czczup commited on
Commit
44e4329
1 Parent(s): 253108a

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +63 -1
README.md CHANGED
@@ -1,7 +1,34 @@
1
  ---
2
  license: mit
 
 
 
 
 
 
 
3
  ---
4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5
  ```python
6
  import torch
7
  from PIL import Image
@@ -55,4 +82,39 @@ probs = logits_per_image.softmax(dim=-1)
55
  # [8.6060e-03, 9.9219e-01, 2.8759e-06],
56
  # [1.7583e-06, 3.1233e-05, 1.0000e+00]], device='cuda:0',
57
  # dtype=torch.bfloat16, grad_fn=<SoftmaxBackward0>)
58
- ```
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  ---
2
  license: mit
3
+ datasets:
4
+ - laion/laion2B-en
5
+ - laion/laion-coco
6
+ - laion/laion2B-multi
7
+ - kakaobrain/coyo-700m
8
+ - conceptual_captions
9
+ - wanng/wukong100m
10
  ---
11
 
12
+ # Model Card for InternVL-14B-224px
13
+
14
+ ## What is InternVL?
15
+
16
+ \[[Paper](https://arxiv.org/abs/2312.14238)\] \[[GitHub](https://github.com/OpenGVLab/InternVL)\]
17
+
18
+ InternVL scales up the ViT to _**6B parameters**_ and aligns it with LLM.
19
+
20
+ It is _**the largest open-source vision/vision-language foundation model (14B)**_ to date, achieving _**32 state-of-the-art**_ performances on a wide range of tasks such as visual perception, cross-modal retrieval, multimodal dialogue, etc.
21
+
22
+
23
+ ## Model Details
24
+ - **Model Type:** vision-language foundation model
25
+ - **Model Stats:**
26
+ - Params (M): 14B
27
+ - Image size: 224 x 224
28
+ - **Pretrain Dataset:** LAION-en, LAION-COCO, COYO, CC12M, CC3M, SBU, Wukong, LAION-multi
29
+
30
+ ## Model Usage
31
+
32
  ```python
33
  import torch
34
  from PIL import Image
 
82
  # [8.6060e-03, 9.9219e-01, 2.8759e-06],
83
  # [1.7583e-06, 3.1233e-05, 1.0000e+00]], device='cuda:0',
84
  # dtype=torch.bfloat16, grad_fn=<SoftmaxBackward0>)
85
+
86
+ # please set add_eos_token to False for generation
87
+ tokenizer.add_eos_token = False
88
+ image = Image.open('./examples/image1.jpg').convert('RGB')
89
+ pixel_values = image_processor(images=image, return_tensors='pt').pixel_values
90
+ pixel_values = pixel_values.to(torch.bfloat16).cuda()
91
+
92
+ tokenized = tokenizer("English caption:", return_tensors='pt')
93
+ pred = model.generate(
94
+ pixel_values=pixel_values,
95
+ input_ids=tokenized.input_ids.cuda(),
96
+ attention_mask=tokenized.attention_mask.cuda(),
97
+ num_beams=5,
98
+ min_new_tokens=8,
99
+ )
100
+ caption = tokenizer.decode(pred[0].cpu(), skip_special_tokens=True).strip()
101
+ # English caption: a red panda sitting on top of a wooden platform
102
+ ```
103
+
104
+ ## Citation
105
+
106
+ If you find this project useful in your research, please consider cite:
107
+
108
+ ```BibTeX
109
+ @article{chen2023internvl,
110
+ title={InternVL: Scaling up Vision Foundation Models and Aligning for Generic Visual-Linguistic Tasks},
111
+ author={Chen, Zhe and Wu, Jiannan and Wang, Wenhai and Su, Weijie and Chen, Guo and Xing, Sen and Zhong, Muyan and Zhang, Qinglong and Zhu, Xizhou and Lu, Lewei and Li, Bin and Luo, Ping and Lu, Tong and Qiao, Yu and Dai, Jifeng},
112
+ journal={arXiv preprint arXiv:2312.14238},
113
+ year={2023}
114
+ }
115
+ ```
116
+
117
+
118
+ ## Acknowledgement
119
+
120
+ InternVL is built with reference to the code of the following projects: [OpenAI CLIP](https://github.com/openai/CLIP), [Open CLIP](https://github.com/mlfoundations/open_clip), [CLIP Benchmark](https://github.com/LAION-AI/CLIP_benchmark), [EVA](https://github.com/baaivision/EVA/tree/master), [InternImage](https://github.com/OpenGVLab/InternImage), [ViT-Adapter](https://github.com/czczup/ViT-Adapter), [MMSegmentation](https://github.com/open-mmlab/mmsegmentation), [Transformers](https://github.com/huggingface/transformers), [DINOv2](https://github.com/facebookresearch/dinov2), [BLIP-2](https://github.com/salesforce/LAVIS/tree/main/projects/blip2), [Qwen-VL](https://github.com/QwenLM/Qwen-VL/tree/master/eval_mm), and [LLaVA-1.5](https://github.com/haotian-liu/LLaVA). Thanks for their awesome work!