czczup commited on
Commit
3aafd0a
1 Parent(s): 0cc92b3

Update configuration_internvl_chat.py

Browse files
Files changed (1) hide show
  1. configuration_internvl_chat.py +108 -2
configuration_internvl_chat.py CHANGED
@@ -4,17 +4,123 @@
4
  # Licensed under The MIT License [see LICENSE for details]
5
  # --------------------------------------------------------
6
 
 
7
  import copy
 
8
 
9
  from transformers import LlamaConfig
10
  from transformers.configuration_utils import PretrainedConfig
11
  from transformers.utils import logging
12
 
13
- from .configuration_intern_vit import InternVisionConfig
14
-
15
  logger = logging.get_logger(__name__)
16
 
17
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
18
  class InternVLChatConfig(PretrainedConfig):
19
  model_type = 'internvl_chat'
20
  is_composition = True
 
4
  # Licensed under The MIT License [see LICENSE for details]
5
  # --------------------------------------------------------
6
 
7
+ import os
8
  import copy
9
+ from typing import Union
10
 
11
  from transformers import LlamaConfig
12
  from transformers.configuration_utils import PretrainedConfig
13
  from transformers.utils import logging
14
 
 
 
15
  logger = logging.get_logger(__name__)
16
 
17
 
18
+ class InternVisionConfig(PretrainedConfig):
19
+ r"""
20
+ This is the configuration class to store the configuration of a [`InternVisionModel`]. It is used to
21
+ instantiate a vision encoder according to the specified arguments, defining the model architecture.
22
+
23
+ Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
24
+ documentation from [`PretrainedConfig`] for more information.
25
+
26
+ Args:
27
+ num_channels (`int`, *optional*, defaults to 3):
28
+ Number of color channels in the input images (e.g., 3 for RGB).
29
+ patch_size (`int`, *optional*, defaults to 14):
30
+ The size (resolution) of each patch.
31
+ image_size (`int`, *optional*, defaults to 224):
32
+ The size (resolution) of each image.
33
+ qkv_bias (`bool`, *optional*, defaults to `False`):
34
+ Whether to add a bias to the queries and values in the self-attention layers.
35
+ hidden_size (`int`, *optional*, defaults to 3200):
36
+ Dimensionality of the encoder layers and the pooler layer.
37
+ num_attention_heads (`int`, *optional*, defaults to 25):
38
+ Number of attention heads for each attention layer in the Transformer encoder.
39
+ intermediate_size (`int`, *optional*, defaults to 12800):
40
+ Dimensionality of the "intermediate" (i.e., feed-forward) layer in the Transformer encoder.
41
+ qk_normalization (`bool`, *optional*, defaults to `True`):
42
+ Whether to normalize the queries and keys in the self-attention layers.
43
+ num_hidden_layers (`int`, *optional*, defaults to 48):
44
+ Number of hidden layers in the Transformer encoder.
45
+ use_flash_attn (`bool`, *optional*, defaults to `True`):
46
+ Whether to use flash attention mechanism.
47
+ hidden_act (`str` or `function`, *optional*, defaults to `"gelu"`):
48
+ The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`,
49
+ `"relu"`, `"selu"` and `"gelu_new"` ``"gelu"` are supported.
50
+ layer_norm_eps (`float`, *optional*, defaults to 1e-6):
51
+ The epsilon used by the layer normalization layers.
52
+ dropout (`float`, *optional*, defaults to 0.0):
53
+ The dropout probability for all fully connected layers in the embeddings, encoder, and pooler.
54
+ drop_path_rate (`float`, *optional*, defaults to 0.0):
55
+ Dropout rate for stochastic depth.
56
+ attention_dropout (`float`, *optional*, defaults to 0.0):
57
+ The dropout ratio for the attention probabilities.
58
+ initializer_range (`float`, *optional*, defaults to 0.02):
59
+ The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
60
+ initializer_factor (`float`, *optional*, defaults to 0.1):
61
+ A factor for layer scale.
62
+ """
63
+
64
+ model_type = 'intern_vit_6b'
65
+
66
+ def __init__(
67
+ self,
68
+ num_channels=3,
69
+ patch_size=14,
70
+ image_size=224,
71
+ qkv_bias=False,
72
+ hidden_size=3200,
73
+ num_attention_heads=25,
74
+ intermediate_size=12800,
75
+ qk_normalization=True,
76
+ num_hidden_layers=48,
77
+ use_flash_attn=True,
78
+ hidden_act='gelu',
79
+ layer_norm_eps=1e-6,
80
+ dropout=0.0,
81
+ drop_path_rate=0.0,
82
+ attention_dropout=0.0,
83
+ initializer_range=0.02,
84
+ initializer_factor=0.1,
85
+ **kwargs,
86
+ ):
87
+ super().__init__(**kwargs)
88
+
89
+ self.hidden_size = hidden_size
90
+ self.intermediate_size = intermediate_size
91
+ self.dropout = dropout
92
+ self.drop_path_rate = drop_path_rate
93
+ self.num_hidden_layers = num_hidden_layers
94
+ self.num_attention_heads = num_attention_heads
95
+ self.num_channels = num_channels
96
+ self.patch_size = patch_size
97
+ self.image_size = image_size
98
+ self.initializer_range = initializer_range
99
+ self.initializer_factor = initializer_factor
100
+ self.attention_dropout = attention_dropout
101
+ self.layer_norm_eps = layer_norm_eps
102
+ self.hidden_act = hidden_act
103
+ self.qkv_bias = qkv_bias
104
+ self.qk_normalization = qk_normalization
105
+ self.use_flash_attn = use_flash_attn
106
+
107
+ @classmethod
108
+ def from_pretrained(cls, pretrained_model_name_or_path: Union[str, os.PathLike], **kwargs) -> 'PretrainedConfig':
109
+ config_dict, kwargs = cls.get_config_dict(pretrained_model_name_or_path, **kwargs)
110
+
111
+ if 'vision_config' in config_dict:
112
+ config_dict = config_dict['vision_config']
113
+
114
+ if 'model_type' in config_dict and hasattr(cls, 'model_type') and config_dict['model_type'] != cls.model_type:
115
+ logger.warning(
116
+ f"You are using a model of type {config_dict['model_type']} to instantiate a model of type "
117
+ f'{cls.model_type}. This is not supported for all configurations of models and can yield errors.'
118
+ )
119
+
120
+ return cls.from_dict(config_dict, **kwargs)
121
+
122
+
123
+
124
  class InternVLChatConfig(PretrainedConfig):
125
  model_type = 'internvl_chat'
126
  is_composition = True