File size: 9,800 Bytes
9cac2f2
 
2e42dea
 
 
 
 
 
 
385bcee
9cac2f2
2e42dea
de2e232
2e42dea
de2e232
2e42dea
de2e232
9b7841e
de2e232
 
 
 
 
 
 
 
 
 
9b7841e
2e42dea
 
 
 
85f05e5
 
 
 
 
 
 
 
 
 
 
de2e232
 
2e42dea
 
de2e232
2e42dea
 
 
de2e232
2e42dea
 
de2e232
2e42dea
 
 
 
 
 
 
de2e232
2e42dea
41413c4
2e42dea
 
 
 
de2e232
2e42dea
 
 
 
 
 
 
 
 
de2e232
2e42dea
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
170f44e
2e42dea
170f44e
 
 
 
 
 
c5f6e4f
 
 
170f44e
c5f6e4f
2e42dea
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
385bcee
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
---
license: mit
datasets:
- laion/laion2B-en
- laion/laion-coco
- laion/laion2B-multi
- kakaobrain/coyo-700m
- conceptual_captions
- wanng/wukong100m
pipeline_tag: visual-question-answering
---

# Model Card for InternVL-Chat-V1.2-Plus

<img src="https://cdn-uploads.huggingface.co/production/uploads/64119264f0f81eb569e0d569/X8AXMkOlKeUpNcoJIXKna.webp" alt="Image Description" width="300" height="300">

\[[Paper](https://arxiv.org/abs/2312.14238)\]  \[[GitHub](https://github.com/OpenGVLab/InternVL)\] \[[Chat Demo](https://internvl.opengvlab.com/)\] \[[中文解读](https://zhuanlan.zhihu.com/p/675877376)]

| Model                   | Date       | Download                                                                    | Note                               |
| ----------------------- | ---------- | --------------------------------------------------------------------------- | ---------------------------------- |
| InternVL-Chat-V1.5      | 2024.04.18 | 🤗 [HF link](https://huggingface.co/OpenGVLab/InternVL-Chat-V1-5)            | support 4K image; super strong OCR; Approaching the performance of GPT-4V and Gemini Pro on various benchmarks like MMMU, DocVQA, ChartQA, MathVista, etc. (🔥new)|
| InternVL-Chat-V1.2-Plus | 2024.02.21 | 🤗 [HF link](https://huggingface.co/OpenGVLab/InternVL-Chat-V1-2-Plus)       | more SFT data and stronger  |
| InternVL-Chat-V1.2      | 2024.02.11 | 🤗 [HF link](https://huggingface.co/OpenGVLab/InternVL-Chat-V1-2)            | scaling up LLM to 34B       |
| InternVL-Chat-V1.1      | 2024.01.24 | 🤗 [HF link](https://huggingface.co/OpenGVLab/InternVL-Chat-V1-1)            | support Chinese and stronger OCR   |


## InternVL-Chat-V1.2-Plus Blog
InternVL-Chat-V1.2-Plus uses the same model architecture as [InternVL-Chat-V1.2](https://huggingface.co/OpenGVLab/InternVL-Chat-V1-2), but the difference lies in the SFT dataset. InternVL-Chat-V1.2 only utilizes an SFT dataset with 1.2M samples, while **our plus version employs an SFT dataset with 12M samples**.

<img width="600" alt="image" src="https://cdn-uploads.huggingface.co/production/uploads/64119264f0f81eb569e0d569/GIEKCvNc1Y5iMQqLv645p.png">

### Performance

\* Proprietary Model   &nbsp;&nbsp;&nbsp;&nbsp;   † Training Set Observed

| name                    | image size | MMMU<br>(val) | MMMU<br>(test) | MathVista<br>(testmini) | MMB<br>(test) | MMB−CN<br>(test) | MMVP | MME      | ScienceQA<br>(image) | POPE | TextVQA<br>(val) | SEEDv1<br>(image) | VizWiz<br>(test) | GQA<br>(test) |
| ----------------------- | ---------- | ------------- | -------------- | ----------------------- | ------------- | ---------------- | ---- | -------- | -------------------- | ---- | ---------------- | ----------------- | ---------------- | ------------- |
| GPT-4V\*                | unknown    | 56.8          | 55.7           | 49.9                    | 77.0          | 74.4             | 38.7 | 1409/517 | -                    | -    | 78.0             | 71.6              | -                | -             |
| Gemini Ultra\*          | unknown    | 59.4          | -              | 53.0                    | -             | -                | -    | -        | -                    | -    | 82.3             | -                 | -                | -             |
| Gemini Pro\*            | unknown    | 47.9          | -              | 45.2                    | 73.6          | 74.3             | 40.7 | 1497/437 | -                    | -    | 74.6             | 70.7              | -                | -             |
| Qwen−VL−Plus\*          | unknown    | 45.2          | 40.8           | 43.3                    | 67.0          | 70.7             | -    | 1681/502 | -                    | -    | 78.9             | 65.7              | -                | -             |
| Qwen−VL−Max\*           | unknown    | 51.4          | 46.8           | 51.0                    | 77.6          | 75.7             | -    | -        | -                    | -    | 79.5             | -                 | -                | -             |
|                         |            |               |                |                         |               |                  |      |          |                      |      |                  |                   |                  |               |
| LLaVA−NEXT−34B          | 672x672    | 51.1          | 44.7           | 46.5                    | 79.3          | 79.0             | -    | 1631/397 | 81.8                 | 87.7 | 69.5             | 75.9              | 63.8             | 67.1†          |
| InternVL−Chat−V1.2      | 448x448    | 51.6          | 46.2           | 47.7                    | 82.2          | 81.2             | 56.7 | 1687/489 | 83.3                 | 88.0 | 72.5             | 75.6              | 60.0             | 64.0†          |
| InternVL−Chat−V1.2−Plus | 448x448    | 50.3          | 45.6           | 59.9                    | 83.8          | 82.0             | 58.7 | 1625/553 | 98.1†                | 88.7 | 74.1†            | 76.4              | -                | 66.9†          |

- MMBench results are collected from the [leaderboard](https://mmbench.opencompass.org.cn/leaderboard).
- Update (2024-04-21): We have fixed a bug in the evaluation code, and the TextVQA results have been corrected.


## Model Details
- **Model Type:** multimodal large language model (MLLM)
- **Model Stats:**
  - Architecture: [InternViT-6B-448px-V1-2](https://huggingface.co/OpenGVLab/InternViT-6B-448px-V1-2) + MLP + [Nous-Hermes-2-Yi-34B](https://huggingface.co/NousResearch/Nous-Hermes-2-Yi-34B)
  - Image size: 448 x 448 (256 tokens)
  - Params: 40B

- **Training Strategy:**
  - Pretraining Stage
    - Learnable Component: MLP
    - Data: Trained on 8192x4800=39.3M samples, including COYO, LAION, CC12M, CC3M, SBU, Wukong, GRIT, Objects365, OpenImages, and OCR data.
    - Note: In this stage, we load the pretrained weights of [InternViT-6B-448px-V1-2](https://huggingface.co/OpenGVLab/InternViT-6B-448px-V1-2). Moreover, in order to reduce the number of visual tokens, we use a pixel shuffle to reduce 1024 tokens to 256 tokens.
  - Supervised Finetuning Stage
    - Learnable Component: ViT + MLP + LLM
    - Data: 12 million SFT samples.


## Model Usage

We provide an example code to run InternVL-Chat-V1.2 using `transformers`.

You also can use our [online demo](https://internvl.opengvlab.com/) for a quick experience of this model.

```python
import torch
from PIL import Image
from transformers import AutoModel, CLIPImageProcessor
from transformers import AutoTokenizer

path = "OpenGVLab/InternVL-Chat-V1-2-Plus"
# If you have an 80G A100 GPU, you can put the entire model on a single GPU.
model = AutoModel.from_pretrained(
    path,
    torch_dtype=torch.bfloat16,
    low_cpu_mem_usage=True,
    trust_remote_code=True).eval().cuda()
# Otherwise, you need to set device_map='auto' to use multiple GPUs for inference.
# model = AutoModel.from_pretrained(
#     path,
#     torch_dtype=torch.bfloat16,
#     low_cpu_mem_usage=True,
#     trust_remote_code=True,
#     device_map='auto').eval()

tokenizer = AutoTokenizer.from_pretrained(path)
image = Image.open('./examples/image2.jpg').convert('RGB')
image = image.resize((448, 448))
image_processor = CLIPImageProcessor.from_pretrained(path)

pixel_values = image_processor(images=image, return_tensors='pt').pixel_values
pixel_values = pixel_values.to(torch.bfloat16).cuda()

generation_config = dict(
    num_beams=1,
    max_new_tokens=512,
    do_sample=False,
)

# single-round conversation
question = "请详细描述图片"
response = model.chat(tokenizer, pixel_values, question, generation_config)
print(question, response)

# multi-round conversation
question = "请详细描述图片"
response, history = model.chat(tokenizer, pixel_values, question, generation_config, history=None, return_history=True)
print(question, response)

question = "请根据图片写一首诗"
response, history = model.chat(tokenizer, pixel_values, question, generation_config, history=history, return_history=True)
print(question, response)
```


## Citation

If you find this project useful in your research, please consider citing:

```BibTeX
@article{chen2023internvl,
  title={InternVL: Scaling up Vision Foundation Models and Aligning for Generic Visual-Linguistic Tasks},
  author={Chen, Zhe and Wu, Jiannan and Wang, Wenhai and Su, Weijie and Chen, Guo and Xing, Sen and Zhong, Muyan and Zhang, Qinglong and Zhu, Xizhou and Lu, Lewei and Li, Bin and Luo, Ping and Lu, Tong and Qiao, Yu and Dai, Jifeng},
  journal={arXiv preprint arXiv:2312.14238},
  year={2023}
}
```

## License

This project is released under the MIT license. Parts of this project contain code and models (e.g., LLaMA2) from other sources, which are subject to their respective licenses.

Llama 2 is licensed under the LLAMA 2 Community License, Copyright (c) Meta Platforms, Inc. All Rights Reserved.

## Acknowledgement

InternVL is built with reference to the code of the following projects: [OpenAI CLIP](https://github.com/openai/CLIP), [Open CLIP](https://github.com/mlfoundations/open_clip), [CLIP Benchmark](https://github.com/LAION-AI/CLIP_benchmark), [EVA](https://github.com/baaivision/EVA/tree/master), [InternImage](https://github.com/OpenGVLab/InternImage), [ViT-Adapter](https://github.com/czczup/ViT-Adapter), [MMSegmentation](https://github.com/open-mmlab/mmsegmentation), [Transformers](https://github.com/huggingface/transformers), [DINOv2](https://github.com/facebookresearch/dinov2), [BLIP-2](https://github.com/salesforce/LAVIS/tree/main/projects/blip2), [Qwen-VL](https://github.com/QwenLM/Qwen-VL/tree/master/eval_mm), and [LLaVA-1.5](https://github.com/haotian-liu/LLaVA). Thanks for their awesome work!