File size: 8,840 Bytes
da95d72
 
c38a7fe
 
 
 
 
 
 
360c87d
da95d72
c38a7fe
c57febc
ccc339e
 
 
c38a7fe
0fdcbd7
 
 
c38a7fe
c57febc
c38a7fe
 
0f3cf67
c38a7fe
c1d4ea1
 
f564018
c38a7fe
 
 
0f3cf67
 
 
 
 
 
c38a7fe
ccc339e
 
 
 
 
c57febc
 
 
ccc339e
 
 
 
 
 
c57febc
 
 
 
ccc339e
 
 
c38a7fe
 
 
c57febc
869e5e3
d1a7f0a
5918d23
c38a7fe
d1a7f0a
 
 
 
 
1bbed45
8d39eda
d1a7f0a
 
 
 
8d39eda
 
 
 
 
 
 
 
d1a7f0a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fed2e7c
d1a7f0a
fed2e7c
 
 
 
 
 
0348b61
 
 
fed2e7c
0348b61
c38a7fe
da92483
 
 
b46dbcf
 
 
da92483
 
 
0348b61
9d90772
 
 
e2a1dc7
 
0f3cf67
e2a1dc7
c38a7fe
 
06d367c
c38a7fe
 
 
 
 
 
 
 
 
 
614f6b8
 
 
c38a7fe
ef3aa9f
 
c38a7fe
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
---
license: mit
datasets:
- laion/laion2B-en
- laion/laion-coco
- laion/laion2B-multi
- kakaobrain/coyo-700m
- conceptual_captions
- wanng/wukong100m
pipeline_tag: visual-question-answering
---

# Model Card for InternVL-Chat-V1-1
<p align="center">
  <img src="https://cdn-uploads.huggingface.co/production/uploads/64119264f0f81eb569e0d569/4IG0h_KJ2cvpp9Kdm0Jf7.webp" alt="Image Description" width="300" height="300">
</p>

[\[🆕 Blog\]](https://internvl.github.io/blog/)  [\[📜 InternVL 1.0 Paper\]](https://arxiv.org/abs/2312.14238)  [\[📜 InternVL 1.5 Report\]](https://arxiv.org/abs/2404.16821)  [\[🗨️ Chat Demo\]](https://internvl.opengvlab.com/)

[\[🤗 HF Demo\]](https://huggingface.co/spaces/OpenGVLab/InternVL)  [\[🚀 Quick Start\]](#model-usage)  [\[🌐 Community-hosted API\]](https://rapidapi.com/adushar1320/api/internvl-chat)  [\[📖 中文解读\]](https://zhuanlan.zhihu.com/p/675877376)

We released InternVL-Chat-V1-1, featuring a structure similar to LLaVA, including a ViT, an MLP projector, and an LLM. In this version, we explored increasing the resolution to 448x448, enhancing OCR capabilities, and improving support for Chinese conversations.

## Model Details
- **Model Type:** multimodal large language model (MLLM)
- **Model Stats:**
  - Architecture: [InternViT-6B-448px](https://huggingface.co/OpenGVLab/InternViT-6B-448px) + MLP + LLaMA2-13B (Our internal SFT versions)
  - Image size: 448 x 448 (256 tokens)
  - Params: 19B

- **Training Strategy:**
  - Pretraining Stage
    - Learnable Component: InternViT-6B + LLaMA2-13B
    - Data: Trained on 72M samples, including COYO, LAION, CC12M, CC3M, SBU, Wukong, GRIT, Objects365, OpenImages, and OCR-related datasets.
    - Note: In this stage, we load the pretrained weights of the original [InternViT-6B-224px](https://huggingface.co/OpenGVLab/InternViT-6B-224px) and interpolate its position embedding to the size corresponding to 448 x 448 pixels. Moreover, in order to reduce the number of visual tokens, we use a pixel shuffle operation to reduce 1024 tokens to 256 tokens.
  - Supervised Finetuning Stage
    - Learnable Component: MLP + LLaMA2-13B
    - Data: A comprehensive collection of open-source datasets, along with their Chinese translation versions, totaling approximately 6M samples.

## Released Models

### Vision Foundation model
| Model                   | Date       | Download                                                               | Note                             |
| ----------------------- | ---------- | ---------------------------------------------------------------------- | -------------------------------- |
| InternViT-6B-448px-V1-5 | 2024.04.20 | 🤗 [HF link](https://huggingface.co/OpenGVLab/InternViT-6B-448px-V1-5) | support dynamic resolution, super strong OCR (🔥new) |
| InternViT-6B-448px-V1-2 | 2024.02.11 | 🤗 [HF link](https://huggingface.co/OpenGVLab/InternViT-6B-448px-V1-2) | 448 resolution                   |
| InternViT-6B-448px-V1-0 | 2024.01.30 | 🤗 [HF link](https://huggingface.co/OpenGVLab/InternViT-6B-448px-V1-0) | 448 resolution                   |
| InternViT-6B-224px      | 2023.12.22 | 🤗 [HF link](https://huggingface.co/OpenGVLab/InternViT-6B-224px)      | vision foundation model          |
| InternVL-14B-224px      | 2023.12.22 | 🤗 [HF link](https://huggingface.co/OpenGVLab/InternVL-14B-224px)      | vision-language foundation model |

### Multimodal Large Language Model (MLLM)
| Model                   | Date       | Download                                                                    | Note                               |
| ----------------------- | ---------- | --------------------------------------------------------------------------- | ---------------------------------- |
| InternVL-Chat-V1-5      | 2024.04.18 | 🤗 [HF link](https://huggingface.co/OpenGVLab/InternVL-Chat-V1-5)            | support 4K image; super strong OCR; Approaching the performance of GPT-4V and Gemini Pro on various benchmarks like MMMU, DocVQA, ChartQA, MathVista, etc. (🔥new)|
| InternVL-Chat-V1-2-Plus | 2024.02.21 | 🤗 [HF link](https://huggingface.co/OpenGVLab/InternVL-Chat-V1-2-Plus)       | more SFT data and stronger  |
| InternVL-Chat-V1-2      | 2024.02.11 | 🤗 [HF link](https://huggingface.co/OpenGVLab/InternVL-Chat-V1-2)            | scaling up LLM to 34B       |
| InternVL-Chat-V1-1      | 2024.01.24 | 🤗 [HF link](https://huggingface.co/OpenGVLab/InternVL-Chat-V1-1)            | support Chinese and stronger OCR   |




## Model Usage

We provide an example code to run InternVL-Chat-V1-1 using `transformers`.

You also can use our [online demo](https://internvl.opengvlab.com/) for a quick experience of this model.

```python
import torch
from PIL import Image
from transformers import AutoModel, CLIPImageProcessor
from transformers import AutoTokenizer

path = "OpenGVLab/InternVL-Chat-V1-1"
# If your GPU has more than 40G memory, you can put the entire model on a single GPU.
model = AutoModel.from_pretrained(
    path,
    torch_dtype=torch.bfloat16,
    low_cpu_mem_usage=True,
    trust_remote_code=True).eval().cuda()
# Otherwise, you need to set device_map='auto' to use multiple GPUs for inference.
# model = AutoModel.from_pretrained(
#     path,
#     torch_dtype=torch.bfloat16,
#     low_cpu_mem_usage=True,
#     trust_remote_code=True,
#     device_map='auto').eval()

tokenizer = AutoTokenizer.from_pretrained(path)
image = Image.open('./examples/image2.jpg').convert('RGB')
image = image.resize((448, 448))
image_processor = CLIPImageProcessor.from_pretrained(path)

pixel_values = image_processor(images=image, return_tensors='pt').pixel_values
pixel_values = pixel_values.to(torch.bfloat16).cuda()

generation_config = dict(
    num_beams=1,
    max_new_tokens=512,
    do_sample=False,
)

# single-round conversation
question = "请详细描述图片"
response = model.chat(tokenizer, pixel_values, question, generation_config)
print(question, response)

# multi-round conversation
question = "请详细描述图片"
response, history = model.chat(tokenizer, pixel_values, question, generation_config, history=None, return_history=True)
print(question, response)

question = "请根据图片写一首诗"
response, history = model.chat(tokenizer, pixel_values, question, generation_config, history=history, return_history=True)
print(question, response)
```

## Examples

In this update, InternVL-Chat has **improved support for Chinese and OCR**.

As you can see, although the Lynyrd Skynyrd in the image has some letters that are out of the camera's lens, and TOUR's T is blocked, the model is still able to recognize it correctly.

![image/png](https://cdn-uploads.huggingface.co/production/uploads/64119264f0f81eb569e0d569/-jQ8jCctx1VjkzVxzChQa.png)

This model can also conduct an in-depth analysis of AAAI's official website and identify important information on the web page.

![image/png](https://cdn-uploads.huggingface.co/production/uploads/64119264f0f81eb569e0d569/08W04RdT3PmzJuGwFU3--.png)

## Evaluation

See [here](https://github.com/OpenGVLab/InternVL/tree/main/internvl_chat#-evaluation) for detailed evaluation results.

## Citation

If you find this project useful in your research, please consider citing:

```BibTeX
@article{chen2023internvl,
  title={InternVL: Scaling up Vision Foundation Models and Aligning for Generic Visual-Linguistic Tasks},
  author={Chen, Zhe and Wu, Jiannan and Wang, Wenhai and Su, Weijie and Chen, Guo and Xing, Sen and Zhong, Muyan and Zhang, Qinglong and Zhu, Xizhou and Lu, Lewei and Li, Bin and Luo, Ping and Lu, Tong and Qiao, Yu and Dai, Jifeng},
  journal={arXiv preprint arXiv:2312.14238},
  year={2023}
}
```

## License

This project is released under the MIT license. Parts of this project contain code and models (e.g., LLaMA2) from other sources, which are subject to their respective licenses.

Llama 2 is licensed under the LLAMA 2 Community License, Copyright (c) Meta Platforms, Inc. All Rights Reserved.

## Acknowledgement

InternVL is built with reference to the code of the following projects: [OpenAI CLIP](https://github.com/openai/CLIP), [Open CLIP](https://github.com/mlfoundations/open_clip), [CLIP Benchmark](https://github.com/LAION-AI/CLIP_benchmark), [EVA](https://github.com/baaivision/EVA/tree/master), [InternImage](https://github.com/OpenGVLab/InternImage), [ViT-Adapter](https://github.com/czczup/ViT-Adapter), [MMSegmentation](https://github.com/open-mmlab/mmsegmentation), [Transformers](https://github.com/huggingface/transformers), [DINOv2](https://github.com/facebookresearch/dinov2), [BLIP-2](https://github.com/salesforce/LAVIS/tree/main/projects/blip2), [Qwen-VL](https://github.com/QwenLM/Qwen-VL/tree/master/eval_mm), and [LLaVA-1.5](https://github.com/haotian-liu/LLaVA). Thanks for their awesome work!