 |
+
elif mode == 3:
|
390 |
+
return np.rot90(img, k=3)
|
391 |
+
elif mode == 4:
|
392 |
+
return np.flipud(np.rot90(img, k=2))
|
393 |
+
elif mode == 5:
|
394 |
+
return np.rot90(img)
|
395 |
+
elif mode == 6:
|
396 |
+
return np.rot90(img, k=2)
|
397 |
+
elif mode == 7:
|
398 |
+
return np.flipud(np.rot90(img, k=3))
|
399 |
+
|
400 |
+
|
401 |
+
def augment_img_tensor4(img, mode=0):
|
402 |
+
'''Kai Zhang (github: https://github.com/cszn)
|
403 |
+
'''
|
404 |
+
if mode == 0:
|
405 |
+
return img
|
406 |
+
elif mode == 1:
|
407 |
+
return img.rot90(1, [2, 3]).flip([2])
|
408 |
+
elif mode == 2:
|
409 |
+
return img.flip([2])
|
410 |
+
elif mode == 3:
|
411 |
+
return img.rot90(3, [2, 3])
|
412 |
+
elif mode == 4:
|
413 |
+
return img.rot90(2, [2, 3]).flip([2])
|
414 |
+
elif mode == 5:
|
415 |
+
return img.rot90(1, [2, 3])
|
416 |
+
elif mode == 6:
|
417 |
+
return img.rot90(2, [2, 3])
|
418 |
+
elif mode == 7:
|
419 |
+
return img.rot90(3, [2, 3]).flip([2])
|
420 |
+
|
421 |
+
|
422 |
+
def augment_img_tensor(img, mode=0):
|
423 |
+
'''Kai Zhang (github: https://github.com/cszn)
|
424 |
+
'''
|
425 |
+
img_size = img.size()
|
426 |
+
img_np = img.data.cpu().numpy()
|
427 |
+
if len(img_size) == 3:
|
428 |
+
img_np = np.transpose(img_np, (1, 2, 0))
|
429 |
+
elif len(img_size) == 4:
|
430 |
+
img_np = np.transpose(img_np, (2, 3, 1, 0))
|
431 |
+
img_np = augment_img(img_np, mode=mode)
|
432 |
+
img_tensor = torch.from_numpy(np.ascontiguousarray(img_np))
|
433 |
+
if len(img_size) == 3:
|
434 |
+
img_tensor = img_tensor.permute(2, 0, 1)
|
435 |
+
elif len(img_size) == 4:
|
436 |
+
img_tensor = img_tensor.permute(3, 2, 0, 1)
|
437 |
+
|
438 |
+
return img_tensor.type_as(img)
|
439 |
+
|
440 |
+
|
441 |
+
def augment_img_np3(img, mode=0):
|
442 |
+
if mode == 0:
|
443 |
+
return img
|
444 |
+
elif mode == 1:
|
445 |
+
return img.transpose(1, 0, 2)
|
446 |
+
elif mode == 2:
|
447 |
+
return img[::-1, :, :]
|
448 |
+
elif mode == 3:
|
449 |
+
img = img[::-1, :, :]
|
450 |
+
img = img.transpose(1, 0, 2)
|
451 |
+
return img
|
452 |
+
elif mode == 4:
|
453 |
+
return img[:, ::-1, :]
|
454 |
+
elif mode == 5:
|
455 |
+
img = img[:, ::-1, :]
|
456 |
+
img = img.transpose(1, 0, 2)
|
457 |
+
return img
|
458 |
+
elif mode == 6:
|
459 |
+
img = img[:, ::-1, :]
|
460 |
+
img = img[::-1, :, :]
|
461 |
+
return img
|
462 |
+
elif mode == 7:
|
463 |
+
img = img[:, ::-1, :]
|
464 |
+
img = img[::-1, :, :]
|
465 |
+
img = img.transpose(1, 0, 2)
|
466 |
+
return img
|
467 |
+
|
468 |
+
|
469 |
+
def augment_imgs(img_list, hflip=True, rot=True):
|
470 |
+
# horizontal flip OR rotate
|
471 |
+
hflip = hflip and random.random() < 0.5
|
472 |
+
vflip = rot and random.random() < 0.5
|
473 |
+
rot90 = rot and random.random() < 0.5
|
474 |
+
|
475 |
+
def _augment(img):
|
476 |
+
if hflip:
|
477 |
+
img = img[:, ::-1, :]
|
478 |
+
if vflip:
|
479 |
+
img = img[::-1, :, :]
|
480 |
+
if rot90:
|
481 |
+
img = img.transpose(1, 0, 2)
|
482 |
+
return img
|
483 |
+
|
484 |
+
return [_augment(img) for img in img_list]
|
485 |
+
|
486 |
+
|
487 |
+
'''
|
488 |
+
# --------------------------------------------
|
489 |
+
# modcrop and shave
|
490 |
+
# --------------------------------------------
|
491 |
+
'''
|
492 |
+
|
493 |
+
|
494 |
+
def modcrop(img_in, scale):
|
495 |
+
# img_in: Numpy, HWC or HW
|
496 |
+
img = np.copy(img_in)
|
497 |
+
if img.ndim == 2:
|
498 |
+
H, W = img.shape
|
499 |
+
H_r, W_r = H % scale, W % scale
|
500 |
+
img = img[:H - H_r, :W - W_r]
|
501 |
+
elif img.ndim == 3:
|
502 |
+
H, W, C = img.shape
|
503 |
+
H_r, W_r = H % scale, W % scale
|
504 |
+
img = img[:H - H_r, :W - W_r, :]
|
505 |
+
else:
|
506 |
+
raise ValueError('Wrong img ndim: [{:d}].'.format(img.ndim))
|
507 |
+
return img
|
508 |
+
|
509 |
+
|
510 |
+
def shave(img_in, border=0):
|
511 |
+
# img_in: Numpy, HWC or HW
|
512 |
+
img = np.copy(img_in)
|
513 |
+
h, w = img.shape[:2]
|
514 |
+
img = img[border:h-border, border:w-border]
|
515 |
+
return img
|
516 |
+
|
517 |
+
|
518 |
+
'''
|
519 |
+
# --------------------------------------------
|
520 |
+
# image processing process on numpy image
|
521 |
+
# channel_convert(in_c, tar_type, img_list):
|
522 |
+
# rgb2ycbcr(img, only_y=True):
|
523 |
+
# bgr2ycbcr(img, only_y=True):
|
524 |
+
# ycbcr2rgb(img):
|
525 |
+
# --------------------------------------------
|
526 |
+
'''
|
527 |
+
|
528 |
+
|
529 |
+
def rgb2ycbcr(img, only_y=True):
|
530 |
+
'''same as matlab rgb2ycbcr
|
531 |
+
only_y: only return Y channel
|
532 |
+
Input:
|
533 |
+
uint8, [0, 255]
|
534 |
+
float, [0, 1]
|
535 |
+
'''
|
536 |
+
in_img_type = img.dtype
|
537 |
+
img.astype(np.float32)
|
538 |
+
if in_img_type != np.uint8:
|
539 |
+
img *= 255.
|
540 |
+
# convert
|
541 |
+
if only_y:
|
542 |
+
rlt = np.dot(img, [65.481, 128.553, 24.966]) / 255.0 + 16.0
|
543 |
+
else:
|
544 |
+
rlt = np.matmul(img, [[65.481, -37.797, 112.0], [128.553, -74.203, -93.786],
|
545 |
+
[24.966, 112.0, -18.214]]) / 255.0 + [16, 128, 128]
|
546 |
+
if in_img_type == np.uint8:
|
547 |
+
rlt = rlt.round()
|
548 |
+
else:
|
549 |
+
rlt /= 255.
|
550 |
+
return rlt.astype(in_img_type)
|
551 |
+
|
552 |
+
|
553 |
+
def ycbcr2rgb(img):
|
554 |
+
'''same as matlab ycbcr2rgb
|
555 |
+
Input:
|
556 |
+
uint8, [0, 255]
|
557 |
+
float, [0, 1]
|
558 |
+
'''
|
559 |
+
in_img_type = img.dtype
|
560 |
+
img.astype(np.float32)
|
561 |
+
if in_img_type != np.uint8:
|
562 |
+
img *= 255.
|
563 |
+
# convert
|
564 |
+
rlt = np.matmul(img, [[0.00456621, 0.00456621, 0.00456621], [0, -0.00153632, 0.00791071],
|
565 |
+
[0.00625893, -0.00318811, 0]]) * 255.0 + [-222.921, 135.576, -276.836]
|
566 |
+
if in_img_type == np.uint8:
|
567 |
+
rlt = rlt.round()
|
568 |
+
else:
|
569 |
+
rlt /= 255.
|
570 |
+
return rlt.astype(in_img_type)
|
571 |
+
|
572 |
+
|
573 |
+
def bgr2ycbcr(img, only_y=True):
|
574 |
+
'''bgr version of rgb2ycbcr
|
575 |
+
only_y: only return Y channel
|
576 |
+
Input:
|
577 |
+
uint8, [0, 255]
|
578 |
+
float, [0, 1]
|
579 |
+
'''
|
580 |
+
in_img_type = img.dtype
|
581 |
+
img.astype(np.float32)
|
582 |
+
if in_img_type != np.uint8:
|
583 |
+
img *= 255.
|
584 |
+
# convert
|
585 |
+
if only_y:
|
586 |
+
rlt = np.dot(img, [24.966, 128.553, 65.481]) / 255.0 + 16.0
|
587 |
+
else:
|
588 |
+
rlt = np.matmul(img, [[24.966, 112.0, -18.214], [128.553, -74.203, -93.786],
|
589 |
+
[65.481, -37.797, 112.0]]) / 255.0 + [16, 128, 128]
|
590 |
+
if in_img_type == np.uint8:
|
591 |
+
rlt = rlt.round()
|
592 |
+
else:
|
593 |
+
rlt /= 255.
|
594 |
+
return rlt.astype(in_img_type)
|
595 |
+
|
596 |
+
|
597 |
+
def channel_convert(in_c, tar_type, img_list):
|
598 |
+
# conversion among BGR, gray and y
|
599 |
+
if in_c == 3 and tar_type == 'gray': # BGR to gray
|
600 |
+
gray_list = [cv2.cvtColor(img, cv2.COLOR_BGR2GRAY) for img in img_list]
|
601 |
+
return [np.expand_dims(img, axis=2) for img in gray_list]
|
602 |
+
elif in_c == 3 and tar_type == 'y': # BGR to y
|
603 |
+
y_list = [bgr2ycbcr(img, only_y=True) for img in img_list]
|
604 |
+
return [np.expand_dims(img, axis=2) for img in y_list]
|
605 |
+
elif in_c == 1 and tar_type == 'RGB': # gray/y to BGR
|
606 |
+
return [cv2.cvtColor(img, cv2.COLOR_GRAY2BGR) for img in img_list]
|
607 |
+
else:
|
608 |
+
return img_list
|
609 |
+
|
610 |
+
|
611 |
+
'''
|
612 |
+
# --------------------------------------------
|
613 |
+
# metric, PSNR and SSIM
|
614 |
+
# --------------------------------------------
|
615 |
+
'''
|
616 |
+
|
617 |
+
|
618 |
+
# --------------------------------------------
|
619 |
+
# PSNR
|
620 |
+
# --------------------------------------------
|
621 |
+
def calculate_psnr(img1, img2, border=0):
|
622 |
+
# img1 and img2 have range [0, 255]
|
623 |
+
#img1 = img1.squeeze()
|
624 |
+
#img2 = img2.squeeze()
|
625 |
+
if not img1.shape == img2.shape:
|
626 |
+
raise ValueError('Input images must have the same dimensions.')
|
627 |
+
h, w = img1.shape[:2]
|
628 |
+
img1 = img1[border:h-border, border:w-border]
|
629 |
+
img2 = img2[border:h-border, border:w-border]
|
630 |
+
|
631 |
+
img1 = img1.astype(np.float64)
|
632 |
+
img2 = img2.astype(np.float64)
|
633 |
+
mse = np.mean((img1 - img2)**2)
|
634 |
+
if mse == 0:
|
635 |
+
return float('inf')
|
636 |
+
return 20 * math.log10(255.0 / math.sqrt(mse))
|
637 |
+
|
638 |
+
|
639 |
+
# --------------------------------------------
|
640 |
+
# SSIM
|
641 |
+
# --------------------------------------------
|
642 |
+
def calculate_ssim(img1, img2, border=0):
|
643 |
+
'''calculate SSIM
|
644 |
+
the same outputs as MATLAB's
|
645 |
+
img1, img2: [0, 255]
|
646 |
+
'''
|
647 |
+
#img1 = img1.squeeze()
|
648 |
+
#img2 = img2.squeeze()
|
649 |
+
if not img1.shape == img2.shape:
|
650 |
+
raise ValueError('Input images must have the same dimensions.')
|
651 |
+
h, w = img1.shape[:2]
|
652 |
+
img1 = img1[border:h-border, border:w-border]
|
653 |
+
img2 = img2[border:h-border, border:w-border]
|
654 |
+
|
655 |
+
if img1.ndim == 2:
|
656 |
+
return ssim(img1, img2)
|
657 |
+
elif img1.ndim == 3:
|
658 |
+
if img1.shape[2] == 3:
|
659 |
+
ssims = []
|
660 |
+
for i in range(3):
|
661 |
+
ssims.append(ssim(img1[:,:,i], img2[:,:,i]))
|
662 |
+
return np.array(ssims).mean()
|
663 |
+
elif img1.shape[2] == 1:
|
664 |
+
return ssim(np.squeeze(img1), np.squeeze(img2))
|
665 |
+
else:
|
666 |
+
raise ValueError('Wrong input image dimensions.')
|
667 |
+
|
668 |
+
|
669 |
+
def ssim(img1, img2):
|
670 |
+
C1 = (0.01 * 255)**2
|
671 |
+
C2 = (0.03 * 255)**2
|
672 |
+
|
673 |
+
img1 = img1.astype(np.float64)
|
674 |
+
img2 = img2.astype(np.float64)
|
675 |
+
kernel = cv2.getGaussianKernel(11, 1.5)
|
676 |
+
window = np.outer(kernel, kernel.transpose())
|
677 |
+
|
678 |
+
mu1 = cv2.filter2D(img1, -1, window)[5:-5, 5:-5] # valid
|
679 |
+
mu2 = cv2.filter2D(img2, -1, window)[5:-5, 5:-5]
|
680 |
+
mu1_sq = mu1**2
|
681 |
+
mu2_sq = mu2**2
|
682 |
+
mu1_mu2 = mu1 * mu2
|
683 |
+
sigma1_sq = cv2.filter2D(img1**2, -1, window)[5:-5, 5:-5] - mu1_sq
|
684 |
+
sigma2_sq = cv2.filter2D(img2**2, -1, window)[5:-5, 5:-5] - mu2_sq
|
685 |
+
sigma12 = cv2.filter2D(img1 * img2, -1, window)[5:-5, 5:-5] - mu1_mu2
|
686 |
+
|
687 |
+
ssim_map = ((2 * mu1_mu2 + C1) * (2 * sigma12 + C2)) / ((mu1_sq + mu2_sq + C1) *
|
688 |
+
(sigma1_sq + sigma2_sq + C2))
|
689 |
+
return ssim_map.mean()
|
690 |
+
|
691 |
+
|
692 |
+
'''
|
693 |
+
# --------------------------------------------
|
694 |
+
# matlab's bicubic imresize (numpy and torch) [0, 1]
|
695 |
+
# --------------------------------------------
|
696 |
+
'''
|
697 |
+
|
698 |
+
|
699 |
+
# matlab 'imresize' function, now only support 'bicubic'
|
700 |
+
def cubic(x):
|
701 |
+
absx = torch.abs(x)
|
702 |
+
absx2 = absx**2
|
703 |
+
absx3 = absx**3
|
704 |
+
return (1.5*absx3 - 2.5*absx2 + 1) * ((absx <= 1).type_as(absx)) + \
|
705 |
+
(-0.5*absx3 + 2.5*absx2 - 4*absx + 2) * (((absx > 1)*(absx <= 2)).type_as(absx))
|
706 |
+
|
707 |
+
|
708 |
+
def calculate_weights_indices(in_length, out_length, scale, kernel, kernel_width, antialiasing):
|
709 |
+
if (scale < 1) and (antialiasing):
|
710 |
+
# Use a modified kernel to simultaneously interpolate and antialias- larger kernel width
|
711 |
+
kernel_width = kernel_width / scale
|
712 |
+
|
713 |
+
# Output-space coordinates
|
714 |
+
x = torch.linspace(1, out_length, out_length)
|
715 |
+
|
716 |
+
# Input-space coordinates. Calculate the inverse mapping such that 0.5
|
717 |
+
# in output space maps to 0.5 in input space, and 0.5+scale in output
|
718 |
+
# space maps to 1.5 in input space.
|
719 |
+
u = x / scale + 0.5 * (1 - 1 / scale)
|
720 |
+
|
721 |
+
# What is the left-most pixel that can be involved in the computation?
|
722 |
+
left = torch.floor(u - kernel_width / 2)
|
723 |
+
|
724 |
+
# What is the maximum number of pixels that can be involved in the
|
725 |
+
# computation? Note: it's OK to use an extra pixel here; if the
|
726 |
+
# corresponding weights are all zero, it will be eliminated at the end
|
727 |
+
# of this function.
|
728 |
+
P = math.ceil(kernel_width) + 2
|
729 |
+
|
730 |
+
# The indices of the input pixels involved in computing the k-th output
|
731 |
+
# pixel are in row k of the indices matrix.
|
732 |
+
indices = left.view(out_length, 1).expand(out_length, P) + torch.linspace(0, P - 1, P).view(
|
733 |
+
1, P).expand(out_length, P)
|
734 |
+
|
735 |
+
# The weights used to compute the k-th output pixel are in row k of the
|
736 |
+
# weights matrix.
|
737 |
+
distance_to_center = u.view(out_length, 1).expand(out_length, P) - indices
|
738 |
+
# apply cubic kernel
|
739 |
+
if (scale < 1) and (antialiasing):
|
740 |
+
weights = scale * cubic(distance_to_center * scale)
|
741 |
+
else:
|
742 |
+
weights = cubic(distance_to_center)
|
743 |
+
# Normalize the weights matrix so that each row sums to 1.
|
744 |
+
weights_sum = torch.sum(weights, 1).view(out_length, 1)
|
745 |
+
weights = weights / weights_sum.expand(out_length, P)
|
746 |
+
|
747 |
+
# If a column in weights is all zero, get rid of it. only consider the first and last column.
|
748 |
+
weights_zero_tmp = torch.sum((weights == 0), 0)
|
749 |
+
if not math.isclose(weights_zero_tmp[0], 0, rel_tol=1e-6):
|
750 |
+
indices = indices.narrow(1, 1, P - 2)
|
751 |
+
weights = weights.narrow(1, 1, P - 2)
|
752 |
+
if not math.isclose(weights_zero_tmp[-1], 0, rel_tol=1e-6):
|
753 |
+
indices = indices.narrow(1, 0, P - 2)
|
754 |
+
weights = weights.narrow(1, 0, P - 2)
|
755 |
+
weights = weights.contiguous()
|
756 |
+
indices = indices.contiguous()
|
757 |
+
sym_len_s = -indices.min() + 1
|
758 |
+
sym_len_e = indices.max() - in_length
|
759 |
+
indices = indices + sym_len_s - 1
|
760 |
+
return weights, indices, int(sym_len_s), int(sym_len_e)
|
761 |
+
|
762 |
+
|
763 |
+
# --------------------------------------------
|
764 |
+
# imresize for tensor image [0, 1]
|
765 |
+
# --------------------------------------------
|
766 |
+
def imresize(img, scale, antialiasing=True):
|
767 |
+
# Now the scale should be the same for H and W
|
768 |
+
# input: img: pytorch tensor, CHW or HW [0,1]
|
769 |
+
# output: CHW or HW [0,1] w/o round
|
770 |
+
need_squeeze = True if img.dim() == 2 else False
|
771 |
+
if need_squeeze:
|
772 |
+
img.unsqueeze_(0)
|
773 |
+
in_C, in_H, in_W = img.size()
|
774 |
+
out_C, out_H, out_W = in_C, math.ceil(in_H * scale), math.ceil(in_W * scale)
|
775 |
+
kernel_width = 4
|
776 |
+
kernel = 'cubic'
|
777 |
+
|
778 |
+
# Return the desired dimension order for performing the resize. The
|
779 |
+
# strategy is to perform the resize first along the dimension with the
|
780 |
+
# smallest scale factor.
|
781 |
+
# Now we do not support this.
|
782 |
+
|
783 |
+
# get weights and indices
|
784 |
+
weights_H, indices_H, sym_len_Hs, sym_len_He = calculate_weights_indices(
|
785 |
+
in_H, out_H, scale, kernel, kernel_width, antialiasing)
|
786 |
+
weights_W, indices_W, sym_len_Ws, sym_len_We = calculate_weights_indices(
|
787 |
+
in_W, out_W, scale, kernel, kernel_width, antialiasing)
|
788 |
+
# process H dimension
|
789 |
+
# symmetric copying
|
790 |
+
img_aug = torch.FloatTensor(in_C, in_H + sym_len_Hs + sym_len_He, in_W)
|
791 |
+
img_aug.narrow(1, sym_len_Hs, in_H).copy_(img)
|
792 |
+
|
793 |
+
sym_patch = img[:, :sym_len_Hs, :]
|
794 |
+
inv_idx = torch.arange(sym_patch.size(1) - 1, -1, -1).long()
|
795 |
+
sym_patch_inv = sym_patch.index_select(1, inv_idx)
|
796 |
+
img_aug.narrow(1, 0, sym_len_Hs).copy_(sym_patch_inv)
|
797 |
+
|
798 |
+
sym_patch = img[:, -sym_len_He:, :]
|
799 |
+
inv_idx = torch.arange(sym_patch.size(1) - 1, -1, -1).long()
|
800 |
+
sym_patch_inv = sym_patch.index_select(1, inv_idx)
|
801 |
+
img_aug.narrow(1, sym_len_Hs + in_H, sym_len_He).copy_(sym_patch_inv)
|
802 |
+
|
803 |
+
out_1 = torch.FloatTensor(in_C, out_H, in_W)
|
804 |
+
kernel_width = weights_H.size(1)
|
805 |
+
for i in range(out_H):
|
806 |
+
idx = int(indices_H[i][0])
|
807 |
+
for j in range(out_C):
|
808 |
+
out_1[j, i, :] = img_aug[j, idx:idx + kernel_width, :].transpose(0, 1).mv(weights_H[i])
|
809 |
+
|
810 |
+
# process W dimension
|
811 |
+
# symmetric copying
|
812 |
+
out_1_aug = torch.FloatTensor(in_C, out_H, in_W + sym_len_Ws + sym_len_We)
|
813 |
+
out_1_aug.narrow(2, sym_len_Ws, in_W).copy_(out_1)
|
814 |
+
|
815 |
+
sym_patch = out_1[:, :, :sym_len_Ws]
|
816 |
+
inv_idx = torch.arange(sym_patch.size(2) - 1, -1, -1).long()
|
817 |
+
sym_patch_inv = sym_patch.index_select(2, inv_idx)
|
818 |
+
out_1_aug.narrow(2, 0, sym_len_Ws).copy_(sym_patch_inv)
|
819 |
+
|
820 |
+
sym_patch = out_1[:, :, -sym_len_We:]
|
821 |
+
inv_idx = torch.arange(sym_patch.size(2) - 1, -1, -1).long()
|
822 |
+
sym_patch_inv = sym_patch.index_select(2, inv_idx)
|
823 |
+
out_1_aug.narrow(2, sym_len_Ws + in_W, sym_len_We).copy_(sym_patch_inv)
|
824 |
+
|
825 |
+
out_2 = torch.FloatTensor(in_C, out_H, out_W)
|
826 |
+
kernel_width = weights_W.size(1)
|
827 |
+
for i in range(out_W):
|
828 |
+
idx = int(indices_W[i][0])
|
829 |
+
for j in range(out_C):
|
830 |
+
out_2[j, :, i] = out_1_aug[j, :, idx:idx + kernel_width].mv(weights_W[i])
|
831 |
+
if need_squeeze:
|
832 |
+
out_2.squeeze_()
|
833 |
+
return out_2
|
834 |
+
|
835 |
+
|
836 |
+
# --------------------------------------------
|
837 |
+
# imresize for numpy image [0, 1]
|
838 |
+
# --------------------------------------------
|
839 |
+
def imresize_np(img, scale, antialiasing=True):
|
840 |
+
# Now the scale should be the same for H and W
|
841 |
+
# input: img: Numpy, HWC or HW [0,1]
|
842 |
+
# output: HWC or HW [0,1] w/o round
|
843 |
+
img = torch.from_numpy(img)
|
844 |
+
need_squeeze = True if img.dim() == 2 else False
|
845 |
+
if need_squeeze:
|
846 |
+
img.unsqueeze_(2)
|
847 |
+
|
848 |
+
in_H, in_W, in_C = img.size()
|
849 |
+
out_C, out_H, out_W = in_C, math.ceil(in_H * scale), math.ceil(in_W * scale)
|
850 |
+
kernel_width = 4
|
851 |
+
kernel = 'cubic'
|
852 |
+
|
853 |
+
# Return the desired dimension order for performing the resize. The
|
854 |
+
# strategy is to perform the resize first along the dimension with the
|
855 |
+
# smallest scale factor.
|
856 |
+
# Now we do not support this.
|
857 |
+
|
858 |
+
# get weights and indices
|
859 |
+
weights_H, indices_H, sym_len_Hs, sym_len_He = calculate_weights_indices(
|
860 |
+
in_H, out_H, scale, kernel, kernel_width, antialiasing)
|
861 |
+
weights_W, indices_W, sym_len_Ws, sym_len_We = calculate_weights_indices(
|
862 |
+
in_W, out_W, scale, kernel, kernel_width, antialiasing)
|
863 |
+
# process H dimension
|
864 |
+
# symmetric copying
|
865 |
+
img_aug = torch.FloatTensor(in_H + sym_len_Hs + sym_len_He, in_W, in_C)
|
866 |
+
img_aug.narrow(0, sym_len_Hs, in_H).copy_(img)
|
867 |
+
|
868 |
+
sym_patch = img[:sym_len_Hs, :, :]
|
869 |
+
inv_idx = torch.arange(sym_patch.size(0) - 1, -1, -1).long()
|
870 |
+
sym_patch_inv = sym_patch.index_select(0, inv_idx)
|
871 |
+
img_aug.narrow(0, 0, sym_len_Hs).copy_(sym_patch_inv)
|
872 |
+
|
873 |
+
sym_patch = img[-sym_len_He:, :, :]
|
874 |
+
inv_idx = torch.arange(sym_patch.size(0) - 1, -1, -1).long()
|
875 |
+
sym_patch_inv = sym_patch.index_select(0, inv_idx)
|
876 |
+
img_aug.narrow(0, sym_len_Hs + in_H, sym_len_He).copy_(sym_patch_inv)
|
877 |
+
|
878 |
+
out_1 = torch.FloatTensor(out_H, in_W, in_C)
|
879 |
+
kernel_width = weights_H.size(1)
|
880 |
+
for i in range(out_H):
|
881 |
+
idx = int(indices_H[i][0])
|
882 |
+
for j in range(out_C):
|
883 |
+
out_1[i, :, j] = img_aug[idx:idx + kernel_width, :, j].transpose(0, 1).mv(weights_H[i])
|
884 |
+
|
885 |
+
# process W dimension
|
886 |
+
# symmetric copying
|
887 |
+
out_1_aug = torch.FloatTensor(out_H, in_W + sym_len_Ws + sym_len_We, in_C)
|
888 |
+
out_1_aug.narrow(1, sym_len_Ws, in_W).copy_(out_1)
|
889 |
+
|
890 |
+
sym_patch = out_1[:, :sym_len_Ws, :]
|
891 |
+
inv_idx = torch.arange(sym_patch.size(1) - 1, -1, -1).long()
|
892 |
+
sym_patch_inv = sym_patch.index_select(1, inv_idx)
|
893 |
+
out_1_aug.narrow(1, 0, sym_len_Ws).copy_(sym_patch_inv)
|
894 |
+
|
895 |
+
sym_patch = out_1[:, -sym_len_We:, :]
|
896 |
+
inv_idx = torch.arange(sym_patch.size(1) - 1, -1, -1).long()
|
897 |
+
sym_patch_inv = sym_patch.index_select(1, inv_idx)
|
898 |
+
out_1_aug.narrow(1, sym_len_Ws + in_W, sym_len_We).copy_(sym_patch_inv)
|
899 |
+
|
900 |
+
out_2 = torch.FloatTensor(out_H, out_W, in_C)
|
901 |
+
kernel_width = weights_W.size(1)
|
902 |
+
for i in range(out_W):
|
903 |
+
idx = int(indices_W[i][0])
|
904 |
+
for j in range(out_C):
|
905 |
+
out_2[:, i, j] = out_1_aug[:, idx:idx + kernel_width, j].mv(weights_W[i])
|
906 |
+
if need_squeeze:
|
907 |
+
out_2.squeeze_()
|
908 |
+
|
909 |
+
return out_2.numpy()
|
910 |
+
|
911 |
+
|
912 |
+
if __name__ == '__main__':
|
913 |
+
print('---')
|
914 |
+
# img = imread_uint('test.bmp', 3)
|
915 |
+
# img = uint2single(img)
|
916 |
+
# img_bicubic = imresize_np(img, 1/4)
|
ldm/modules/losses/__init__.py
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
from ldm.modules.losses.contperceptual import LPIPSWithDiscriminator
|
ldm/modules/losses/contperceptual.py
ADDED
@@ -0,0 +1,111 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
import torch.nn as nn
|
3 |
+
|
4 |
+
from taming.modules.losses.vqperceptual import * # TODO: taming dependency yes/no?
|
5 |
+
|
6 |
+
|
7 |
+
class LPIPSWithDiscriminator(nn.Module):
|
8 |
+
def __init__(self, disc_start, logvar_init=0.0, kl_weight=1.0, pixelloss_weight=1.0,
|
9 |
+
disc_num_layers=3, disc_in_channels=3, disc_factor=1.0, disc_weight=1.0,
|
10 |
+
perceptual_weight=1.0, use_actnorm=False, disc_conditional=False,
|
11 |
+
disc_loss="hinge"):
|
12 |
+
|
13 |
+
super().__init__()
|
14 |
+
assert disc_loss in ["hinge", "vanilla"]
|
15 |
+
self.kl_weight = kl_weight
|
16 |
+
self.pixel_weight = pixelloss_weight
|
17 |
+
self.perceptual_loss = LPIPS().eval()
|
18 |
+
self.perceptual_weight = perceptual_weight
|
19 |
+
# output log variance
|
20 |
+
self.logvar = nn.Parameter(torch.ones(size=()) * logvar_init)
|
21 |
+
|
22 |
+
self.discriminator = NLayerDiscriminator(input_nc=disc_in_channels,
|
23 |
+
n_layers=disc_num_layers,
|
24 |
+
use_actnorm=use_actnorm
|
25 |
+
).apply(weights_init)
|
26 |
+
self.discriminator_iter_start = disc_start
|
27 |
+
self.disc_loss = hinge_d_loss if disc_loss == "hinge" else vanilla_d_loss
|
28 |
+
self.disc_factor = disc_factor
|
29 |
+
self.discriminator_weight = disc_weight
|
30 |
+
self.disc_conditional = disc_conditional
|
31 |
+
|
32 |
+
def calculate_adaptive_weight(self, nll_loss, g_loss, last_layer=None):
|
33 |
+
if last_layer is not None:
|
34 |
+
nll_grads = torch.autograd.grad(nll_loss, last_layer, retain_graph=True)[0]
|
35 |
+
g_grads = torch.autograd.grad(g_loss, last_layer, retain_graph=True)[0]
|
36 |
+
else:
|
37 |
+
nll_grads = torch.autograd.grad(nll_loss, self.last_layer[0], retain_graph=True)[0]
|
38 |
+
g_grads = torch.autograd.grad(g_loss, self.last_layer[0], retain_graph=True)[0]
|
39 |
+
|
40 |
+
d_weight = torch.norm(nll_grads) / (torch.norm(g_grads) + 1e-4)
|
41 |
+
d_weight = torch.clamp(d_weight, 0.0, 1e4).detach()
|
42 |
+
d_weight = d_weight * self.discriminator_weight
|
43 |
+
return d_weight
|
44 |
+
|
45 |
+
def forward(self, inputs, reconstructions, posteriors, optimizer_idx,
|
46 |
+
global_step, last_layer=None, cond=None, split="train",
|
47 |
+
weights=None):
|
48 |
+
rec_loss = torch.abs(inputs.contiguous() - reconstructions.contiguous())
|
49 |
+
if self.perceptual_weight > 0:
|
50 |
+
p_loss = self.perceptual_loss(inputs.contiguous(), reconstructions.contiguous())
|
51 |
+
rec_loss = rec_loss + self.perceptual_weight * p_loss
|
52 |
+
|
53 |
+
nll_loss = rec_loss / torch.exp(self.logvar) + self.logvar
|
54 |
+
weighted_nll_loss = nll_loss
|
55 |
+
if weights is not None:
|
56 |
+
weighted_nll_loss = weights*nll_loss
|
57 |
+
weighted_nll_loss = torch.sum(weighted_nll_loss) / weighted_nll_loss.shape[0]
|
58 |
+
nll_loss = torch.sum(nll_loss) / nll_loss.shape[0]
|
59 |
+
kl_loss = posteriors.kl()
|
60 |
+
kl_loss = torch.sum(kl_loss) / kl_loss.shape[0]
|
61 |
+
|
62 |
+
# now the GAN part
|
63 |
+
if optimizer_idx == 0:
|
64 |
+
# generator update
|
65 |
+
if cond is None:
|
66 |
+
assert not self.disc_conditional
|
67 |
+
logits_fake = self.discriminator(reconstructions.contiguous())
|
68 |
+
else:
|
69 |
+
assert self.disc_conditional
|
70 |
+
logits_fake = self.discriminator(torch.cat((reconstructions.contiguous(), cond), dim=1))
|
71 |
+
g_loss = -torch.mean(logits_fake)
|
72 |
+
|
73 |
+
if self.disc_factor > 0.0:
|
74 |
+
try:
|
75 |
+
d_weight = self.calculate_adaptive_weight(nll_loss, g_loss, last_layer=last_layer)
|
76 |
+
except RuntimeError:
|
77 |
+
assert not self.training
|
78 |
+
d_weight = torch.tensor(0.0)
|
79 |
+
else:
|
80 |
+
d_weight = torch.tensor(0.0)
|
81 |
+
|
82 |
+
disc_factor = adopt_weight(self.disc_factor, global_step, threshold=self.discriminator_iter_start)
|
83 |
+
loss = weighted_nll_loss + self.kl_weight * kl_loss + d_weight * disc_factor * g_loss
|
84 |
+
|
85 |
+
log = {"{}/total_loss".format(split): loss.clone().detach().mean(), "{}/logvar".format(split): self.logvar.detach(),
|
86 |
+
"{}/kl_loss".format(split): kl_loss.detach().mean(), "{}/nll_loss".format(split): nll_loss.detach().mean(),
|
87 |
+
"{}/rec_loss".format(split): rec_loss.detach().mean(),
|
88 |
+
"{}/d_weight".format(split): d_weight.detach(),
|
89 |
+
"{}/disc_factor".format(split): torch.tensor(disc_factor),
|
90 |
+
"{}/g_loss".format(split): g_loss.detach().mean(),
|
91 |
+
}
|
92 |
+
return loss, log
|
93 |
+
|
94 |
+
if optimizer_idx == 1:
|
95 |
+
# second pass for discriminator update
|
96 |
+
if cond is None:
|
97 |
+
logits_real = self.discriminator(inputs.contiguous().detach())
|
98 |
+
logits_fake = self.discriminator(reconstructions.contiguous().detach())
|
99 |
+
else:
|
100 |
+
logits_real = self.discriminator(torch.cat((inputs.contiguous().detach(), cond), dim=1))
|
101 |
+
logits_fake = self.discriminator(torch.cat((reconstructions.contiguous().detach(), cond), dim=1))
|
102 |
+
|
103 |
+
disc_factor = adopt_weight(self.disc_factor, global_step, threshold=self.discriminator_iter_start)
|
104 |
+
d_loss = disc_factor * self.disc_loss(logits_real, logits_fake)
|
105 |
+
|
106 |
+
log = {"{}/disc_loss".format(split): d_loss.clone().detach().mean(),
|
107 |
+
"{}/logits_real".format(split): logits_real.detach().mean(),
|
108 |
+
"{}/logits_fake".format(split): logits_fake.detach().mean()
|
109 |
+
}
|
110 |
+
return d_loss, log
|
111 |
+
|
ldm/modules/losses/vqperceptual.py
ADDED
@@ -0,0 +1,167 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
from torch import nn
|
3 |
+
import torch.nn.functional as F
|
4 |
+
from einops import repeat
|
5 |
+
|
6 |
+
from taming.modules.discriminator.model import NLayerDiscriminator, weights_init
|
7 |
+
from taming.modules.losses.lpips import LPIPS
|
8 |
+
from taming.modules.losses.vqperceptual import hinge_d_loss, vanilla_d_loss
|
9 |
+
|
10 |
+
|
11 |
+
def hinge_d_loss_with_exemplar_weights(logits_real, logits_fake, weights):
|
12 |
+
assert weights.shape[0] == logits_real.shape[0] == logits_fake.shape[0]
|
13 |
+
loss_real = torch.mean(F.relu(1. - logits_real), dim=[1,2,3])
|
14 |
+
loss_fake = torch.mean(F.relu(1. + logits_fake), dim=[1,2,3])
|
15 |
+
loss_real = (weights * loss_real).sum() / weights.sum()
|
16 |
+
loss_fake = (weights * loss_fake).sum() / weights.sum()
|
17 |
+
d_loss = 0.5 * (loss_real + loss_fake)
|
18 |
+
return d_loss
|
19 |
+
|
20 |
+
def adopt_weight(weight, global_step, threshold=0, value=0.):
|
21 |
+
if global_step < threshold:
|
22 |
+
weight = value
|
23 |
+
return weight
|
24 |
+
|
25 |
+
|
26 |
+
def measure_perplexity(predicted_indices, n_embed):
|
27 |
+
# src: https://github.com/karpathy/deep-vector-quantization/blob/main/model.py
|
28 |
+
# eval cluster perplexity. when perplexity == num_embeddings then all clusters are used exactly equally
|
29 |
+
encodings = F.one_hot(predicted_indices, n_embed).float().reshape(-1, n_embed)
|
30 |
+
avg_probs = encodings.mean(0)
|
31 |
+
perplexity = (-(avg_probs * torch.log(avg_probs + 1e-10)).sum()).exp()
|
32 |
+
cluster_use = torch.sum(avg_probs > 0)
|
33 |
+
return perplexity, cluster_use
|
34 |
+
|
35 |
+
def l1(x, y):
|
36 |
+
return torch.abs(x-y)
|
37 |
+
|
38 |
+
|
39 |
+
def l2(x, y):
|
40 |
+
return torch.pow((x-y), 2)
|
41 |
+
|
42 |
+
|
43 |
+
class VQLPIPSWithDiscriminator(nn.Module):
|
44 |
+
def __init__(self, disc_start, codebook_weight=1.0, pixelloss_weight=1.0,
|
45 |
+
disc_num_layers=3, disc_in_channels=3, disc_factor=1.0, disc_weight=1.0,
|
46 |
+
perceptual_weight=1.0, use_actnorm=False, disc_conditional=False,
|
47 |
+
disc_ndf=64, disc_loss="hinge", n_classes=None, perceptual_loss="lpips",
|
48 |
+
pixel_loss="l1"):
|
49 |
+
super().__init__()
|
50 |
+
assert disc_loss in ["hinge", "vanilla"]
|
51 |
+
assert perceptual_loss in ["lpips", "clips", "dists"]
|
52 |
+
assert pixel_loss in ["l1", "l2"]
|
53 |
+
self.codebook_weight = codebook_weight
|
54 |
+
self.pixel_weight = pixelloss_weight
|
55 |
+
if perceptual_loss == "lpips":
|
56 |
+
print(f"{self.__class__.__name__}: Running with LPIPS.")
|
57 |
+
self.perceptual_loss = LPIPS().eval()
|
58 |
+
else:
|
59 |
+
raise ValueError(f"Unknown perceptual loss: >> {perceptual_loss} <<")
|
60 |
+
self.perceptual_weight = perceptual_weight
|
61 |
+
|
62 |
+
if pixel_loss == "l1":
|
63 |
+
self.pixel_loss = l1
|
64 |
+
else:
|
65 |
+
self.pixel_loss = l2
|
66 |
+
|
67 |
+
self.discriminator = NLayerDiscriminator(input_nc=disc_in_channels,
|
68 |
+
n_layers=disc_num_layers,
|
69 |
+
use_actnorm=use_actnorm,
|
70 |
+
ndf=disc_ndf
|
71 |
+
).apply(weights_init)
|
72 |
+
self.discriminator_iter_start = disc_start
|
73 |
+
if disc_loss == "hinge":
|
74 |
+
self.disc_loss = hinge_d_loss
|
75 |
+
elif disc_loss == "vanilla":
|
76 |
+
self.disc_loss = vanilla_d_loss
|
77 |
+
else:
|
78 |
+
raise ValueError(f"Unknown GAN loss '{disc_loss}'.")
|
79 |
+
print(f"VQLPIPSWithDiscriminator running with {disc_loss} loss.")
|
80 |
+
self.disc_factor = disc_factor
|
81 |
+
self.discriminator_weight = disc_weight
|
82 |
+
self.disc_conditional = disc_conditional
|
83 |
+
self.n_classes = n_classes
|
84 |
+
|
85 |
+
def calculate_adaptive_weight(self, nll_loss, g_loss, last_layer=None):
|
86 |
+
if last_layer is not None:
|
87 |
+
nll_grads = torch.autograd.grad(nll_loss, last_layer, retain_graph=True)[0]
|
88 |
+
g_grads = torch.autograd.grad(g_loss, last_layer, retain_graph=True)[0]
|
89 |
+
else:
|
90 |
+
nll_grads = torch.autograd.grad(nll_loss, self.last_layer[0], retain_graph=True)[0]
|
91 |
+
g_grads = torch.autograd.grad(g_loss, self.last_layer[0], retain_graph=True)[0]
|
92 |
+
|
93 |
+
d_weight = torch.norm(nll_grads) / (torch.norm(g_grads) + 1e-4)
|
94 |
+
d_weight = torch.clamp(d_weight, 0.0, 1e4).detach()
|
95 |
+
d_weight = d_weight * self.discriminator_weight
|
96 |
+
return d_weight
|
97 |
+
|
98 |
+
def forward(self, codebook_loss, inputs, reconstructions, optimizer_idx,
|
99 |
+
global_step, last_layer=None, cond=None, split="train", predicted_indices=None):
|
100 |
+
if not exists(codebook_loss):
|
101 |
+
codebook_loss = torch.tensor([0.]).to(inputs.device)
|
102 |
+
#rec_loss = torch.abs(inputs.contiguous() - reconstructions.contiguous())
|
103 |
+
rec_loss = self.pixel_loss(inputs.contiguous(), reconstructions.contiguous())
|
104 |
+
if self.perceptual_weight > 0:
|
105 |
+
p_loss = self.perceptual_loss(inputs.contiguous(), reconstructions.contiguous())
|
106 |
+
rec_loss = rec_loss + self.perceptual_weight * p_loss
|
107 |
+
else:
|
108 |
+
p_loss = torch.tensor([0.0])
|
109 |
+
|
110 |
+
nll_loss = rec_loss
|
111 |
+
#nll_loss = torch.sum(nll_loss) / nll_loss.shape[0]
|
112 |
+
nll_loss = torch.mean(nll_loss)
|
113 |
+
|
114 |
+
# now the GAN part
|
115 |
+
if optimizer_idx == 0:
|
116 |
+
# generator update
|
117 |
+
if cond is None:
|
118 |
+
assert not self.disc_conditional
|
119 |
+
logits_fake = self.discriminator(reconstructions.contiguous())
|
120 |
+
else:
|
121 |
+
assert self.disc_conditional
|
122 |
+
logits_fake = self.discriminator(torch.cat((reconstructions.contiguous(), cond), dim=1))
|
123 |
+
g_loss = -torch.mean(logits_fake)
|
124 |
+
|
125 |
+
try:
|
126 |
+
d_weight = self.calculate_adaptive_weight(nll_loss, g_loss, last_layer=last_layer)
|
127 |
+
except RuntimeError:
|
128 |
+
assert not self.training
|
129 |
+
d_weight = torch.tensor(0.0)
|
130 |
+
|
131 |
+
disc_factor = adopt_weight(self.disc_factor, global_step, threshold=self.discriminator_iter_start)
|
132 |
+
loss = nll_loss + d_weight * disc_factor * g_loss + self.codebook_weight * codebook_loss.mean()
|
133 |
+
|
134 |
+
log = {"{}/total_loss".format(split): loss.clone().detach().mean(),
|
135 |
+
"{}/quant_loss".format(split): codebook_loss.detach().mean(),
|
136 |
+
"{}/nll_loss".format(split): nll_loss.detach().mean(),
|
137 |
+
"{}/rec_loss".format(split): rec_loss.detach().mean(),
|
138 |
+
"{}/p_loss".format(split): p_loss.detach().mean(),
|
139 |
+
"{}/d_weight".format(split): d_weight.detach(),
|
140 |
+
"{}/disc_factor".format(split): torch.tensor(disc_factor),
|
141 |
+
"{}/g_loss".format(split): g_loss.detach().mean(),
|
142 |
+
}
|
143 |
+
if predicted_indices is not None:
|
144 |
+
assert self.n_classes is not None
|
145 |
+
with torch.no_grad():
|
146 |
+
perplexity, cluster_usage = measure_perplexity(predicted_indices, self.n_classes)
|
147 |
+
log[f"{split}/perplexity"] = perplexity
|
148 |
+
log[f"{split}/cluster_usage"] = cluster_usage
|
149 |
+
return loss, log
|
150 |
+
|
151 |
+
if optimizer_idx == 1:
|
152 |
+
# second pass for discriminator update
|
153 |
+
if cond is None:
|
154 |
+
logits_real = self.discriminator(inputs.contiguous().detach())
|
155 |
+
logits_fake = self.discriminator(reconstructions.contiguous().detach())
|
156 |
+
else:
|
157 |
+
logits_real = self.discriminator(torch.cat((inputs.contiguous().detach(), cond), dim=1))
|
158 |
+
logits_fake = self.discriminator(torch.cat((reconstructions.contiguous().detach(), cond), dim=1))
|
159 |
+
|
160 |
+
disc_factor = adopt_weight(self.disc_factor, global_step, threshold=self.discriminator_iter_start)
|
161 |
+
d_loss = disc_factor * self.disc_loss(logits_real, logits_fake)
|
162 |
+
|
163 |
+
log = {"{}/disc_loss".format(split): d_loss.clone().detach().mean(),
|
164 |
+
"{}/logits_real".format(split): logits_real.detach().mean(),
|
165 |
+
"{}/logits_fake".format(split): logits_fake.detach().mean()
|
166 |
+
}
|
167 |
+
return d_loss, log
|
ldm/modules/x_transformer.py
ADDED
@@ -0,0 +1,641 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""shout-out to https://github.com/lucidrains/x-transformers/tree/main/x_transformers"""
|
2 |
+
import torch
|
3 |
+
from torch import nn, einsum
|
4 |
+
import torch.nn.functional as F
|
5 |
+
from functools import partial
|
6 |
+
from inspect import isfunction
|
7 |
+
from collections import namedtuple
|
8 |
+
from einops import rearrange, repeat, reduce
|
9 |
+
|
10 |
+
# constants
|
11 |
+
|
12 |
+
DEFAULT_DIM_HEAD = 64
|
13 |
+
|
14 |
+
Intermediates = namedtuple('Intermediates', [
|
15 |
+
'pre_softmax_attn',
|
16 |
+
'post_softmax_attn'
|
17 |
+
])
|
18 |
+
|
19 |
+
LayerIntermediates = namedtuple('Intermediates', [
|
20 |
+
'hiddens',
|
21 |
+
'attn_intermediates'
|
22 |
+
])
|
23 |
+
|
24 |
+
|
25 |
+
class AbsolutePositionalEmbedding(nn.Module):
|
26 |
+
def __init__(self, dim, max_seq_len):
|
27 |
+
super().__init__()
|
28 |
+
self.emb = nn.Embedding(max_seq_len, dim)
|
29 |
+
self.init_()
|
30 |
+
|
31 |
+
def init_(self):
|
32 |
+
nn.init.normal_(self.emb.weight, std=0.02)
|
33 |
+
|
34 |
+
def forward(self, x):
|
35 |
+
n = torch.arange(x.shape[1], device=x.device)
|
36 |
+
return self.emb(n)[None, :, :]
|
37 |
+
|
38 |
+
|
39 |
+
class FixedPositionalEmbedding(nn.Module):
|
40 |
+
def __init__(self, dim):
|
41 |
+
super().__init__()
|
42 |
+
inv_freq = 1. / (10000 ** (torch.arange(0, dim, 2).float() / dim))
|
43 |
+
self.register_buffer('inv_freq', inv_freq)
|
44 |
+
|
45 |
+
def forward(self, x, seq_dim=1, offset=0):
|
46 |
+
t = torch.arange(x.shape[seq_dim], device=x.device).type_as(self.inv_freq) + offset
|
47 |
+
sinusoid_inp = torch.einsum('i , j -> i j', t, self.inv_freq)
|
48 |
+
emb = torch.cat((sinusoid_inp.sin(), sinusoid_inp.cos()), dim=-1)
|
49 |
+
return emb[None, :, :]
|
50 |
+
|
51 |
+
|
52 |
+
# helpers
|
53 |
+
|
54 |
+
def exists(val):
|
55 |
+
return val is not None
|
56 |
+
|
57 |
+
|
58 |
+
def default(val, d):
|
59 |
+
if exists(val):
|
60 |
+
return val
|
61 |
+
return d() if isfunction(d) else d
|
62 |
+
|
63 |
+
|
64 |
+
def always(val):
|
65 |
+
def inner(*args, **kwargs):
|
66 |
+
return val
|
67 |
+
return inner
|
68 |
+
|
69 |
+
|
70 |
+
def not_equals(val):
|
71 |
+
def inner(x):
|
72 |
+
return x != val
|
73 |
+
return inner
|
74 |
+
|
75 |
+
|
76 |
+
def equals(val):
|
77 |
+
def inner(x):
|
78 |
+
return x == val
|
79 |
+
return inner
|
80 |
+
|
81 |
+
|
82 |
+
def max_neg_value(tensor):
|
83 |
+
return -torch.finfo(tensor.dtype).max
|
84 |
+
|
85 |
+
|
86 |
+
# keyword argument helpers
|
87 |
+
|
88 |
+
def pick_and_pop(keys, d):
|
89 |
+
values = list(map(lambda key: d.pop(key), keys))
|
90 |
+
return dict(zip(keys, values))
|
91 |
+
|
92 |
+
|
93 |
+
def group_dict_by_key(cond, d):
|
94 |
+
return_val = [dict(), dict()]
|
95 |
+
for key in d.keys():
|
96 |
+
match = bool(cond(key))
|
97 |
+
ind = int(not match)
|
98 |
+
return_val[ind][key] = d[key]
|
99 |
+
return (*return_val,)
|
100 |
+
|
101 |
+
|
102 |
+
def string_begins_with(prefix, str):
|
103 |
+
return str.startswith(prefix)
|
104 |
+
|
105 |
+
|
106 |
+
def group_by_key_prefix(prefix, d):
|
107 |
+
return group_dict_by_key(partial(string_begins_with, prefix), d)
|
108 |
+
|
109 |
+
|
110 |
+
def groupby_prefix_and_trim(prefix, d):
|
111 |
+
kwargs_with_prefix, kwargs = group_dict_by_key(partial(string_begins_with, prefix), d)
|
112 |
+
kwargs_without_prefix = dict(map(lambda x: (x[0][len(prefix):], x[1]), tuple(kwargs_with_prefix.items())))
|
113 |
+
return kwargs_without_prefix, kwargs
|
114 |
+
|
115 |
+
|
116 |
+
# classes
|
117 |
+
class Scale(nn.Module):
|
118 |
+
def __init__(self, value, fn):
|
119 |
+
super().__init__()
|
120 |
+
self.value = value
|
121 |
+
self.fn = fn
|
122 |
+
|
123 |
+
def forward(self, x, **kwargs):
|
124 |
+
x, *rest = self.fn(x, **kwargs)
|
125 |
+
return (x * self.value, *rest)
|
126 |
+
|
127 |
+
|
128 |
+
class Rezero(nn.Module):
|
129 |
+
def __init__(self, fn):
|
130 |
+
super().__init__()
|
131 |
+
self.fn = fn
|
132 |
+
self.g = nn.Parameter(torch.zeros(1))
|
133 |
+
|
134 |
+
def forward(self, x, **kwargs):
|
135 |
+
x, *rest = self.fn(x, **kwargs)
|
136 |
+
return (x * self.g, *rest)
|
137 |
+
|
138 |
+
|
139 |
+
class ScaleNorm(nn.Module):
|
140 |
+
def __init__(self, dim, eps=1e-5):
|
141 |
+
super().__init__()
|
142 |
+
self.scale = dim ** -0.5
|
143 |
+
self.eps = eps
|
144 |
+
self.g = nn.Parameter(torch.ones(1))
|
145 |
+
|
146 |
+
def forward(self, x):
|
147 |
+
norm = torch.norm(x, dim=-1, keepdim=True) * self.scale
|
148 |
+
return x / norm.clamp(min=self.eps) * self.g
|
149 |
+
|
150 |
+
|
151 |
+
class RMSNorm(nn.Module):
|
152 |
+
def __init__(self, dim, eps=1e-8):
|
153 |
+
super().__init__()
|
154 |
+
self.scale = dim ** -0.5
|
155 |
+
self.eps = eps
|
156 |
+
self.g = nn.Parameter(torch.ones(dim))
|
157 |
+
|
158 |
+
def forward(self, x):
|
159 |
+
norm = torch.norm(x, dim=-1, keepdim=True) * self.scale
|
160 |
+
return x / norm.clamp(min=self.eps) * self.g
|
161 |
+
|
162 |
+
|
163 |
+
class Residual(nn.Module):
|
164 |
+
def forward(self, x, residual):
|
165 |
+
return x + residual
|
166 |
+
|
167 |
+
|
168 |
+
class GRUGating(nn.Module):
|
169 |
+
def __init__(self, dim):
|
170 |
+
super().__init__()
|
171 |
+
self.gru = nn.GRUCell(dim, dim)
|
172 |
+
|
173 |
+
def forward(self, x, residual):
|
174 |
+
gated_output = self.gru(
|
175 |
+
rearrange(x, 'b n d -> (b n) d'),
|
176 |
+
rearrange(residual, 'b n d -> (b n) d')
|
177 |
+
)
|
178 |
+
|
179 |
+
return gated_output.reshape_as(x)
|
180 |
+
|
181 |
+
|
182 |
+
# feedforward
|
183 |
+
|
184 |
+
class GEGLU(nn.Module):
|
185 |
+
def __init__(self, dim_in, dim_out):
|
186 |
+
super().__init__()
|
187 |
+
self.proj = nn.Linear(dim_in, dim_out * 2)
|
188 |
+
|
189 |
+
def forward(self, x):
|
190 |
+
x, gate = self.proj(x).chunk(2, dim=-1)
|
191 |
+
return x * F.gelu(gate)
|
192 |
+
|
193 |
+
|
194 |
+
class FeedForward(nn.Module):
|
195 |
+
def __init__(self, dim, dim_out=None, mult=4, glu=False, dropout=0.):
|
196 |
+
super().__init__()
|
197 |
+
inner_dim = int(dim * mult)
|
198 |
+
dim_out = default(dim_out, dim)
|
199 |
+
project_in = nn.Sequential(
|
200 |
+
nn.Linear(dim, inner_dim),
|
201 |
+
nn.GELU()
|
202 |
+
) if not glu else GEGLU(dim, inner_dim)
|
203 |
+
|
204 |
+
self.net = nn.Sequential(
|
205 |
+
project_in,
|
206 |
+
nn.Dropout(dropout),
|
207 |
+
nn.Linear(inner_dim, dim_out)
|
208 |
+
)
|
209 |
+
|
210 |
+
def forward(self, x):
|
211 |
+
return self.net(x)
|
212 |
+
|
213 |
+
|
214 |
+
# attention.
|
215 |
+
class Attention(nn.Module):
|
216 |
+
def __init__(
|
217 |
+
self,
|
218 |
+
dim,
|
219 |
+
dim_head=DEFAULT_DIM_HEAD,
|
220 |
+
heads=8,
|
221 |
+
causal=False,
|
222 |
+
mask=None,
|
223 |
+
talking_heads=False,
|
224 |
+
sparse_topk=None,
|
225 |
+
use_entmax15=False,
|
226 |
+
num_mem_kv=0,
|
227 |
+
dropout=0.,
|
228 |
+
on_attn=False
|
229 |
+
):
|
230 |
+
super().__init__()
|
231 |
+
if use_entmax15:
|
232 |
+
raise NotImplementedError("Check out entmax activation instead of softmax activation!")
|
233 |
+
self.scale = dim_head ** -0.5
|
234 |
+
self.heads = heads
|
235 |
+
self.causal = causal
|
236 |
+
self.mask = mask
|
237 |
+
|
238 |
+
inner_dim = dim_head * heads
|
239 |
+
|
240 |
+
self.to_q = nn.Linear(dim, inner_dim, bias=False)
|
241 |
+
self.to_k = nn.Linear(dim, inner_dim, bias=False)
|
242 |
+
self.to_v = nn.Linear(dim, inner_dim, bias=False)
|
243 |
+
self.dropout = nn.Dropout(dropout)
|
244 |
+
|
245 |
+
# talking heads
|
246 |
+
self.talking_heads = talking_heads
|
247 |
+
if talking_heads:
|
248 |
+
self.pre_softmax_proj = nn.Parameter(torch.randn(heads, heads))
|
249 |
+
self.post_softmax_proj = nn.Parameter(torch.randn(heads, heads))
|
250 |
+
|
251 |
+
# explicit topk sparse attention
|
252 |
+
self.sparse_topk = sparse_topk
|
253 |
+
|
254 |
+
# entmax
|
255 |
+
#self.attn_fn = entmax15 if use_entmax15 else F.softmax
|
256 |
+
self.attn_fn = F.softmax
|
257 |
+
|
258 |
+
# add memory key / values
|
259 |
+
self.num_mem_kv = num_mem_kv
|
260 |
+
if num_mem_kv > 0:
|
261 |
+
self.mem_k = nn.Parameter(torch.randn(heads, num_mem_kv, dim_head))
|
262 |
+
self.mem_v = nn.Parameter(torch.randn(heads, num_mem_kv, dim_head))
|
263 |
+
|
264 |
+
# attention on attention
|
265 |
+
self.attn_on_attn = on_attn
|
266 |
+
self.to_out = nn.Sequential(nn.Linear(inner_dim, dim * 2), nn.GLU()) if on_attn else nn.Linear(inner_dim, dim)
|
267 |
+
|
268 |
+
def forward(
|
269 |
+
self,
|
270 |
+
x,
|
271 |
+
context=None,
|
272 |
+
mask=None,
|
273 |
+
context_mask=None,
|
274 |
+
rel_pos=None,
|
275 |
+
sinusoidal_emb=None,
|
276 |
+
prev_attn=None,
|
277 |
+
mem=None
|
278 |
+
):
|
279 |
+
b, n, _, h, talking_heads, device = *x.shape, self.heads, self.talking_heads, x.device
|
280 |
+
kv_input = default(context, x)
|
281 |
+
|
282 |
+
q_input = x
|
283 |
+
k_input = kv_input
|
284 |
+
v_input = kv_input
|
285 |
+
|
286 |
+
if exists(mem):
|
287 |
+
k_input = torch.cat((mem, k_input), dim=-2)
|
288 |
+
v_input = torch.cat((mem, v_input), dim=-2)
|
289 |
+
|
290 |
+
if exists(sinusoidal_emb):
|
291 |
+
# in shortformer, the query would start at a position offset depending on the past cached memory
|
292 |
+
offset = k_input.shape[-2] - q_input.shape[-2]
|
293 |
+
q_input = q_input + sinusoidal_emb(q_input, offset=offset)
|
294 |
+
k_input = k_input + sinusoidal_emb(k_input)
|
295 |
+
|
296 |
+
q = self.to_q(q_input)
|
297 |
+
k = self.to_k(k_input)
|
298 |
+
v = self.to_v(v_input)
|
299 |
+
|
300 |
+
q, k, v = map(lambda t: rearrange(t, 'b n (h d) -> b h n d', h=h), (q, k, v))
|
301 |
+
|
302 |
+
input_mask = None
|
303 |
+
if any(map(exists, (mask, context_mask))):
|
304 |
+
q_mask = default(mask, lambda: torch.ones((b, n), device=device).bool())
|
305 |
+
k_mask = q_mask if not exists(context) else context_mask
|
306 |
+
k_mask = default(k_mask, lambda: torch.ones((b, k.shape[-2]), device=device).bool())
|
307 |
+
q_mask = rearrange(q_mask, 'b i -> b () i ()')
|
308 |
+
k_mask = rearrange(k_mask, 'b j -> b () () j')
|
309 |
+
input_mask = q_mask * k_mask
|
310 |
+
|
311 |
+
if self.num_mem_kv > 0:
|
312 |
+
mem_k, mem_v = map(lambda t: repeat(t, 'h n d -> b h n d', b=b), (self.mem_k, self.mem_v))
|
313 |
+
k = torch.cat((mem_k, k), dim=-2)
|
314 |
+
v = torch.cat((mem_v, v), dim=-2)
|
315 |
+
if exists(input_mask):
|
316 |
+
input_mask = F.pad(input_mask, (self.num_mem_kv, 0), value=True)
|
317 |
+
|
318 |
+
dots = einsum('b h i d, b h j d -> b h i j', q, k) * self.scale
|
319 |
+
mask_value = max_neg_value(dots)
|
320 |
+
|
321 |
+
if exists(prev_attn):
|
322 |
+
dots = dots + prev_attn
|
323 |
+
|
324 |
+
pre_softmax_attn = dots
|
325 |
+
|
326 |
+
if talking_heads:
|
327 |
+
dots = einsum('b h i j, h k -> b k i j', dots, self.pre_softmax_proj).contiguous()
|
328 |
+
|
329 |
+
if exists(rel_pos):
|
330 |
+
dots = rel_pos(dots)
|
331 |
+
|
332 |
+
if exists(input_mask):
|
333 |
+
dots.masked_fill_(~input_mask, mask_value)
|
334 |
+
del input_mask
|
335 |
+
|
336 |
+
if self.causal:
|
337 |
+
i, j = dots.shape[-2:]
|
338 |
+
r = torch.arange(i, device=device)
|
339 |
+
mask = rearrange(r, 'i -> () () i ()') < rearrange(r, 'j -> () () () j')
|
340 |
+
mask = F.pad(mask, (j - i, 0), value=False)
|
341 |
+
dots.masked_fill_(mask, mask_value)
|
342 |
+
del mask
|
343 |
+
|
344 |
+
if exists(self.sparse_topk) and self.sparse_topk < dots.shape[-1]:
|
345 |
+
top, _ = dots.topk(self.sparse_topk, dim=-1)
|
346 |
+
vk = top[..., -1].unsqueeze(-1).expand_as(dots)
|
347 |
+
mask = dots < vk
|
348 |
+
dots.masked_fill_(mask, mask_value)
|
349 |
+
del mask
|
350 |
+
|
351 |
+
attn = self.attn_fn(dots, dim=-1)
|
352 |
+
post_softmax_attn = attn
|
353 |
+
|
354 |
+
attn = self.dropout(attn)
|
355 |
+
|
356 |
+
if talking_heads:
|
357 |
+
attn = einsum('b h i j, h k -> b k i j', attn, self.post_softmax_proj).contiguous()
|
358 |
+
|
359 |
+
out = einsum('b h i j, b h j d -> b h i d', attn, v)
|
360 |
+
out = rearrange(out, 'b h n d -> b n (h d)')
|
361 |
+
|
362 |
+
intermediates = Intermediates(
|
363 |
+
pre_softmax_attn=pre_softmax_attn,
|
364 |
+
post_softmax_attn=post_softmax_attn
|
365 |
+
)
|
366 |
+
|
367 |
+
return self.to_out(out), intermediates
|
368 |
+
|
369 |
+
|
370 |
+
class AttentionLayers(nn.Module):
|
371 |
+
def __init__(
|
372 |
+
self,
|
373 |
+
dim,
|
374 |
+
depth,
|
375 |
+
heads=8,
|
376 |
+
causal=False,
|
377 |
+
cross_attend=False,
|
378 |
+
only_cross=False,
|
379 |
+
use_scalenorm=False,
|
380 |
+
use_rmsnorm=False,
|
381 |
+
use_rezero=False,
|
382 |
+
rel_pos_num_buckets=32,
|
383 |
+
rel_pos_max_distance=128,
|
384 |
+
position_infused_attn=False,
|
385 |
+
custom_layers=None,
|
386 |
+
sandwich_coef=None,
|
387 |
+
par_ratio=None,
|
388 |
+
residual_attn=False,
|
389 |
+
cross_residual_attn=False,
|
390 |
+
macaron=False,
|
391 |
+
pre_norm=True,
|
392 |
+
gate_residual=False,
|
393 |
+
**kwargs
|
394 |
+
):
|
395 |
+
super().__init__()
|
396 |
+
ff_kwargs, kwargs = groupby_prefix_and_trim('ff_', kwargs)
|
397 |
+
attn_kwargs, _ = groupby_prefix_and_trim('attn_', kwargs)
|
398 |
+
|
399 |
+
dim_head = attn_kwargs.get('dim_head', DEFAULT_DIM_HEAD)
|
400 |
+
|
401 |
+
self.dim = dim
|
402 |
+
self.depth = depth
|
403 |
+
self.layers = nn.ModuleList([])
|
404 |
+
|
405 |
+
self.has_pos_emb = position_infused_attn
|
406 |
+
self.pia_pos_emb = FixedPositionalEmbedding(dim) if position_infused_attn else None
|
407 |
+
self.rotary_pos_emb = always(None)
|
408 |
+
|
409 |
+
assert rel_pos_num_buckets <= rel_pos_max_distance, 'number of relative position buckets must be less than the relative position max distance'
|
410 |
+
self.rel_pos = None
|
411 |
+
|
412 |
+
self.pre_norm = pre_norm
|
413 |
+
|
414 |
+
self.residual_attn = residual_attn
|
415 |
+
self.cross_residual_attn = cross_residual_attn
|
416 |
+
|
417 |
+
norm_class = ScaleNorm if use_scalenorm else nn.LayerNorm
|
418 |
+
norm_class = RMSNorm if use_rmsnorm else norm_class
|
419 |
+
norm_fn = partial(norm_class, dim)
|
420 |
+
|
421 |
+
norm_fn = nn.Identity if use_rezero else norm_fn
|
422 |
+
branch_fn = Rezero if use_rezero else None
|
423 |
+
|
424 |
+
if cross_attend and not only_cross:
|
425 |
+
default_block = ('a', 'c', 'f')
|
426 |
+
elif cross_attend and only_cross:
|
427 |
+
default_block = ('c', 'f')
|
428 |
+
else:
|
429 |
+
default_block = ('a', 'f')
|
430 |
+
|
431 |
+
if macaron:
|
432 |
+
default_block = ('f',) + default_block
|
433 |
+
|
434 |
+
if exists(custom_layers):
|
435 |
+
layer_types = custom_layers
|
436 |
+
elif exists(par_ratio):
|
437 |
+
par_depth = depth * len(default_block)
|
438 |
+
assert 1 < par_ratio <= par_depth, 'par ratio out of range'
|
439 |
+
default_block = tuple(filter(not_equals('f'), default_block))
|
440 |
+
par_attn = par_depth // par_ratio
|
441 |
+
depth_cut = par_depth * 2 // 3 # 2 / 3 attention layer cutoff suggested by PAR paper
|
442 |
+
par_width = (depth_cut + depth_cut // par_attn) // par_attn
|
443 |
+
assert len(default_block) <= par_width, 'default block is too large for par_ratio'
|
444 |
+
par_block = default_block + ('f',) * (par_width - len(default_block))
|
445 |
+
par_head = par_block * par_attn
|
446 |
+
layer_types = par_head + ('f',) * (par_depth - len(par_head))
|
447 |
+
elif exists(sandwich_coef):
|
448 |
+
assert sandwich_coef > 0 and sandwich_coef <= depth, 'sandwich coefficient should be less than the depth'
|
449 |
+
layer_types = ('a',) * sandwich_coef + default_block * (depth - sandwich_coef) + ('f',) * sandwich_coef
|
450 |
+
else:
|
451 |
+
layer_types = default_block * depth
|
452 |
+
|
453 |
+
self.layer_types = layer_types
|
454 |
+
self.num_attn_layers = len(list(filter(equals('a'), layer_types)))
|
455 |
+
|
456 |
+
for layer_type in self.layer_types:
|
457 |
+
if layer_type == 'a':
|
458 |
+
layer = Attention(dim, heads=heads, causal=causal, **attn_kwargs)
|
459 |
+
elif layer_type == 'c':
|
460 |
+
layer = Attention(dim, heads=heads, **attn_kwargs)
|
461 |
+
elif layer_type == 'f':
|
462 |
+
layer = FeedForward(dim, **ff_kwargs)
|
463 |
+
layer = layer if not macaron else Scale(0.5, layer)
|
464 |
+
else:
|
465 |
+
raise Exception(f'invalid layer type {layer_type}')
|
466 |
+
|
467 |
+
if isinstance(layer, Attention) and exists(branch_fn):
|
468 |
+
layer = branch_fn(layer)
|
469 |
+
|
470 |
+
if gate_residual:
|
471 |
+
residual_fn = GRUGating(dim)
|
472 |
+
else:
|
473 |
+
residual_fn = Residual()
|
474 |
+
|
475 |
+
self.layers.append(nn.ModuleList([
|
476 |
+
norm_fn(),
|
477 |
+
layer,
|
478 |
+
residual_fn
|
479 |
+
]))
|
480 |
+
|
481 |
+
def forward(
|
482 |
+
self,
|
483 |
+
x,
|
484 |
+
context=None,
|
485 |
+
mask=None,
|
486 |
+
context_mask=None,
|
487 |
+
mems=None,
|
488 |
+
return_hiddens=False
|
489 |
+
):
|
490 |
+
hiddens = []
|
491 |
+
intermediates = []
|
492 |
+
prev_attn = None
|
493 |
+
prev_cross_attn = None
|
494 |
+
|
495 |
+
mems = mems.copy() if exists(mems) else [None] * self.num_attn_layers
|
496 |
+
|
497 |
+
for ind, (layer_type, (norm, block, residual_fn)) in enumerate(zip(self.layer_types, self.layers)):
|
498 |
+
is_last = ind == (len(self.layers) - 1)
|
499 |
+
|
500 |
+
if layer_type == 'a':
|
501 |
+
hiddens.append(x)
|
502 |
+
layer_mem = mems.pop(0)
|
503 |
+
|
504 |
+
residual = x
|
505 |
+
|
506 |
+
if self.pre_norm:
|
507 |
+
x = norm(x)
|
508 |
+
|
509 |
+
if layer_type == 'a':
|
510 |
+
out, inter = block(x, mask=mask, sinusoidal_emb=self.pia_pos_emb, rel_pos=self.rel_pos,
|
511 |
+
prev_attn=prev_attn, mem=layer_mem)
|
512 |
+
elif layer_type == 'c':
|
513 |
+
out, inter = block(x, context=context, mask=mask, context_mask=context_mask, prev_attn=prev_cross_attn)
|
514 |
+
elif layer_type == 'f':
|
515 |
+
out = block(x)
|
516 |
+
|
517 |
+
x = residual_fn(out, residual)
|
518 |
+
|
519 |
+
if layer_type in ('a', 'c'):
|
520 |
+
intermediates.append(inter)
|
521 |
+
|
522 |
+
if layer_type == 'a' and self.residual_attn:
|
523 |
+
prev_attn = inter.pre_softmax_attn
|
524 |
+
elif layer_type == 'c' and self.cross_residual_attn:
|
525 |
+
prev_cross_attn = inter.pre_softmax_attn
|
526 |
+
|
527 |
+
if not self.pre_norm and not is_last:
|
528 |
+
x = norm(x)
|
529 |
+
|
530 |
+
if return_hiddens:
|
531 |
+
intermediates = LayerIntermediates(
|
532 |
+
hiddens=hiddens,
|
533 |
+
attn_intermediates=intermediates
|
534 |
+
)
|
535 |
+
|
536 |
+
return x, intermediates
|
537 |
+
|
538 |
+
return x
|
539 |
+
|
540 |
+
|
541 |
+
class Encoder(AttentionLayers):
|
542 |
+
def __init__(self, **kwargs):
|
543 |
+
assert 'causal' not in kwargs, 'cannot set causality on encoder'
|
544 |
+
super().__init__(causal=False, **kwargs)
|
545 |
+
|
546 |
+
|
547 |
+
|
548 |
+
class TransformerWrapper(nn.Module):
|
549 |
+
def __init__(
|
550 |
+
self,
|
551 |
+
*,
|
552 |
+
num_tokens,
|
553 |
+
max_seq_len,
|
554 |
+
attn_layers,
|
555 |
+
emb_dim=None,
|
556 |
+
max_mem_len=0.,
|
557 |
+
emb_dropout=0.,
|
558 |
+
num_memory_tokens=None,
|
559 |
+
tie_embedding=False,
|
560 |
+
use_pos_emb=True
|
561 |
+
):
|
562 |
+
super().__init__()
|
563 |
+
assert isinstance(attn_layers, AttentionLayers), 'attention layers must be one of Encoder or Decoder'
|
564 |
+
|
565 |
+
dim = attn_layers.dim
|
566 |
+
emb_dim = default(emb_dim, dim)
|
567 |
+
|
568 |
+
self.max_seq_len = max_seq_len
|
569 |
+
self.max_mem_len = max_mem_len
|
570 |
+
self.num_tokens = num_tokens
|
571 |
+
|
572 |
+
self.token_emb = nn.Embedding(num_tokens, emb_dim)
|
573 |
+
self.pos_emb = AbsolutePositionalEmbedding(emb_dim, max_seq_len) if (
|
574 |
+
use_pos_emb and not attn_layers.has_pos_emb) else always(0)
|
575 |
+
self.emb_dropout = nn.Dropout(emb_dropout)
|
576 |
+
|
577 |
+
self.project_emb = nn.Linear(emb_dim, dim) if emb_dim != dim else nn.Identity()
|
578 |
+
self.attn_layers = attn_layers
|
579 |
+
self.norm = nn.LayerNorm(dim)
|
580 |
+
|
581 |
+
self.init_()
|
582 |
+
|
583 |
+
self.to_logits = nn.Linear(dim, num_tokens) if not tie_embedding else lambda t: t @ self.token_emb.weight.t()
|
584 |
+
|
585 |
+
# memory tokens (like [cls]) from Memory Transformers paper
|
586 |
+
num_memory_tokens = default(num_memory_tokens, 0)
|
587 |
+
self.num_memory_tokens = num_memory_tokens
|
588 |
+
if num_memory_tokens > 0:
|
589 |
+
self.memory_tokens = nn.Parameter(torch.randn(num_memory_tokens, dim))
|
590 |
+
|
591 |
+
# let funnel encoder know number of memory tokens, if specified
|
592 |
+
if hasattr(attn_layers, 'num_memory_tokens'):
|
593 |
+
attn_layers.num_memory_tokens = num_memory_tokens
|
594 |
+
|
595 |
+
def init_(self):
|
596 |
+
nn.init.normal_(self.token_emb.weight, std=0.02)
|
597 |
+
|
598 |
+
def forward(
|
599 |
+
self,
|
600 |
+
x,
|
601 |
+
return_embeddings=False,
|
602 |
+
mask=None,
|
603 |
+
return_mems=False,
|
604 |
+
return_attn=False,
|
605 |
+
mems=None,
|
606 |
+
**kwargs
|
607 |
+
):
|
608 |
+
b, n, device, num_mem = *x.shape, x.device, self.num_memory_tokens
|
609 |
+
x = self.token_emb(x)
|
610 |
+
x += self.pos_emb(x)
|
611 |
+
x = self.emb_dropout(x)
|
612 |
+
|
613 |
+
x = self.project_emb(x)
|
614 |
+
|
615 |
+
if num_mem > 0:
|
616 |
+
mem = repeat(self.memory_tokens, 'n d -> b n d', b=b)
|
617 |
+
x = torch.cat((mem, x), dim=1)
|
618 |
+
|
619 |
+
# auto-handle masking after appending memory tokens
|
620 |
+
if exists(mask):
|
621 |
+
mask = F.pad(mask, (num_mem, 0), value=True)
|
622 |
+
|
623 |
+
x, intermediates = self.attn_layers(x, mask=mask, mems=mems, return_hiddens=True, **kwargs)
|
624 |
+
x = self.norm(x)
|
625 |
+
|
626 |
+
mem, x = x[:, :num_mem], x[:, num_mem:]
|
627 |
+
|
628 |
+
out = self.to_logits(x) if not return_embeddings else x
|
629 |
+
|
630 |
+
if return_mems:
|
631 |
+
hiddens = intermediates.hiddens
|
632 |
+
new_mems = list(map(lambda pair: torch.cat(pair, dim=-2), zip(mems, hiddens))) if exists(mems) else hiddens
|
633 |
+
new_mems = list(map(lambda t: t[..., -self.max_mem_len:, :].detach(), new_mems))
|
634 |
+
return out, new_mems
|
635 |
+
|
636 |
+
if return_attn:
|
637 |
+
attn_maps = list(map(lambda t: t.post_softmax_attn, intermediates.attn_intermediates))
|
638 |
+
return out, attn_maps
|
639 |
+
|
640 |
+
return out
|
641 |
+
|
ldm/thirdp/psp/helpers.py
ADDED
@@ -0,0 +1,121 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# https://github.com/eladrich/pixel2style2pixel
|
2 |
+
|
3 |
+
from collections import namedtuple
|
4 |
+
import torch
|
5 |
+
from torch.nn import Conv2d, BatchNorm2d, PReLU, ReLU, Sigmoid, MaxPool2d, AdaptiveAvgPool2d, Sequential, Module
|
6 |
+
|
7 |
+
"""
|
8 |
+
ArcFace implementation from [TreB1eN](https://github.com/TreB1eN/InsightFace_Pytorch)
|
9 |
+
"""
|
10 |
+
|
11 |
+
|
12 |
+
class Flatten(Module):
|
13 |
+
def forward(self, input):
|
14 |
+
return input.view(input.size(0), -1)
|
15 |
+
|
16 |
+
|
17 |
+
def l2_norm(input, axis=1):
|
18 |
+
norm = torch.norm(input, 2, axis, True)
|
19 |
+
output = torch.div(input, norm)
|
20 |
+
return output
|
21 |
+
|
22 |
+
|
23 |
+
class Bottleneck(namedtuple('Block', ['in_channel', 'depth', 'stride'])):
|
24 |
+
""" A named tuple describing a ResNet block. """
|
25 |
+
|
26 |
+
|
27 |
+
def get_block(in_channel, depth, num_units, stride=2):
|
28 |
+
return [Bottleneck(in_channel, depth, stride)] + [Bottleneck(depth, depth, 1) for i in range(num_units - 1)]
|
29 |
+
|
30 |
+
|
31 |
+
def get_blocks(num_layers):
|
32 |
+
if num_layers == 50:
|
33 |
+
blocks = [
|
34 |
+
get_block(in_channel=64, depth=64, num_units=3),
|
35 |
+
get_block(in_channel=64, depth=128, num_units=4),
|
36 |
+
get_block(in_channel=128, depth=256, num_units=14),
|
37 |
+
get_block(in_channel=256, depth=512, num_units=3)
|
38 |
+
]
|
39 |
+
elif num_layers == 100:
|
40 |
+
blocks = [
|
41 |
+
get_block(in_channel=64, depth=64, num_units=3),
|
42 |
+
get_block(in_channel=64, depth=128, num_units=13),
|
43 |
+
get_block(in_channel=128, depth=256, num_units=30),
|
44 |
+
get_block(in_channel=256, depth=512, num_units=3)
|
45 |
+
]
|
46 |
+
elif num_layers == 152:
|
47 |
+
blocks = [
|
48 |
+
get_block(in_channel=64, depth=64, num_units=3),
|
49 |
+
get_block(in_channel=64, depth=128, num_units=8),
|
50 |
+
get_block(in_channel=128, depth=256, num_units=36),
|
51 |
+
get_block(in_channel=256, depth=512, num_units=3)
|
52 |
+
]
|
53 |
+
else:
|
54 |
+
raise ValueError("Invalid number of layers: {}. Must be one of [50, 100, 152]".format(num_layers))
|
55 |
+
return blocks
|
56 |
+
|
57 |
+
|
58 |
+
class SEModule(Module):
|
59 |
+
def __init__(self, channels, reduction):
|
60 |
+
super(SEModule, self).__init__()
|
61 |
+
self.avg_pool = AdaptiveAvgPool2d(1)
|
62 |
+
self.fc1 = Conv2d(channels, channels // reduction, kernel_size=1, padding=0, bias=False)
|
63 |
+
self.relu = ReLU(inplace=True)
|
64 |
+
self.fc2 = Conv2d(channels // reduction, channels, kernel_size=1, padding=0, bias=False)
|
65 |
+
self.sigmoid = Sigmoid()
|
66 |
+
|
67 |
+
def forward(self, x):
|
68 |
+
module_input = x
|
69 |
+
x = self.avg_pool(x)
|
70 |
+
x = self.fc1(x)
|
71 |
+
x = self.relu(x)
|
72 |
+
x = self.fc2(x)
|
73 |
+
x = self.sigmoid(x)
|
74 |
+
return module_input * x
|
75 |
+
|
76 |
+
|
77 |
+
class bottleneck_IR(Module):
|
78 |
+
def __init__(self, in_channel, depth, stride):
|
79 |
+
super(bottleneck_IR, self).__init__()
|
80 |
+
if in_channel == depth:
|
81 |
+
self.shortcut_layer = MaxPool2d(1, stride)
|
82 |
+
else:
|
83 |
+
self.shortcut_layer = Sequential(
|
84 |
+
Conv2d(in_channel, depth, (1, 1), stride, bias=False),
|
85 |
+
BatchNorm2d(depth)
|
86 |
+
)
|
87 |
+
self.res_layer = Sequential(
|
88 |
+
BatchNorm2d(in_channel),
|
89 |
+
Conv2d(in_channel, depth, (3, 3), (1, 1), 1, bias=False), PReLU(depth),
|
90 |
+
Conv2d(depth, depth, (3, 3), stride, 1, bias=False), BatchNorm2d(depth)
|
91 |
+
)
|
92 |
+
|
93 |
+
def forward(self, x):
|
94 |
+
shortcut = self.shortcut_layer(x)
|
95 |
+
res = self.res_layer(x)
|
96 |
+
return res + shortcut
|
97 |
+
|
98 |
+
|
99 |
+
class bottleneck_IR_SE(Module):
|
100 |
+
def __init__(self, in_channel, depth, stride):
|
101 |
+
super(bottleneck_IR_SE, self).__init__()
|
102 |
+
if in_channel == depth:
|
103 |
+
self.shortcut_layer = MaxPool2d(1, stride)
|
104 |
+
else:
|
105 |
+
self.shortcut_layer = Sequential(
|
106 |
+
Conv2d(in_channel, depth, (1, 1), stride, bias=False),
|
107 |
+
BatchNorm2d(depth)
|
108 |
+
)
|
109 |
+
self.res_layer = Sequential(
|
110 |
+
BatchNorm2d(in_channel),
|
111 |
+
Conv2d(in_channel, depth, (3, 3), (1, 1), 1, bias=False),
|
112 |
+
PReLU(depth),
|
113 |
+
Conv2d(depth, depth, (3, 3), stride, 1, bias=False),
|
114 |
+
BatchNorm2d(depth),
|
115 |
+
SEModule(depth, 16)
|
116 |
+
)
|
117 |
+
|
118 |
+
def forward(self, x):
|
119 |
+
shortcut = self.shortcut_layer(x)
|
120 |
+
res = self.res_layer(x)
|
121 |
+
return res + shortcut
|
ldm/thirdp/psp/id_loss.py
ADDED
@@ -0,0 +1,23 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# https://github.com/eladrich/pixel2style2pixel
|
2 |
+
import torch
|
3 |
+
from torch import nn
|
4 |
+
from ldm.thirdp.psp.model_irse import Backbone
|
5 |
+
|
6 |
+
|
7 |
+
class IDFeatures(nn.Module):
|
8 |
+
def __init__(self, model_path):
|
9 |
+
super(IDFeatures, self).__init__()
|
10 |
+
print('Loading ResNet ArcFace')
|
11 |
+
self.facenet = Backbone(input_size=112, num_layers=50, drop_ratio=0.6, mode='ir_se')
|
12 |
+
self.facenet.load_state_dict(torch.load(model_path, map_location="cpu"))
|
13 |
+
self.face_pool = torch.nn.AdaptiveAvgPool2d((112, 112))
|
14 |
+
self.facenet.eval()
|
15 |
+
|
16 |
+
def forward(self, x, crop=False):
|
17 |
+
# Not sure of the image range here
|
18 |
+
if crop:
|
19 |
+
x = torch.nn.functional.interpolate(x, (256, 256), mode="area")
|
20 |
+
x = x[:, :, 35:223, 32:220]
|
21 |
+
x = self.face_pool(x)
|
22 |
+
x_feats = self.facenet(x)
|
23 |
+
return x_feats
|
ldm/thirdp/psp/model_irse.py
ADDED
@@ -0,0 +1,86 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# https://github.com/eladrich/pixel2style2pixel
|
2 |
+
|
3 |
+
from torch.nn import Linear, Conv2d, BatchNorm1d, BatchNorm2d, PReLU, Dropout, Sequential, Module
|
4 |
+
from ldm.thirdp.psp.helpers import get_blocks, Flatten, bottleneck_IR, bottleneck_IR_SE, l2_norm
|
5 |
+
|
6 |
+
"""
|
7 |
+
Modified Backbone implementation from [TreB1eN](https://github.com/TreB1eN/InsightFace_Pytorch)
|
8 |
+
"""
|
9 |
+
|
10 |
+
|
11 |
+
class Backbone(Module):
|
12 |
+
def __init__(self, input_size, num_layers, mode='ir', drop_ratio=0.4, affine=True):
|
13 |
+
super(Backbone, self).__init__()
|
14 |
+
assert input_size in [112, 224], "input_size should be 112 or 224"
|
15 |
+
assert num_layers in [50, 100, 152], "num_layers should be 50, 100 or 152"
|
16 |
+
assert mode in ['ir', 'ir_se'], "mode should be ir or ir_se"
|
17 |
+
blocks = get_blocks(num_layers)
|
18 |
+
if mode == 'ir':
|
19 |
+
unit_module = bottleneck_IR
|
20 |
+
elif mode == 'ir_se':
|
21 |
+
unit_module = bottleneck_IR_SE
|
22 |
+
self.input_layer = Sequential(Conv2d(3, 64, (3, 3), 1, 1, bias=False),
|
23 |
+
BatchNorm2d(64),
|
24 |
+
PReLU(64))
|
25 |
+
if input_size == 112:
|
26 |
+
self.output_layer = Sequential(BatchNorm2d(512),
|
27 |
+
Dropout(drop_ratio),
|
28 |
+
Flatten(),
|
29 |
+
Linear(512 * 7 * 7, 512),
|
30 |
+
BatchNorm1d(512, affine=affine))
|
31 |
+
else:
|
32 |
+
self.output_layer = Sequential(BatchNorm2d(512),
|
33 |
+
Dropout(drop_ratio),
|
34 |
+
Flatten(),
|
35 |
+
Linear(512 * 14 * 14, 512),
|
36 |
+
BatchNorm1d(512, affine=affine))
|
37 |
+
|
38 |
+
modules = []
|
39 |
+
for block in blocks:
|
40 |
+
for bottleneck in block:
|
41 |
+
modules.append(unit_module(bottleneck.in_channel,
|
42 |
+
bottleneck.depth,
|
43 |
+
bottleneck.stride))
|
44 |
+
self.body = Sequential(*modules)
|
45 |
+
|
46 |
+
def forward(self, x):
|
47 |
+
x = self.input_layer(x)
|
48 |
+
x = self.body(x)
|
49 |
+
x = self.output_layer(x)
|
50 |
+
return l2_norm(x)
|
51 |
+
|
52 |
+
|
53 |
+
def IR_50(input_size):
|
54 |
+
"""Constructs a ir-50 model."""
|
55 |
+
model = Backbone(input_size, num_layers=50, mode='ir', drop_ratio=0.4, affine=False)
|
56 |
+
return model
|
57 |
+
|
58 |
+
|
59 |
+
def IR_101(input_size):
|
60 |
+
"""Constructs a ir-101 model."""
|
61 |
+
model = Backbone(input_size, num_layers=100, mode='ir', drop_ratio=0.4, affine=False)
|
62 |
+
return model
|
63 |
+
|
64 |
+
|
65 |
+
def IR_152(input_size):
|
66 |
+
"""Constructs a ir-152 model."""
|
67 |
+
model = Backbone(input_size, num_layers=152, mode='ir', drop_ratio=0.4, affine=False)
|
68 |
+
return model
|
69 |
+
|
70 |
+
|
71 |
+
def IR_SE_50(input_size):
|
72 |
+
"""Constructs a ir_se-50 model."""
|
73 |
+
model = Backbone(input_size, num_layers=50, mode='ir_se', drop_ratio=0.4, affine=False)
|
74 |
+
return model
|
75 |
+
|
76 |
+
|
77 |
+
def IR_SE_101(input_size):
|
78 |
+
"""Constructs a ir_se-101 model."""
|
79 |
+
model = Backbone(input_size, num_layers=100, mode='ir_se', drop_ratio=0.4, affine=False)
|
80 |
+
return model
|
81 |
+
|
82 |
+
|
83 |
+
def IR_SE_152(input_size):
|
84 |
+
"""Constructs a ir_se-152 model."""
|
85 |
+
model = Backbone(input_size, num_layers=152, mode='ir_se', drop_ratio=0.4, affine=False)
|
86 |
+
return model
|
ldm/util.py
ADDED
@@ -0,0 +1,275 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import importlib
|
2 |
+
|
3 |
+
import torchvision
|
4 |
+
import torch
|
5 |
+
from torch import optim
|
6 |
+
import numpy as np
|
7 |
+
|
8 |
+
from inspect import isfunction
|
9 |
+
from PIL import Image, ImageDraw, ImageFont
|
10 |
+
|
11 |
+
import os
|
12 |
+
import numpy as np
|
13 |
+
import matplotlib.pyplot as plt
|
14 |
+
from PIL import Image
|
15 |
+
import torch
|
16 |
+
import time
|
17 |
+
import cv2
|
18 |
+
from carvekit.api.high import HiInterface
|
19 |
+
import PIL
|
20 |
+
|
21 |
+
def pil_rectangle_crop(im):
|
22 |
+
width, height = im.size # Get dimensions
|
23 |
+
|
24 |
+
if width <= height:
|
25 |
+
left = 0
|
26 |
+
right = width
|
27 |
+
top = (height - width)/2
|
28 |
+
bottom = (height + width)/2
|
29 |
+
else:
|
30 |
+
|
31 |
+
top = 0
|
32 |
+
bottom = height
|
33 |
+
left = (width - height) / 2
|
34 |
+
bottom = (width + height) / 2
|
35 |
+
|
36 |
+
# Crop the center of the image
|
37 |
+
im = im.crop((left, top, right, bottom))
|
38 |
+
return im
|
39 |
+
|
40 |
+
def add_margin(pil_img, color, size=256):
|
41 |
+
width, height = pil_img.size
|
42 |
+
result = Image.new(pil_img.mode, (size, size), color)
|
43 |
+
result.paste(pil_img, ((size - width) // 2, (size - height) // 2))
|
44 |
+
return result
|
45 |
+
|
46 |
+
|
47 |
+
def create_carvekit_interface():
|
48 |
+
# Check doc strings for more information
|
49 |
+
interface = HiInterface(object_type="object", # Can be "object" or "hairs-like".
|
50 |
+
batch_size_seg=5,
|
51 |
+
batch_size_matting=1,
|
52 |
+
device='cuda' if torch.cuda.is_available() else 'cpu',
|
53 |
+
seg_mask_size=640, # Use 640 for Tracer B7 and 320 for U2Net
|
54 |
+
matting_mask_size=2048,
|
55 |
+
trimap_prob_threshold=231,
|
56 |
+
trimap_dilation=30,
|
57 |
+
trimap_erosion_iters=5,
|
58 |
+
fp16=False)
|
59 |
+
|
60 |
+
return interface
|
61 |
+
|
62 |
+
|
63 |
+
def load_and_preprocess(interface, input_im):
|
64 |
+
'''
|
65 |
+
:param input_im (PIL Image).
|
66 |
+
:return image (H, W, 3) array in [0, 1].
|
67 |
+
'''
|
68 |
+
# See https://github.com/Ir1d/image-background-remove-tool
|
69 |
+
image = input_im.convert('RGB')
|
70 |
+
|
71 |
+
image_without_background = interface([image])[0]
|
72 |
+
image_without_background = np.array(image_without_background)
|
73 |
+
est_seg = image_without_background > 127
|
74 |
+
image = np.array(image)
|
75 |
+
foreground = est_seg[:, : , -1].astype(np.bool_)
|
76 |
+
image[~foreground] = [255., 255., 255.]
|
77 |
+
x, y, w, h = cv2.boundingRect(foreground.astype(np.uint8))
|
78 |
+
image = image[y:y+h, x:x+w, :]
|
79 |
+
image = PIL.Image.fromarray(np.array(image))
|
80 |
+
|
81 |
+
# resize image such that long edge is 512
|
82 |
+
image.thumbnail([200, 200], Image.Resampling.LANCZOS)
|
83 |
+
image = add_margin(image, (255, 255, 255), size=256)
|
84 |
+
image = np.array(image)
|
85 |
+
|
86 |
+
return image
|
87 |
+
|
88 |
+
|
89 |
+
def log_txt_as_img(wh, xc, size=10):
|
90 |
+
# wh a tuple of (width, height)
|
91 |
+
# xc a list of captions to plot
|
92 |
+
b = len(xc)
|
93 |
+
txts = list()
|
94 |
+
for bi in range(b):
|
95 |
+
txt = Image.new("RGB", wh, color="white")
|
96 |
+
draw = ImageDraw.Draw(txt)
|
97 |
+
font = ImageFont.truetype('data/DejaVuSans.ttf', size=size)
|
98 |
+
nc = int(40 * (wh[0] / 256))
|
99 |
+
lines = "\n".join(xc[bi][start:start + nc] for start in range(0, len(xc[bi]), nc))
|
100 |
+
|
101 |
+
try:
|
102 |
+
draw.text((0, 0), lines, fill="black", font=font)
|
103 |
+
except UnicodeEncodeError:
|
104 |
+
print("Cant encode string for logging. Skipping.")
|
105 |
+
|
106 |
+
txt = np.array(txt).transpose(2, 0, 1) / 127.5 - 1.0
|
107 |
+
txts.append(txt)
|
108 |
+
txts = np.stack(txts)
|
109 |
+
txts = torch.tensor(txts)
|
110 |
+
return txts
|
111 |
+
|
112 |
+
|
113 |
+
def ismap(x):
|
114 |
+
if not isinstance(x, torch.Tensor):
|
115 |
+
return False
|
116 |
+
return (len(x.shape) == 4) and (x.shape[1] > 3)
|
117 |
+
|
118 |
+
|
119 |
+
def isimage(x):
|
120 |
+
if not isinstance(x,torch.Tensor):
|
121 |
+
return False
|
122 |
+
return (len(x.shape) == 4) and (x.shape[1] == 3 or x.shape[1] == 1)
|
123 |
+
|
124 |
+
|
125 |
+
def exists(x):
|
126 |
+
return x is not None
|
127 |
+
|
128 |
+
|
129 |
+
def default(val, d):
|
130 |
+
if exists(val):
|
131 |
+
return val
|
132 |
+
return d() if isfunction(d) else d
|
133 |
+
|
134 |
+
|
135 |
+
def mean_flat(tensor):
|
136 |
+
"""
|
137 |
+
https://github.com/openai/guided-diffusion/blob/27c20a8fab9cb472df5d6bdd6c8d11c8f430b924/guided_diffusion/nn.py#L86
|
138 |
+
Take the mean over all non-batch dimensions.
|
139 |
+
"""
|
140 |
+
return tensor.mean(dim=list(range(1, len(tensor.shape))))
|
141 |
+
|
142 |
+
|
143 |
+
def count_params(model, verbose=False):
|
144 |
+
total_params = sum(p.numel() for p in model.parameters())
|
145 |
+
if verbose:
|
146 |
+
print(f"{model.__class__.__name__} has {total_params*1.e-6:.2f} M params.")
|
147 |
+
return total_params
|
148 |
+
|
149 |
+
|
150 |
+
def instantiate_from_config(config):
|
151 |
+
if not "target" in config:
|
152 |
+
if config == '__is_first_stage__':
|
153 |
+
return None
|
154 |
+
elif config == "__is_unconditional__":
|
155 |
+
return None
|
156 |
+
raise KeyError("Expected key `target` to instantiate.")
|
157 |
+
return get_obj_from_str(config["target"])(**config.get("params", dict()))
|
158 |
+
|
159 |
+
|
160 |
+
def get_obj_from_str(string, reload=False):
|
161 |
+
module, cls = string.rsplit(".", 1)
|
162 |
+
if reload:
|
163 |
+
module_imp = importlib.import_module(module)
|
164 |
+
importlib.reload(module_imp)
|
165 |
+
return getattr(importlib.import_module(module, package=None), cls)
|
166 |
+
|
167 |
+
|
168 |
+
class AdamWwithEMAandWings(optim.Optimizer):
|
169 |
+
# credit to https://gist.github.com/crowsonkb/65f7265353f403714fce3b2595e0b298
|
170 |
+
def __init__(self, params, lr=1.e-3, betas=(0.9, 0.999), eps=1.e-8, # TODO: check hyperparameters before using
|
171 |
+
weight_decay=1.e-2, amsgrad=False, ema_decay=0.9999, # ema decay to match previous code
|
172 |
+
ema_power=1., param_names=()):
|
173 |
+
"""AdamW that saves EMA versions of the parameters."""
|
174 |
+
if not 0.0 <= lr:
|
175 |
+
raise ValueError("Invalid learning rate: {}".format(lr))
|
176 |
+
if not 0.0 <= eps:
|
177 |
+
raise ValueError("Invalid epsilon value: {}".format(eps))
|
178 |
+
if not 0.0 <= betas[0] < 1.0:
|
179 |
+
raise ValueError("Invalid beta parameter at index 0: {}".format(betas[0]))
|
180 |
+
if not 0.0 <= betas[1] < 1.0:
|
181 |
+
raise ValueError("Invalid beta parameter at index 1: {}".format(betas[1]))
|
182 |
+
if not 0.0 <= weight_decay:
|
183 |
+
raise ValueError("Invalid weight_decay value: {}".format(weight_decay))
|
184 |
+
if not 0.0 <= ema_decay <= 1.0:
|
185 |
+
raise ValueError("Invalid ema_decay value: {}".format(ema_decay))
|
186 |
+
defaults = dict(lr=lr, betas=betas, eps=eps,
|
187 |
+
weight_decay=weight_decay, amsgrad=amsgrad, ema_decay=ema_decay,
|
188 |
+
ema_power=ema_power, param_names=param_names)
|
189 |
+
super().__init__(params, defaults)
|
190 |
+
|
191 |
+
def __setstate__(self, state):
|
192 |
+
super().__setstate__(state)
|
193 |
+
for group in self.param_groups:
|
194 |
+
group.setdefault('amsgrad', False)
|
195 |
+
|
196 |
+
@torch.no_grad()
|
197 |
+
def step(self, closure=None):
|
198 |
+
"""Performs a single optimization step.
|
199 |
+
Args:
|
200 |
+
closure (callable, optional): A closure that reevaluates the model
|
201 |
+
and returns the loss.
|
202 |
+
"""
|
203 |
+
loss = None
|
204 |
+
if closure is not None:
|
205 |
+
with torch.enable_grad():
|
206 |
+
loss = closure()
|
207 |
+
|
208 |
+
for group in self.param_groups:
|
209 |
+
params_with_grad = []
|
210 |
+
grads = []
|
211 |
+
exp_avgs = []
|
212 |
+
exp_avg_sqs = []
|
213 |
+
ema_params_with_grad = []
|
214 |
+
state_sums = []
|
215 |
+
max_exp_avg_sqs = []
|
216 |
+
state_steps = []
|
217 |
+
amsgrad = group['amsgrad']
|
218 |
+
beta1, beta2 = group['betas']
|
219 |
+
ema_decay = group['ema_decay']
|
220 |
+
ema_power = group['ema_power']
|
221 |
+
|
222 |
+
for p in group['params']:
|
223 |
+
if p.grad is None:
|
224 |
+
continue
|
225 |
+
params_with_grad.append(p)
|
226 |
+
if p.grad.is_sparse:
|
227 |
+
raise RuntimeError('AdamW does not support sparse gradients')
|
228 |
+
grads.append(p.grad)
|
229 |
+
|
230 |
+
state = self.state[p]
|
231 |
+
|
232 |
+
# State initialization
|
233 |
+
if len(state) == 0:
|
234 |
+
state['step'] = 0
|
235 |
+
# Exponential moving average of gradient values
|
236 |
+
state['exp_avg'] = torch.zeros_like(p, memory_format=torch.preserve_format)
|
237 |
+
# Exponential moving average of squared gradient values
|
238 |
+
state['exp_avg_sq'] = torch.zeros_like(p, memory_format=torch.preserve_format)
|
239 |
+
if amsgrad:
|
240 |
+
# Maintains max of all exp. moving avg. of sq. grad. values
|
241 |
+
state['max_exp_avg_sq'] = torch.zeros_like(p, memory_format=torch.preserve_format)
|
242 |
+
# Exponential moving average of parameter values
|
243 |
+
state['param_exp_avg'] = p.detach().float().clone()
|
244 |
+
|
245 |
+
exp_avgs.append(state['exp_avg'])
|
246 |
+
exp_avg_sqs.append(state['exp_avg_sq'])
|
247 |
+
ema_params_with_grad.append(state['param_exp_avg'])
|
248 |
+
|
249 |
+
if amsgrad:
|
250 |
+
max_exp_avg_sqs.append(state['max_exp_avg_sq'])
|
251 |
+
|
252 |
+
# update the steps for each param group update
|
253 |
+
state['step'] += 1
|
254 |
+
# record the step after step update
|
255 |
+
state_steps.append(state['step'])
|
256 |
+
|
257 |
+
optim._functional.adamw(params_with_grad,
|
258 |
+
grads,
|
259 |
+
exp_avgs,
|
260 |
+
exp_avg_sqs,
|
261 |
+
max_exp_avg_sqs,
|
262 |
+
state_steps,
|
263 |
+
amsgrad=amsgrad,
|
264 |
+
beta1=beta1,
|
265 |
+
beta2=beta2,
|
266 |
+
lr=group['lr'],
|
267 |
+
weight_decay=group['weight_decay'],
|
268 |
+
eps=group['eps'],
|
269 |
+
maximize=False)
|
270 |
+
|
271 |
+
cur_ema_decay = min(ema_decay, 1 - state['step'] ** -ema_power)
|
272 |
+
for param, ema_param in zip(params_with_grad, ema_params_with_grad):
|
273 |
+
ema_param.mul_(cur_ema_decay).add_(param.float(), alpha=1 - cur_ema_decay)
|
274 |
+
|
275 |
+
return loss
|