File size: 20,779 Bytes
362dca6
 
 
 
 
126d8db
362dca6
126d8db
362dca6
 
 
 
 
126d8db
 
 
362dca6
 
 
126d8db
362dca6
 
 
 
 
 
 
126d8db
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
362dca6
 
 
126d8db
362dca6
 
 
 
 
 
 
 
 
126d8db
362dca6
 
 
 
 
 
 
 
126d8db
 
362dca6
 
 
 
 
 
 
 
 
 
126d8db
362dca6
 
 
 
 
 
 
 
 
784af06
362dca6
 
784af06
362dca6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
126d8db
 
 
 
 
 
 
 
 
 
362dca6
 
 
 
 
126d8db
362dca6
 
 
 
 
 
9d88fd9
362dca6
 
 
 
126d8db
b199d4b
362dca6
 
026bc32
 
 
 
 
 
 
 
 
362dca6
 
 
 
 
 
 
 
 
 
 
 
 
026bc32
9d88fd9
 
 
 
362dca6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
126d8db
362dca6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
# --------------------------------------------------------
# InternVL
# Copyright (c) 2023 OpenGVLab
# Licensed under The MIT License [see LICENSE for details]
# --------------------------------------------------------
import warnings
from typing import Any, List, Optional, Tuple, Union
import torch.distributed as dist
import torch.utils.checkpoint
from peft import LoraConfig, get_peft_model
from torch import nn
from torch.nn import CrossEntropyLoss
from transformers import GenerationConfig, LlamaForCausalLM, LlamaTokenizer
from transformers.generation.logits_process import LogitsProcessorList
from transformers.generation.stopping_criteria import StoppingCriteriaList
from transformers.generation.streamers import BaseStreamer
from transformers.modeling_outputs import CausalLMOutputWithPast
from transformers.modeling_utils import PreTrainedModel
from transformers.utils import ModelOutput, logging
from transformers.generation.utils import GreedySearchOutput, validate_stopping_criteria, GreedySearchDecoderOnlyOutput,GreedySearchEncoderDecoderOutput

from .configuration_internvl_chat import InternVLChatConfig
from .modeling_intern_vit import InternVisionModel

logger = logging.get_logger(__name__)


# modified from https://github.com/huggingface/transformers/blob/main/src/transformers/generation/utils.py
# Fix bug when using device_map='auto' for distributed inference
class MLlamaForCausalLM(LlamaForCausalLM):

    def greedy_search(
        self,
        input_ids: torch.LongTensor,
        logits_processor: Optional[LogitsProcessorList] = None,
        stopping_criteria: Optional[StoppingCriteriaList] = None,
        max_length: Optional[int] = None,
        pad_token_id: Optional[int] = None,
        eos_token_id: Optional[Union[int, List[int]]] = None,
        output_attentions: Optional[bool] = None,
        output_hidden_states: Optional[bool] = None,
        output_scores: Optional[bool] = None,
        return_dict_in_generate: Optional[bool] = None,
        synced_gpus: bool = False,
        streamer: Optional["BaseStreamer"] = None,
        **model_kwargs,
    ) -> Union[GreedySearchOutput, torch.LongTensor]:
                # init values
        logits_processor = logits_processor if logits_processor is not None else LogitsProcessorList()
        stopping_criteria = stopping_criteria if stopping_criteria is not None else StoppingCriteriaList()
        if max_length is not None:
            warnings.warn(
                "`max_length` is deprecated in this function, use"
                " `stopping_criteria=StoppingCriteriaList([MaxLengthCriteria(max_length=max_length)])` instead.",
                UserWarning,
            )
            stopping_criteria = validate_stopping_criteria(stopping_criteria, max_length)
        pad_token_id = pad_token_id if pad_token_id is not None else self.generation_config.pad_token_id
        eos_token_id = eos_token_id if eos_token_id is not None else self.generation_config.eos_token_id
        if isinstance(eos_token_id, int):
            eos_token_id = [eos_token_id]
        eos_token_id_tensor = torch.tensor(eos_token_id).to(input_ids.device) if eos_token_id is not None else None
        output_scores = output_scores if output_scores is not None else self.generation_config.output_scores
        output_attentions = (
            output_attentions if output_attentions is not None else self.generation_config.output_attentions
        )
        output_hidden_states = (
            output_hidden_states if output_hidden_states is not None else self.generation_config.output_hidden_states
        )
        return_dict_in_generate = (
            return_dict_in_generate
            if return_dict_in_generate is not None
            else self.generation_config.return_dict_in_generate
        )

        # init attention / hidden states / scores tuples
        scores = () if (return_dict_in_generate and output_scores) else None
        decoder_attentions = () if (return_dict_in_generate and output_attentions) else None
        cross_attentions = () if (return_dict_in_generate and output_attentions) else None
        decoder_hidden_states = () if (return_dict_in_generate and output_hidden_states) else None

        # if model is an encoder-decoder, retrieve encoder attention weights and hidden states
        if return_dict_in_generate and self.config.is_encoder_decoder:
            encoder_attentions = model_kwargs["encoder_outputs"].get("attentions") if output_attentions else None
            encoder_hidden_states = (
                model_kwargs["encoder_outputs"].get("hidden_states") if output_hidden_states else None
            )

        # keep track of which sequences are already finished
        unfinished_sequences = torch.ones(input_ids.shape[0], dtype=torch.long, device=input_ids.device)

        this_peer_finished = False  # used by synced_gpus only
        while True:
            if synced_gpus:
                # Under synced_gpus the `forward` call must continue until all gpus complete their sequence.
                # The following logic allows an early break if all peers finished generating their sequence
                this_peer_finished_flag = torch.tensor(0.0 if this_peer_finished else 1.0).to(input_ids.device)
                # send 0.0 if we finished, 1.0 otherwise
                dist.all_reduce(this_peer_finished_flag, op=dist.ReduceOp.SUM)
                # did all peers finish? the reduced sum will be 0.0 then
                if this_peer_finished_flag.item() == 0.0:
                    break

            # prepare model inputs
            model_inputs = self.prepare_inputs_for_generation(input_ids, **model_kwargs)

            # forward pass to get next token
            outputs = self(
                **model_inputs,
                return_dict=True,
                output_attentions=output_attentions,
                output_hidden_states=output_hidden_states,
            )

            if synced_gpus and this_peer_finished:
                continue  # don't waste resources running the code we don't need

            next_token_logits = outputs.logits[:, -1, :]

            # pre-process distribution
            next_tokens_scores = logits_processor(input_ids, next_token_logits)

            # Store scores, attentions and hidden_states when required
            if return_dict_in_generate:
                if output_scores:
                    scores += (next_tokens_scores,)
                if output_attentions:
                    decoder_attentions += (
                        (outputs.decoder_attentions,) if self.config.is_encoder_decoder else (outputs.attentions,)
                    )
                    if self.config.is_encoder_decoder:
                        cross_attentions += (outputs.cross_attentions,)

                if output_hidden_states:
                    decoder_hidden_states += (
                        (outputs.decoder_hidden_states,)
                        if self.config.is_encoder_decoder
                        else (outputs.hidden_states,)
                    )

            # argmax
            next_tokens = torch.argmax(next_tokens_scores, dim=-1).to(device=input_ids.device)
            # finished sentences should have their next token be a padding token
            if eos_token_id is not None:
                if pad_token_id is None:
                    raise ValueError("If `eos_token_id` is defined, make sure that `pad_token_id` is defined.")
                next_tokens = next_tokens * unfinished_sequences + pad_token_id * (1 - unfinished_sequences)

            # update generated ids, model inputs, and length for next step
            input_ids = torch.cat([input_ids, next_tokens[:, None]], dim=-1)
            if streamer is not None:
                streamer.put(next_tokens.cpu())
            model_kwargs = self._update_model_kwargs_for_generation(
                outputs, model_kwargs, is_encoder_decoder=self.config.is_encoder_decoder
            )

            # if eos_token was found in one sentence, set sentence to finished
            if eos_token_id_tensor is not None:
                unfinished_sequences = unfinished_sequences.mul(
                    next_tokens.tile(eos_token_id_tensor.shape[0], 1).ne(eos_token_id_tensor.unsqueeze(1)).prod(dim=0)
                )

                # stop when each sentence is finished
                if unfinished_sequences.max() == 0:
                    this_peer_finished = True

            # stop if we exceed the maximum length
            if stopping_criteria(input_ids, scores):
                this_peer_finished = True

            if this_peer_finished and not synced_gpus:
                break

        if streamer is not None:
            streamer.end()

        if return_dict_in_generate:
            if self.config.is_encoder_decoder:
                return GreedySearchEncoderDecoderOutput(
                    sequences=input_ids,
                    scores=scores,
                    encoder_attentions=encoder_attentions,
                    encoder_hidden_states=encoder_hidden_states,
                    decoder_attentions=decoder_attentions,
                    cross_attentions=cross_attentions,
                    decoder_hidden_states=decoder_hidden_states,
                    past_key_values=model_kwargs.get("past_key_values"),
                )
            else:
                return GreedySearchDecoderOnlyOutput(
                    sequences=input_ids,
                    scores=scores,
                    attentions=decoder_attentions,
                    hidden_states=decoder_hidden_states,
                    past_key_values=model_kwargs.get("past_key_values"),
                )
        else:
            return input_ids


class InternVLChatModel(PreTrainedModel):
    config_class = InternVLChatConfig
    main_input_name = 'pixel_values'
    _no_split_modules = ['InternVisionModel', 'LlamaDecoderLayer']

    def __init__(self, config: InternVLChatConfig, vision_model=None, language_model=None):
        super().__init__(config)

        image_size = config.force_image_size or config.vision_config.image_size
        patch_size = config.vision_config.patch_size
        self.select_layer = config.select_layer
        self.template = config.template
        self.num_image_token = int((image_size // patch_size) ** 2 * (config.downsample_ratio ** 2))
        self.downsample_ratio = config.downsample_ratio
        logger.info(f'num_image_token: {self.num_image_token}')
        if vision_model is not None:
            self.vision_model = vision_model
        else:
            self.vision_model = InternVisionModel(config.vision_config)
        if language_model is not None:
            self.language_model = language_model
        else:
            # self.language_model = LlamaForCausalLM(config.llm_config)
            self.language_model = MLlamaForCausalLM(config.llm_config)
        vit_hidden_size = config.vision_config.hidden_size
        llm_hidden_size = config.llm_config.hidden_size

        self.mlp1 = nn.Sequential(
            nn.LayerNorm(vit_hidden_size * 4),
            nn.Linear(vit_hidden_size * 4, llm_hidden_size),
            nn.GELU(),
            nn.Linear(llm_hidden_size, llm_hidden_size)
        )

        if config.force_image_size != config.vision_config.image_size:
            self.vision_model.resize_pos_embeddings(
                old_size=config.vision_config.image_size,
                new_size=config.force_image_size,
                patch_size=config.vision_config.patch_size
            )

        self.img_context_token_id = None

        if config.use_backbone_lora:
            self.wrap_backbone_lora(r=config.use_backbone_lora, lora_alpha=2 * config.use_backbone_lora)

        if config.use_llm_lora:
            self.wrap_llm_lora(r=config.use_llm_lora, lora_alpha=2 * config.use_llm_lora)

    def wrap_backbone_lora(self, r=128, lora_alpha=256, lora_dropout=0.05):
        lora_config = LoraConfig(
            r=r,
            target_modules=['attn.qkv', 'attn.proj', 'mlp.fc1', 'mlp.fc2'],
            lora_alpha=lora_alpha,
            lora_dropout=lora_dropout,
        )
        self.vision_model = get_peft_model(self.vision_model, lora_config)
        self.vision_model.print_trainable_parameters()

    def wrap_llm_lora(self, r=128, lora_alpha=256, lora_dropout=0.05):
        lora_config = LoraConfig(
            r=r,
            target_modules=['self_attn.q_proj', 'self_attn.k_proj', 'self_attn.v_proj', 'self_attn.o_proj',
                            'mlp.gate_proj', 'mlp.down_proj', 'mlp.up_proj'],
            lora_alpha=lora_alpha,
            lora_dropout=lora_dropout,
            task_type='CAUSAL_LM'
        )
        self.language_model = get_peft_model(self.language_model, lora_config)
        self.language_model.print_trainable_parameters()

    def forward(
            self,
            pixel_values: torch.FloatTensor,
            input_ids: torch.LongTensor = None,
            attention_mask: Optional[torch.Tensor] = None,
            position_ids: Optional[torch.LongTensor] = None,
            image_flags: Optional[torch.LongTensor] = None,
            past_key_values: Optional[List[torch.FloatTensor]] = None,
            labels: Optional[torch.LongTensor] = None,
            use_cache: Optional[bool] = None,
            output_attentions: Optional[bool] = None,
            output_hidden_states: Optional[bool] = None,
            return_dict: Optional[bool] = None,
    ) -> Union[Tuple, CausalLMOutputWithPast]:
        return_dict = return_dict if return_dict is not None else self.config.use_return_dict

        image_flags = image_flags.squeeze(-1)
        input_embeds = self.language_model.get_input_embeddings()(input_ids)

        vit_embeds = self.extract_feature(pixel_values)
        vit_embeds = vit_embeds[image_flags == 1]

        B, N, C = input_embeds.shape
        input_embeds = input_embeds.reshape(B * N, C)

        input_ids = input_ids.reshape(B * N)
        selected = (input_ids == self.img_context_token_id)
        try:
            input_embeds[selected] = input_embeds[selected] * 0.0 + vit_embeds.reshape(-1, C)
        except:
            pass

        input_embeds = input_embeds.reshape(B, N, C)

        outputs = self.language_model.model(
            inputs_embeds=input_embeds,
            attention_mask=attention_mask,
            position_ids=position_ids,
            past_key_values=past_key_values,
            use_cache=use_cache,
            output_attentions=output_attentions,
            output_hidden_states=output_hidden_states,
            return_dict=return_dict,
        )
        hidden_states = outputs[0]
        logits = self.language_model.lm_head(hidden_states)

        loss = None
        if labels is not None:
            # Shift so that tokens < n predict n
            shift_logits = logits[..., :-1, :].contiguous()
            shift_labels = labels[..., 1:].contiguous()
            # Flatten the tokens
            loss_fct = CrossEntropyLoss()
            shift_logits = shift_logits.view(-1, self.language_model.config.vocab_size)
            shift_labels = shift_labels.view(-1)
            # Enable model parallelism
            shift_labels = shift_labels.to(shift_logits.device)
            loss = loss_fct(shift_logits, shift_labels)

        if not return_dict:
            output = (logits,) + outputs[1:]
            return (loss,) + output if loss is not None else output

        return CausalLMOutputWithPast(
            loss=loss,
            logits=logits,
            past_key_values=outputs.past_key_values,
            hidden_states=outputs.hidden_states,
            attentions=outputs.attentions,
        )

    def pixel_shuffle(self, x, scale_factor=0.5):
        n, w, h, c = x.size()
        # N, W, H, C --> N, W, H * scale, C // scale
        x = x.view(n, w, int(h * scale_factor), int(c / scale_factor))
        # N, W, H * scale, C // scale --> N, H * scale, W, C // scale
        x = x.permute(0, 2, 1, 3).contiguous()
        # N, H * scale, W, C // scale --> N, H * scale, W * scale, C // (scale ** 2)
        x = x.view(n, int(h * scale_factor), int(w * scale_factor),
                   int(c / (scale_factor * scale_factor)))
        return x

    def extract_feature(self, pixel_values):
        if self.select_layer == -1:
            vit_embeds = self.vision_model(
                pixel_values=pixel_values,
                output_hidden_states=False,
                return_dict=True).last_hidden_state
        else:
            vit_embeds = self.vision_model(
                pixel_values=pixel_values,
                output_hidden_states=True,
                return_dict=True).hidden_states[self.select_layer]
        vit_embeds = vit_embeds[:, 1:, :]
        # if torch.distributed.get_rank() == 0:
        #     print("before pixel shuffle:", vit_embeds.shape)
        h = w = int(vit_embeds.shape[1] ** 0.5)
        vit_embeds = vit_embeds.reshape(vit_embeds.shape[0], h, w, -1)
        vit_embeds = self.pixel_shuffle(vit_embeds, scale_factor=self.downsample_ratio)
        vit_embeds = vit_embeds.reshape(vit_embeds.shape[0], -1, vit_embeds.shape[-1])
        # if torch.distributed.get_rank() == 0:
        #     print("after pixel shuffle:", vit_embeds.shape)
        vit_embeds = self.mlp1(vit_embeds)
        return vit_embeds

    def chat(self, tokenizer, pixel_values, question, generation_config, history=None, return_history=False,
             IMG_START_TOKEN='<img>', IMG_END_TOKEN='</img>', IMG_CONTEXT_TOKEN='<IMG_CONTEXT>'):

        img_context_token_id = tokenizer.convert_tokens_to_ids(IMG_CONTEXT_TOKEN)
        self.img_context_token_id = img_context_token_id

        from .conversation import get_conv_template

        template = get_conv_template(self.template)
        if history is None:
            history = []
            image_tokens = IMG_START_TOKEN + IMG_CONTEXT_TOKEN * self.num_image_token + IMG_END_TOKEN
            question = image_tokens + '\n' + question
        else:
            for (old_question, old_answer) in history:
                template.append_message(template.roles[0], old_question)
                template.append_message(template.roles[1], old_answer)
        template.append_message(template.roles[0], question)
        template.append_message(template.roles[1], None)
        query = template.get_prompt()
        model_inputs = tokenizer(query, return_tensors='pt')
        input_ids = model_inputs['input_ids'].cuda()
        attention_mask = model_inputs['attention_mask'].cuda()

        generation_output = self.generate(
            pixel_values=pixel_values,
            input_ids=input_ids,
            attention_mask=attention_mask,
            **generation_config
        )
        response = tokenizer.batch_decode(generation_output, skip_special_tokens=True)[0]
        history.append((question, response))
        if return_history:
            return response, history
        else:
            return response

    @torch.no_grad()
    def generate(
            self,
            pixel_values: Optional[torch.FloatTensor] = None,
            input_ids: Optional[torch.FloatTensor] = None,
            attention_mask: Optional[torch.LongTensor] = None,
            visual_features: Optional[torch.FloatTensor] = None,
            generation_config: Optional[GenerationConfig] = None,
            output_hidden_states: Optional[bool] = None,
            return_dict: Optional[bool] = None,
            **generate_kwargs,
    ) -> torch.LongTensor:

        assert self.img_context_token_id is not None
        if pixel_values is not None:
            if visual_features is not None:
                vit_embeds = visual_features
            else:
                vit_embeds = self.extract_feature(pixel_values)

            input_embeds = self.language_model.get_input_embeddings()(input_ids)
            B, N, C = input_embeds.shape
            input_embeds = input_embeds.reshape(B * N, C)

            input_ids = input_ids.reshape(B * N)
            selected = (input_ids == self.img_context_token_id)
            assert selected.sum() != 0
            input_embeds[selected] = vit_embeds.reshape(-1, C).to(input_embeds.device)

            input_embeds = input_embeds.reshape(B, N, C)
        else:
            input_embeds = self.language_model.get_input_embeddings()(input_ids)

        outputs = self.language_model.generate(
            inputs_embeds=input_embeds,
            attention_mask=attention_mask,
            generation_config=generation_config,
            output_hidden_states=output_hidden_states,
            return_dict=return_dict,
            use_cache=True,
            **generate_kwargs,
        )

        return outputs