--- license: other tags: - vision - image-segmentation - generated_from_trainer base_model: nvidia/mit-b2 model-index: - name: segformer-v-mesh-0 results: [] --- # segformer-v-mesh-0 This model is a fine-tuned version of [nvidia/mit-b2](https://huggingface.co/nvidia/mit-b2) on the Onegafer/vehicle_segmentation dataset. It achieves the following results on the evaluation set: - Loss: 0.0360 - Mean Iou: 0.4403 - Mean Accuracy: 0.8806 - Overall Accuracy: 0.8806 - Accuracy Background: nan - Accuracy Windows: 0.8806 - Iou Background: 0.0 - Iou Windows: 0.8806 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 6e-05 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results | Training Loss | Epoch | Step | Validation Loss | Mean Iou | Mean Accuracy | Overall Accuracy | Accuracy Background | Accuracy Windows | Iou Background | Iou Windows | |:-------------:|:-----:|:----:|:---------------:|:--------:|:-------------:|:----------------:|:-------------------:|:----------------:|:--------------:|:-----------:| | 0.2932 | 0.16 | 20 | 0.3269 | 0.2578 | 0.5156 | 0.5156 | nan | 0.5156 | 0.0 | 0.5156 | | 0.1417 | 0.31 | 40 | 0.1235 | 0.3790 | 0.7580 | 0.7580 | nan | 0.7580 | 0.0 | 0.7580 | | 0.0952 | 0.47 | 60 | 0.1245 | 0.4606 | 0.9211 | 0.9211 | nan | 0.9211 | 0.0 | 0.9211 | | 0.0778 | 0.62 | 80 | 0.0628 | 0.4042 | 0.8084 | 0.8084 | nan | 0.8084 | 0.0 | 0.8084 | | 0.0448 | 0.78 | 100 | 0.0512 | 0.4161 | 0.8322 | 0.8322 | nan | 0.8322 | 0.0 | 0.8322 | | 0.0323 | 0.94 | 120 | 0.0435 | 0.4167 | 0.8334 | 0.8334 | nan | 0.8334 | 0.0 | 0.8334 | | 0.0337 | 1.09 | 140 | 0.0405 | 0.4131 | 0.8262 | 0.8262 | nan | 0.8262 | 0.0 | 0.8262 | | 0.0586 | 1.25 | 160 | 0.0409 | 0.4509 | 0.9017 | 0.9017 | nan | 0.9017 | 0.0 | 0.9017 | | 0.0591 | 1.41 | 180 | 0.0404 | 0.4310 | 0.8620 | 0.8620 | nan | 0.8620 | 0.0 | 0.8620 | | 0.0953 | 1.56 | 200 | 0.0386 | 0.4366 | 0.8732 | 0.8732 | nan | 0.8732 | 0.0 | 0.8732 | | 0.0607 | 1.72 | 220 | 0.0374 | 0.4414 | 0.8828 | 0.8828 | nan | 0.8828 | 0.0 | 0.8828 | | 0.0387 | 1.88 | 240 | 0.0360 | 0.4403 | 0.8806 | 0.8806 | nan | 0.8806 | 0.0 | 0.8806 | ### Framework versions - Transformers 4.28.1 - Pytorch 2.0.0+cu118 - Datasets 2.11.0 - Tokenizers 0.13.3