Upload README.md with huggingface_hub
Browse files
README.md
CHANGED
@@ -21,7 +21,7 @@ model-index:
|
|
21 |
type: OpenAI/Gym/MuJoCo-HalfCheetah-v3
|
22 |
metrics:
|
23 |
- type: mean_reward
|
24 |
-
value:
|
25 |
name: mean_reward
|
26 |
---
|
27 |
|
@@ -53,7 +53,8 @@ wget https://mujoco.org/download/mujoco210-linux-x86_64.tar.gz -O mujoco.tar.gz
|
|
53 |
tar -xf mujoco.tar.gz -C ~/.mujoco
|
54 |
echo "export LD_LIBRARY_PATH=$LD_LIBRARY_PATH:~/.mujoco/mjpro210/bin:~/.mujoco/mujoco210/bin" >> ~/.bashrc
|
55 |
export LD_LIBRARY_PATH=$LD_LIBRARY_PATH:~/.mujoco/mjpro210/bin:~/.mujoco/mujoco210/bin
|
56 |
-
pip3 install
|
|
|
57 |
|
58 |
```
|
59 |
</details>
|
@@ -76,9 +77,9 @@ import torch
|
|
76 |
|
77 |
# Pull model from files which are git cloned from huggingface
|
78 |
policy_state_dict = torch.load("pytorch_model.bin", map_location=torch.device("cpu"))
|
79 |
-
cfg = EasyDict(Config.file_to_dict("policy_config.py"))
|
80 |
# Instantiate the agent
|
81 |
-
agent = PPOF(
|
82 |
# Continue training
|
83 |
agent.train(step=5000)
|
84 |
# Render the new agent performance
|
@@ -104,7 +105,7 @@ from huggingface_ding import pull_model_from_hub
|
|
104 |
# Pull model from Hugggingface hub
|
105 |
policy_state_dict, cfg = pull_model_from_hub(repo_id="OpenDILabCommunity/HalfCheetah-v3-PPO")
|
106 |
# Instantiate the agent
|
107 |
-
agent = PPOF(
|
108 |
# Continue training
|
109 |
agent.train(step=5000)
|
110 |
# Render the new agent performance
|
@@ -130,9 +131,9 @@ from ding.bonus import PPOF
|
|
130 |
from huggingface_ding import push_model_to_hub
|
131 |
|
132 |
# Instantiate the agent
|
133 |
-
agent = PPOF(
|
134 |
# Train the agent
|
135 |
-
return_ = agent.train(step=int(
|
136 |
# Push model to huggingface hub
|
137 |
push_model_to_hub(
|
138 |
agent=agent.best,
|
@@ -164,12 +165,14 @@ wget https://mujoco.org/download/mujoco210-linux-x86_64.tar.gz -O mujoco.tar.gz
|
|
164 |
tar -xf mujoco.tar.gz -C ~/.mujoco
|
165 |
echo "export LD_LIBRARY_PATH=$LD_LIBRARY_PATH:~/.mujoco/mjpro210/bin:~/.mujoco/mujoco210/bin" >> ~/.bashrc
|
166 |
export LD_LIBRARY_PATH=$LD_LIBRARY_PATH:~/.mujoco/mjpro210/bin:~/.mujoco/mujoco210/bin
|
167 |
-
pip3 install
|
|
|
168 |
''',
|
169 |
usage_file_by_git_clone="./ppo/halfcheetah_ppo_deploy.py",
|
170 |
usage_file_by_huggingface_ding="./ppo/halfcheetah_ppo_download.py",
|
171 |
train_file="./ppo/halfcheetah_ppo.py",
|
172 |
-
repo_id="OpenDILabCommunity/HalfCheetah-v3-PPO"
|
|
|
173 |
)
|
174 |
|
175 |
```
|
@@ -204,7 +207,9 @@ exp_config = {
|
|
204 |
'unroll_len': 1,
|
205 |
'deterministic_eval': True,
|
206 |
'model': {},
|
207 |
-
'cfg_type': 'PPOFPolicyDict'
|
|
|
|
|
208 |
}
|
209 |
|
210 |
```
|
@@ -212,7 +217,7 @@ exp_config = {
|
|
212 |
|
213 |
**Training Procedure**
|
214 |
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
|
215 |
-
- **Weights & Biases (wandb):** [monitor link](https://wandb.ai/
|
216 |
|
217 |
## Model Information
|
218 |
<!-- Provide the basic links for the model. -->
|
@@ -222,13 +227,13 @@ exp_config = {
|
|
222 |
- **Demo:** [video](https://huggingface.co/OpenDILabCommunity/HalfCheetah-v3-PPO/blob/main/replay.mp4)
|
223 |
<!-- Provide the size information for the model. -->
|
224 |
- **Parameters total size:** 385.85 KB
|
225 |
-
- **Last Update Date:** 2023-
|
226 |
|
227 |
## Environments
|
228 |
<!-- Address questions around what environment the model is intended to be trained and deployed at, including the necessary information needed to be provided for future users. -->
|
229 |
- **Benchmark:** OpenAI/Gym/MuJoCo
|
230 |
- **Task:** HalfCheetah-v3
|
231 |
- **Gym version:** 0.25.1
|
232 |
-
- **DI-engine version:** v0.4.
|
233 |
-
- **PyTorch version:**
|
234 |
- **Doc**: [DI-engine-docs Environments link](https://di-engine-docs.readthedocs.io/en/latest/13_envs/mujoco.html)
|
|
|
21 |
type: OpenAI/Gym/MuJoCo-HalfCheetah-v3
|
22 |
metrics:
|
23 |
- type: mean_reward
|
24 |
+
value: 1390.84 +/- 49.64
|
25 |
name: mean_reward
|
26 |
---
|
27 |
|
|
|
53 |
tar -xf mujoco.tar.gz -C ~/.mujoco
|
54 |
echo "export LD_LIBRARY_PATH=$LD_LIBRARY_PATH:~/.mujoco/mjpro210/bin:~/.mujoco/mujoco210/bin" >> ~/.bashrc
|
55 |
export LD_LIBRARY_PATH=$LD_LIBRARY_PATH:~/.mujoco/mjpro210/bin:~/.mujoco/mujoco210/bin
|
56 |
+
pip3 install "cython<3"
|
57 |
+
pip3 install DI-engine[common_env,video]
|
58 |
|
59 |
```
|
60 |
</details>
|
|
|
77 |
|
78 |
# Pull model from files which are git cloned from huggingface
|
79 |
policy_state_dict = torch.load("pytorch_model.bin", map_location=torch.device("cpu"))
|
80 |
+
cfg = EasyDict(Config.file_to_dict("policy_config.py").cfg_dict)
|
81 |
# Instantiate the agent
|
82 |
+
agent = PPOF(env_id="HalfCheetah-v3", exp_name="HalfCheetah-v3-PPO", cfg=cfg.exp_config, policy_state_dict=policy_state_dict)
|
83 |
# Continue training
|
84 |
agent.train(step=5000)
|
85 |
# Render the new agent performance
|
|
|
105 |
# Pull model from Hugggingface hub
|
106 |
policy_state_dict, cfg = pull_model_from_hub(repo_id="OpenDILabCommunity/HalfCheetah-v3-PPO")
|
107 |
# Instantiate the agent
|
108 |
+
agent = PPOF(env_id="HalfCheetah-v3", exp_name="HalfCheetah-v3-PPO", cfg=cfg.exp_config, policy_state_dict=policy_state_dict)
|
109 |
# Continue training
|
110 |
agent.train(step=5000)
|
111 |
# Render the new agent performance
|
|
|
131 |
from huggingface_ding import push_model_to_hub
|
132 |
|
133 |
# Instantiate the agent
|
134 |
+
agent = PPOF(env_id="HalfCheetah-v3", exp_name="HalfCheetah-v3-PPO")
|
135 |
# Train the agent
|
136 |
+
return_ = agent.train(step=int(5000000))
|
137 |
# Push model to huggingface hub
|
138 |
push_model_to_hub(
|
139 |
agent=agent.best,
|
|
|
165 |
tar -xf mujoco.tar.gz -C ~/.mujoco
|
166 |
echo "export LD_LIBRARY_PATH=$LD_LIBRARY_PATH:~/.mujoco/mjpro210/bin:~/.mujoco/mujoco210/bin" >> ~/.bashrc
|
167 |
export LD_LIBRARY_PATH=$LD_LIBRARY_PATH:~/.mujoco/mjpro210/bin:~/.mujoco/mujoco210/bin
|
168 |
+
pip3 install "cython<3"
|
169 |
+
pip3 install DI-engine[common_env,video]
|
170 |
''',
|
171 |
usage_file_by_git_clone="./ppo/halfcheetah_ppo_deploy.py",
|
172 |
usage_file_by_huggingface_ding="./ppo/halfcheetah_ppo_download.py",
|
173 |
train_file="./ppo/halfcheetah_ppo.py",
|
174 |
+
repo_id="OpenDILabCommunity/HalfCheetah-v3-PPO",
|
175 |
+
create_repo=False
|
176 |
)
|
177 |
|
178 |
```
|
|
|
207 |
'unroll_len': 1,
|
208 |
'deterministic_eval': True,
|
209 |
'model': {},
|
210 |
+
'cfg_type': 'PPOFPolicyDict',
|
211 |
+
'env_id': 'HalfCheetah-v3',
|
212 |
+
'exp_name': 'HalfCheetah-v3-PPO'
|
213 |
}
|
214 |
|
215 |
```
|
|
|
217 |
|
218 |
**Training Procedure**
|
219 |
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
|
220 |
+
- **Weights & Biases (wandb):** [monitor link](https://wandb.ai/zjowowen/HalfCheetah-v3-PPO)
|
221 |
|
222 |
## Model Information
|
223 |
<!-- Provide the basic links for the model. -->
|
|
|
227 |
- **Demo:** [video](https://huggingface.co/OpenDILabCommunity/HalfCheetah-v3-PPO/blob/main/replay.mp4)
|
228 |
<!-- Provide the size information for the model. -->
|
229 |
- **Parameters total size:** 385.85 KB
|
230 |
+
- **Last Update Date:** 2023-09-25
|
231 |
|
232 |
## Environments
|
233 |
<!-- Address questions around what environment the model is intended to be trained and deployed at, including the necessary information needed to be provided for future users. -->
|
234 |
- **Benchmark:** OpenAI/Gym/MuJoCo
|
235 |
- **Task:** HalfCheetah-v3
|
236 |
- **Gym version:** 0.25.1
|
237 |
+
- **DI-engine version:** v0.4.9
|
238 |
+
- **PyTorch version:** 2.0.1+cu117
|
239 |
- **Doc**: [DI-engine-docs Environments link](https://di-engine-docs.readthedocs.io/en/latest/13_envs/mujoco.html)
|