Onegafer commited on
Commit
efbdb23
1 Parent(s): 08b9fb5

update model card README.md

Browse files
Files changed (1) hide show
  1. README.md +76 -0
README.md ADDED
@@ -0,0 +1,76 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: apache-2.0
3
+ tags:
4
+ - vision
5
+ - depth-estimation
6
+ - generated_from_trainer
7
+ model-index:
8
+ - name: glpn-nyu-finetuned
9
+ results: []
10
+ ---
11
+
12
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
13
+ should probably proofread and complete it, then remove this comment. -->
14
+
15
+ # glpn-nyu-finetuned
16
+
17
+ This model is a fine-tuned version of [vinvino02/glpn-nyu](https://huggingface.co/vinvino02/glpn-nyu) on the diode-subset dataset.
18
+ It achieves the following results on the evaluation set:
19
+ - Loss: 1.5286
20
+ - Mae: 3.1196
21
+ - Rmse: 3.5796
22
+ - Abs Rel: 5.9353
23
+ - Log Mae: 0.6899
24
+ - Log Rmse: 0.8145
25
+ - Delta1: 0.3012
26
+ - Delta2: 0.3076
27
+ - Delta3: 0.3093
28
+
29
+ ## Model description
30
+
31
+ More information needed
32
+
33
+ ## Intended uses & limitations
34
+
35
+ More information needed
36
+
37
+ ## Training and evaluation data
38
+
39
+ More information needed
40
+
41
+ ## Training procedure
42
+
43
+ ### Training hyperparameters
44
+
45
+ The following hyperparameters were used during training:
46
+ - learning_rate: 1e-05
47
+ - train_batch_size: 24
48
+ - eval_batch_size: 48
49
+ - seed: 2022
50
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
51
+ - lr_scheduler_type: linear
52
+ - lr_scheduler_warmup_ratio: 0.1
53
+ - num_epochs: 10
54
+ - mixed_precision_training: Native AMP
55
+
56
+ ### Training results
57
+
58
+ | Training Loss | Epoch | Step | Validation Loss | Mae | Rmse | Abs Rel | Log Mae | Log Rmse | Delta1 | Delta2 | Delta3 |
59
+ |:-------------:|:-----:|:----:|:---------------:|:------:|:------:|:-------:|:-------:|:--------:|:------:|:------:|:------:|
60
+ | No log | 1.0 | 1 | 1.5476 | 3.2112 | 3.7133 | 6.1586 | 0.6980 | 0.8267 | 0.2998 | 0.3073 | 0.3091 |
61
+ | No log | 2.0 | 2 | 1.5441 | 3.1939 | 3.6889 | 6.1181 | 0.6965 | 0.8245 | 0.3001 | 0.3073 | 0.3091 |
62
+ | No log | 3.0 | 3 | 1.5410 | 3.1783 | 3.6668 | 6.0811 | 0.6951 | 0.8225 | 0.3003 | 0.3074 | 0.3092 |
63
+ | No log | 4.0 | 4 | 1.5381 | 3.1643 | 3.6465 | 6.0474 | 0.6939 | 0.8207 | 0.3005 | 0.3074 | 0.3092 |
64
+ | No log | 5.0 | 5 | 1.5355 | 3.1520 | 3.6285 | 6.0172 | 0.6928 | 0.8190 | 0.3007 | 0.3075 | 0.3092 |
65
+ | No log | 6.0 | 6 | 1.5333 | 3.1415 | 3.6128 | 5.9909 | 0.6918 | 0.8176 | 0.3009 | 0.3075 | 0.3092 |
66
+ | No log | 7.0 | 7 | 1.5315 | 3.1329 | 3.5999 | 5.9693 | 0.6911 | 0.8164 | 0.3010 | 0.3075 | 0.3093 |
67
+ | No log | 8.0 | 8 | 1.5301 | 3.1264 | 3.5901 | 5.9529 | 0.6905 | 0.8155 | 0.3011 | 0.3075 | 0.3093 |
68
+ | No log | 9.0 | 9 | 1.5291 | 3.1219 | 3.5832 | 5.9413 | 0.6901 | 0.8149 | 0.3012 | 0.3076 | 0.3093 |
69
+ | No log | 10.0 | 10 | 1.5286 | 3.1196 | 3.5796 | 5.9353 | 0.6899 | 0.8145 | 0.3012 | 0.3076 | 0.3093 |
70
+
71
+
72
+ ### Framework versions
73
+
74
+ - Transformers 4.29.2
75
+ - Pytorch 2.0.1+cu118
76
+ - Tokenizers 0.13.3