Upload README.md with huggingface_hub
Browse files
README.md
CHANGED
@@ -21,7 +21,7 @@ model-index:
|
|
21 |
type: LunarLander-v2
|
22 |
metrics:
|
23 |
- type: mean_reward
|
24 |
-
value:
|
25 |
name: mean_reward
|
26 |
---
|
27 |
|
@@ -129,7 +129,7 @@ from huggingface_ding import push_model_to_hub
|
|
129 |
# Instantiate the agent
|
130 |
agent = MuZeroAgent(env_id="LunarLander-v2", exp_name="LunarLander-v2-MuZero")
|
131 |
# Train the agent
|
132 |
-
return_ = agent.train(step=int(
|
133 |
# Push model to huggingface hub
|
134 |
push_model_to_hub(
|
135 |
agent=agent.best,
|
@@ -149,7 +149,7 @@ pip3 install LightZero
|
|
149 |
repo_id="OpenDILabCommunity/LunarLander-v2-MuZero",
|
150 |
platform_info="[LightZero](https://github.com/opendilab/LightZero) and [DI-engine](https://github.com/opendilab/di-engine)",
|
151 |
model_description="**LightZero** is an efficient, easy-to-understand open-source toolkit that merges Monte Carlo Tree Search (MCTS) with Deep Reinforcement Learning (RL), simplifying their integration for developers and researchers. More details are in paper [LightZero: A Unified Benchmark for Monte Carlo Tree Search in General Sequential Decision Scenarios](https://huggingface.co/papers/2310.08348).",
|
152 |
-
create_repo=
|
153 |
)
|
154 |
|
155 |
```
|
@@ -164,6 +164,7 @@ pip3 install LightZero
|
|
164 |
exp_config = {
|
165 |
'main_config': {
|
166 |
'exp_name': 'LunarLander-v2-MuZero',
|
|
|
167 |
'env': {
|
168 |
'env_id': 'LunarLander-v2',
|
169 |
'continuous': False,
|
@@ -199,6 +200,7 @@ exp_config = {
|
|
199 |
'collector_env_num': 8,
|
200 |
'evaluator_env_num': 3,
|
201 |
'env_type': 'not_board_games',
|
|
|
202 |
'battle_mode': 'play_with_bot_mode',
|
203 |
'monitor_extra_statistics': True,
|
204 |
'game_segment_length': 200,
|
@@ -294,13 +296,13 @@ exp_config = {
|
|
294 |
- **Demo:** [video](https://huggingface.co/OpenDILabCommunity/LunarLander-v2-MuZero/blob/main/replay.mp4)
|
295 |
<!-- Provide the size information for the model. -->
|
296 |
- **Parameters total size:** 15479.39 KB
|
297 |
-
- **Last Update Date:** 2023-12-
|
298 |
|
299 |
## Environments
|
300 |
<!-- Address questions around what environment the model is intended to be trained and deployed at, including the necessary information needed to be provided for future users. -->
|
301 |
- **Benchmark:** OpenAI/Gym/Box2d
|
302 |
- **Task:** LunarLander-v2
|
303 |
- **Gym version:** 0.25.1
|
304 |
-
- **DI-engine version:** v0.
|
305 |
-
- **PyTorch version:** 2.
|
306 |
- **Doc**: [Environments link](<TODO>)
|
|
|
21 |
type: LunarLander-v2
|
22 |
metrics:
|
23 |
- type: mean_reward
|
24 |
+
value: 206.55 +/- 102.39
|
25 |
name: mean_reward
|
26 |
---
|
27 |
|
|
|
129 |
# Instantiate the agent
|
130 |
agent = MuZeroAgent(env_id="LunarLander-v2", exp_name="LunarLander-v2-MuZero")
|
131 |
# Train the agent
|
132 |
+
return_ = agent.train(step=int(5000000))
|
133 |
# Push model to huggingface hub
|
134 |
push_model_to_hub(
|
135 |
agent=agent.best,
|
|
|
149 |
repo_id="OpenDILabCommunity/LunarLander-v2-MuZero",
|
150 |
platform_info="[LightZero](https://github.com/opendilab/LightZero) and [DI-engine](https://github.com/opendilab/di-engine)",
|
151 |
model_description="**LightZero** is an efficient, easy-to-understand open-source toolkit that merges Monte Carlo Tree Search (MCTS) with Deep Reinforcement Learning (RL), simplifying their integration for developers and researchers. More details are in paper [LightZero: A Unified Benchmark for Monte Carlo Tree Search in General Sequential Decision Scenarios](https://huggingface.co/papers/2310.08348).",
|
152 |
+
create_repo=False
|
153 |
)
|
154 |
|
155 |
```
|
|
|
164 |
exp_config = {
|
165 |
'main_config': {
|
166 |
'exp_name': 'LunarLander-v2-MuZero',
|
167 |
+
'seed': 0,
|
168 |
'env': {
|
169 |
'env_id': 'LunarLander-v2',
|
170 |
'continuous': False,
|
|
|
200 |
'collector_env_num': 8,
|
201 |
'evaluator_env_num': 3,
|
202 |
'env_type': 'not_board_games',
|
203 |
+
'action_type': 'fixed_action_space',
|
204 |
'battle_mode': 'play_with_bot_mode',
|
205 |
'monitor_extra_statistics': True,
|
206 |
'game_segment_length': 200,
|
|
|
296 |
- **Demo:** [video](https://huggingface.co/OpenDILabCommunity/LunarLander-v2-MuZero/blob/main/replay.mp4)
|
297 |
<!-- Provide the size information for the model. -->
|
298 |
- **Parameters total size:** 15479.39 KB
|
299 |
+
- **Last Update Date:** 2023-12-21
|
300 |
|
301 |
## Environments
|
302 |
<!-- Address questions around what environment the model is intended to be trained and deployed at, including the necessary information needed to be provided for future users. -->
|
303 |
- **Benchmark:** OpenAI/Gym/Box2d
|
304 |
- **Task:** LunarLander-v2
|
305 |
- **Gym version:** 0.25.1
|
306 |
+
- **DI-engine version:** v0.5.0
|
307 |
+
- **PyTorch version:** 2.0.1+cu117
|
308 |
- **Doc**: [Environments link](<TODO>)
|