update model card README.md
Browse files
README.md
ADDED
@@ -0,0 +1,76 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: apache-2.0
|
3 |
+
tags:
|
4 |
+
- vision
|
5 |
+
- depth-estimation
|
6 |
+
- generated_from_trainer
|
7 |
+
model-index:
|
8 |
+
- name: glpn-nyu-finetuned
|
9 |
+
results: []
|
10 |
+
---
|
11 |
+
|
12 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
13 |
+
should probably proofread and complete it, then remove this comment. -->
|
14 |
+
|
15 |
+
# glpn-nyu-finetuned
|
16 |
+
|
17 |
+
This model is a fine-tuned version of [vinvino02/glpn-nyu](https://huggingface.co/vinvino02/glpn-nyu) on the diode-subset dataset.
|
18 |
+
It achieves the following results on the evaluation set:
|
19 |
+
- Loss: 1.5286
|
20 |
+
- Mae: 3.1196
|
21 |
+
- Rmse: 3.5796
|
22 |
+
- Abs Rel: 5.9353
|
23 |
+
- Log Mae: 0.6899
|
24 |
+
- Log Rmse: 0.8145
|
25 |
+
- Delta1: 0.3012
|
26 |
+
- Delta2: 0.3076
|
27 |
+
- Delta3: 0.3093
|
28 |
+
|
29 |
+
## Model description
|
30 |
+
|
31 |
+
More information needed
|
32 |
+
|
33 |
+
## Intended uses & limitations
|
34 |
+
|
35 |
+
More information needed
|
36 |
+
|
37 |
+
## Training and evaluation data
|
38 |
+
|
39 |
+
More information needed
|
40 |
+
|
41 |
+
## Training procedure
|
42 |
+
|
43 |
+
### Training hyperparameters
|
44 |
+
|
45 |
+
The following hyperparameters were used during training:
|
46 |
+
- learning_rate: 1e-05
|
47 |
+
- train_batch_size: 24
|
48 |
+
- eval_batch_size: 48
|
49 |
+
- seed: 2022
|
50 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
51 |
+
- lr_scheduler_type: linear
|
52 |
+
- lr_scheduler_warmup_ratio: 0.1
|
53 |
+
- num_epochs: 10
|
54 |
+
- mixed_precision_training: Native AMP
|
55 |
+
|
56 |
+
### Training results
|
57 |
+
|
58 |
+
| Training Loss | Epoch | Step | Validation Loss | Mae | Rmse | Abs Rel | Log Mae | Log Rmse | Delta1 | Delta2 | Delta3 |
|
59 |
+
|:-------------:|:-----:|:----:|:---------------:|:------:|:------:|:-------:|:-------:|:--------:|:------:|:------:|:------:|
|
60 |
+
| No log | 1.0 | 1 | 1.5476 | 3.2112 | 3.7133 | 6.1586 | 0.6980 | 0.8267 | 0.2998 | 0.3073 | 0.3091 |
|
61 |
+
| No log | 2.0 | 2 | 1.5441 | 3.1939 | 3.6889 | 6.1181 | 0.6965 | 0.8245 | 0.3001 | 0.3073 | 0.3091 |
|
62 |
+
| No log | 3.0 | 3 | 1.5410 | 3.1783 | 3.6668 | 6.0811 | 0.6951 | 0.8225 | 0.3003 | 0.3074 | 0.3092 |
|
63 |
+
| No log | 4.0 | 4 | 1.5381 | 3.1643 | 3.6465 | 6.0474 | 0.6939 | 0.8207 | 0.3005 | 0.3074 | 0.3092 |
|
64 |
+
| No log | 5.0 | 5 | 1.5355 | 3.1520 | 3.6285 | 6.0172 | 0.6928 | 0.8190 | 0.3007 | 0.3075 | 0.3092 |
|
65 |
+
| No log | 6.0 | 6 | 1.5333 | 3.1415 | 3.6128 | 5.9909 | 0.6918 | 0.8176 | 0.3009 | 0.3075 | 0.3092 |
|
66 |
+
| No log | 7.0 | 7 | 1.5315 | 3.1329 | 3.5999 | 5.9693 | 0.6911 | 0.8164 | 0.3010 | 0.3075 | 0.3093 |
|
67 |
+
| No log | 8.0 | 8 | 1.5301 | 3.1264 | 3.5901 | 5.9529 | 0.6905 | 0.8155 | 0.3011 | 0.3075 | 0.3093 |
|
68 |
+
| No log | 9.0 | 9 | 1.5291 | 3.1219 | 3.5832 | 5.9413 | 0.6901 | 0.8149 | 0.3012 | 0.3076 | 0.3093 |
|
69 |
+
| No log | 10.0 | 10 | 1.5286 | 3.1196 | 3.5796 | 5.9353 | 0.6899 | 0.8145 | 0.3012 | 0.3076 | 0.3093 |
|
70 |
+
|
71 |
+
|
72 |
+
### Framework versions
|
73 |
+
|
74 |
+
- Transformers 4.29.2
|
75 |
+
- Pytorch 2.0.1+cu118
|
76 |
+
- Tokenizers 0.13.3
|