czczup commited on
Commit
def293b
1 Parent(s): eb90756

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +97 -42
README.md CHANGED
@@ -1,46 +1,101 @@
1
  ---
2
  license: mit
 
 
3
  ---
4
 
5
- <table>
6
- <tr align=center>
7
- <td rowspan="3" align=center><b>model</b></td>
8
- <td colspan="6" align=center><b>Flickr30K</b></td>
9
- <td rowspan="3" align=center><b>avg</b></td>
10
-
11
- </tr>
12
- <tr align=center>
13
- <td colspan="3" align=center><b>image-to-text</b></td>
14
- <td colspan="3" align=center><b>text-to-image</b></td>
15
- </tr>
16
- <tr>
17
- <td>R@1</td>
18
- <td>R@5</td>
19
- <td>R@10</td>
20
- <td>R@1</td>
21
- <td>R@5</td>
22
- <td>R@10</td>
23
- </tr>
24
-
25
- <tr align=center>
26
- <td>InternVL-C-FT</td>
27
- <td>97.2</td>
28
- <td>100.0</td>
29
- <td>100.0</td>
30
- <td>88.5</td>
31
- <td>98.4</td>
32
- <td>99.2</td>
33
- <td>97.2</td>
34
- </tr>
35
- <tr align=center>
36
- <td>InternVL-G-FT</td>
37
- <td>97.9</td>
38
- <td>100.0</td>
39
- <td>100.0</td>
40
- <td>89.6</td>
41
- <td>98.6</td>
42
- <td>99.2</td>
43
- <td>97.6</td>
44
- </tr>
45
-
46
- </table>
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  ---
2
  license: mit
3
+ datasets:
4
+ - nlphuji/flickr30k
5
  ---
6
 
7
+ # Model Card for InternVL-14B-Flickr30K-FT-364px
8
+
9
+ ## What is InternVL?
10
+
11
+ \[[Paper](https://arxiv.org/abs/2312.14238)\] \[[GitHub](https://github.com/OpenGVLab/InternVL)\] \[[Chat Demo](https://internvl.opengvlab.com/)\]
12
+
13
+ InternVL scales up the ViT to _**6B parameters**_ and aligns it with LLM.
14
+
15
+ It is _**the largest open-source vision/vision-language foundation model (14B)**_ to date, achieving _**32 state-of-the-art**_ performances on a wide range of tasks such as visual perception, cross-modal retrieval, multimodal dialogue, etc.
16
+
17
+
18
+ ![image/png](https://cdn-uploads.huggingface.co/production/uploads/64119264f0f81eb569e0d569/k5UATwX5W2b5KJBN5C58x.png)
19
+
20
+
21
+ ## Model Details
22
+ - **Model Type:** fine-tuned retrieval model
23
+ - **Support Tasks:** image-text retrieval
24
+ - **Model Stats:**
25
+ - Params: 14B
26
+ - Image size: 364 x 364
27
+ - **Finetune Dataset:** Flickr30K
28
+
29
+ ## Performance
30
+
31
+ See this [document](https://github.com/OpenGVLab/InternVL/tree/main/internvl_g#flickr30k) for more details about the evaluation.
32
+
33
+ ![image/png](https://cdn-uploads.huggingface.co/production/uploads/64119264f0f81eb569e0d569/VUi2qMjDRcn6kCbm6VftI.png)
34
+
35
+ ## Model Usage
36
+
37
+ **Note: the prefix `'summarize:'` and `tokenizer.pad_token_id = 0` are necessary. Their absence will lead to abnormal results.**
38
+
39
+ ```python
40
+ import torch
41
+ from PIL import Image
42
+ from transformers import AutoModel, CLIPImageProcessor
43
+ from transformers import AutoTokenizer
44
+
45
+
46
+ model = AutoModel.from_pretrained(
47
+ 'OpenGVLab/InternVL-14B-Flickr30K-FT-364px',
48
+ torch_dtype=torch.bfloat16,
49
+ low_cpu_mem_usage=True,
50
+ trust_remote_code=True).cuda().eval()
51
+
52
+ image_processor = CLIPImageProcessor.from_pretrained('OpenGVLab/InternVL-14B-Flickr30K-FT-364px')
53
+
54
+ tokenizer = AutoTokenizer.from_pretrained(
55
+ 'OpenGVLab/InternVL-14B-Flickr30K-FT-364px', use_fast=False, add_eos_token=True)
56
+ tokenizer.pad_token_id = 0 # set pad_token_id to 0
57
+
58
+ images = [
59
+ Image.open('./examples/image1.jpg').convert('RGB'),
60
+ Image.open('./examples/image2.jpg').convert('RGB'),
61
+ Image.open('./examples/image3.jpg').convert('RGB')
62
+ ]
63
+ prefix = 'summarize:'
64
+ texts = [
65
+ prefix + 'a photo of a red panda', # English
66
+ prefix + '一张熊猫的照片', # Chinese
67
+ prefix + '二匹の猫の写真' # Japanese
68
+ ]
69
+
70
+ pixel_values = image_processor(images=images, return_tensors='pt').pixel_values
71
+ pixel_values = pixel_values.to(torch.bfloat16).cuda()
72
+ input_ids = tokenizer(texts, return_tensors='pt', max_length=80,
73
+ truncation=True, padding='max_length').input_ids.cuda()
74
+
75
+ # InternVL-C
76
+ logits_per_image, logits_per_text = model(
77
+ image=pixel_values, text=input_ids, mode='InternVL-C')
78
+ probs = logits_per_image.softmax(dim=-1)
79
+
80
+ # InternVL-G
81
+ logits_per_image, logits_per_text = model(
82
+ image=pixel_values, text=input_ids, mode='InternVL-G')
83
+ probs = logits_per_image.softmax(dim=-1)
84
+ ```
85
+
86
+ ## Citation
87
+
88
+ If you find this project useful in your research, please consider citing:
89
+
90
+ ```BibTeX
91
+ @article{chen2023internvl,
92
+ title={InternVL: Scaling up Vision Foundation Models and Aligning for Generic Visual-Linguistic Tasks},
93
+ author={Chen, Zhe and Wu, Jiannan and Wang, Wenhai and Su, Weijie and Chen, Guo and Xing, Sen and Zhong, Muyan and Zhang, Qinglong and Zhu, Xizhou and Lu, Lewei and Li, Bin and Luo, Ping and Lu, Tong and Qiao, Yu and Dai, Jifeng},
94
+ journal={arXiv preprint arXiv:2312.14238},
95
+ year={2023}
96
+ }
97
+ ```
98
+
99
+ ## Acknowledgement
100
+
101
+ InternVL is built with reference to the code of the following projects: [OpenAI CLIP](https://github.com/openai/CLIP), [Open CLIP](https://github.com/mlfoundations/open_clip), [CLIP Benchmark](https://github.com/LAION-AI/CLIP_benchmark), [EVA](https://github.com/baaivision/EVA/tree/master), [InternImage](https://github.com/OpenGVLab/InternImage), [ViT-Adapter](https://github.com/czczup/ViT-Adapter), [MMSegmentation](https://github.com/open-mmlab/mmsegmentation), [Transformers](https://github.com/huggingface/transformers), [DINOv2](https://github.com/facebookresearch/dinov2), [BLIP-2](https://github.com/salesforce/LAVIS/tree/main/projects/blip2), [Qwen-VL](https://github.com/QwenLM/Qwen-VL/tree/master/eval_mm), and [LLaVA-1.5](https://github.com/haotian-liu/LLaVA). Thanks for their awesome work!