czczup's picture
Update README.md
bbccbf7 verified
|
raw
history blame
11.2 kB
metadata
license: mit
datasets:
  - laion/laion2B-en
  - laion/laion-coco
  - laion/laion2B-multi
  - kakaobrain/coyo-700m
  - conceptual_captions
  - wanng/wukong100m
pipeline_tag: visual-question-answering

Model Card for InternVL-Chat-V1-2-Plus

Image Description

[🆕 Blog] [📜 InternVL 1.0 Paper] [📜 InternVL 1.5 Report] [🗨️ Chat Demo]

[🤗 HF Demo] [🚀 Quick Start] [🌐 Community-hosted API] [📖 中文解读]

InternVL-Chat-V1-2-Plus uses the same model architecture as InternVL-Chat-V1-2, but the difference lies in the SFT dataset. InternVL-Chat-V1-2 only utilizes an SFT dataset with 1.2M samples, while our plus version employs an SFT dataset with 12M samples.

image

Model Details

  • Model Type: multimodal large language model (MLLM)

  • Model Stats:

  • Training Strategy:

    • Pretraining Stage
      • Learnable Component: MLP
      • Data: Trained on 8192x4800=39.3M samples, including COYO, LAION, CC12M, CC3M, SBU, Wukong, GRIT, Objects365, OpenImages, and OCR data. In this stage, we first load the pre-trained weights of InternViT-6B-448px-V1-0 and connect it to Nous-Hermes-2-Yi-34B. After pre-training, the extracted ViT is published as InternViT-6B-448px-V1-2. Moreover, in order to reduce the number of visual tokens, we use a pixel shuffle to reduce 1024 tokens to 256 tokens.
    • Supervised Finetuning Stage
      • Learnable Component: ViT + MLP + LLM
      • Data: 12 million SFT samples.

Released Models

Model Vision Foundation Model Release Date Note
InternVL-Chat-V1-5(🤗 HF link) InternViT-6B-448px-V1-5(🤗 HF link) 2024.04.18 support 4K image; super strong OCR; Approaching the performance of GPT-4V and Gemini Pro on various benchmarks like MMMU, DocVQA, ChartQA, MathVista, etc. (🔥new)
InternVL-Chat-V1-2-Plus(🤗 HF link ) InternViT-6B-448px-V1-2(🤗 HF link) 2024.02.21 more SFT data and stronger
InternVL-Chat-V1-2(🤗 HF link ) InternViT-6B-448px-V1-2(🤗 HF link) 2024.02.11 scaling up LLM to 34B
InternVL-Chat-V1-1(🤗 HF link) InternViT-6B-448px-V1-0(🤗 HF link) 2024.01.24 support Chinese and stronger OCR

Performance

* Proprietary Model      † Training Set Observed

name image size MMMU
(val)
MMMU
(test)
MathVista
(testmini)
MMB
(test)
MMB−CN
(test)
MMVP MME ScienceQA
(image)
POPE TextVQA
(val)
SEEDv1
(image)
VizWiz
(test)
GQA
(test)
GPT-4V* unknown 56.8 55.7 49.9 77.0 74.4 38.7 1409/517 - - 78.0 71.6 - -
Gemini Ultra* unknown 59.4 - 53.0 - - - - - - 82.3 - - -
Gemini Pro* unknown 47.9 - 45.2 73.6 74.3 40.7 1497/437 - - 74.6 70.7 - -
Qwen−VL−Plus* unknown 45.2 40.8 43.3 67.0 70.7 - 1681/502 - - 78.9 65.7 - -
Qwen−VL−Max* unknown 51.4 46.8 51.0 77.6 75.7 - - - - 79.5 - - -
LLaVA−NEXT−34B 672x672 51.1 44.7 46.5 79.3 79.0 - 1631/397 81.8 87.7 69.5 75.9 63.8 67.1†
InternVL−Chat−V1-2 448x448 51.6 46.2 47.7 82.2 81.2 56.7 1687/489 83.3 88.0 72.5 75.6 60.0 64.0†
InternVL−Chat−V1-2−Plus 448x448 50.3 45.6 59.9 83.8 82.0 58.7 1625/553 98.1† 88.7 74.1† 76.4 - 66.9†
  • MMBench results are collected from the leaderboard.
  • Update (2024-04-21): We have fixed a bug in the evaluation code, and the TextVQA results have been corrected.

Model Usage

We provide an example code to run InternVL-Chat-V1-2-Plus using transformers.

You also can use our online demo for a quick experience of this model.

import torch
from PIL import Image
from transformers import AutoModel, CLIPImageProcessor
from transformers import AutoTokenizer

path = "OpenGVLab/InternVL-Chat-V1-2-Plus"
# If you have an 80G A100 GPU, you can put the entire model on a single GPU.
model = AutoModel.from_pretrained(
    path,
    torch_dtype=torch.bfloat16,
    low_cpu_mem_usage=True,
    trust_remote_code=True).eval().cuda()
# Otherwise, you need to set device_map='auto' to use multiple GPUs for inference.
# model = AutoModel.from_pretrained(
#     path,
#     torch_dtype=torch.bfloat16,
#     low_cpu_mem_usage=True,
#     trust_remote_code=True,
#     device_map='auto').eval()

tokenizer = AutoTokenizer.from_pretrained(path)
image = Image.open('./examples/image2.jpg').convert('RGB')
image = image.resize((448, 448))
image_processor = CLIPImageProcessor.from_pretrained(path)

pixel_values = image_processor(images=image, return_tensors='pt').pixel_values
pixel_values = pixel_values.to(torch.bfloat16).cuda()

generation_config = dict(
    num_beams=1,
    max_new_tokens=512,
    do_sample=False,
)

# single-round conversation
question = "请详细描述图片"
response = model.chat(tokenizer, pixel_values, question, generation_config)
print(question, response)

# multi-round conversation
question = "请详细描述图片"
response, history = model.chat(tokenizer, pixel_values, question, generation_config, history=None, return_history=True)
print(question, response)

question = "请根据图片写一首诗"
response, history = model.chat(tokenizer, pixel_values, question, generation_config, history=history, return_history=True)
print(question, response)

Citation

If you find this project useful in your research, please consider citing:

@article{chen2023internvl,
  title={InternVL: Scaling up Vision Foundation Models and Aligning for Generic Visual-Linguistic Tasks},
  author={Chen, Zhe and Wu, Jiannan and Wang, Wenhai and Su, Weijie and Chen, Guo and Xing, Sen and Zhong, Muyan and Zhang, Qinglong and Zhu, Xizhou and Lu, Lewei and Li, Bin and Luo, Ping and Lu, Tong and Qiao, Yu and Dai, Jifeng},
  journal={arXiv preprint arXiv:2312.14238},
  year={2023}
}
@article{chen2024far,
  title={How Far Are We to GPT-4V? Closing the Gap to Commercial Multimodal Models with Open-Source Suites},
  author={Chen, Zhe and Wang, Weiyun and Tian, Hao and Ye, Shenglong and Gao, Zhangwei and Cui, Erfei and Tong, Wenwen and Hu, Kongzhi and Luo, Jiapeng and Ma, Zheng and others},
  journal={arXiv preprint arXiv:2404.16821},
  year={2024}
}

License

This project is released under the MIT license. Parts of this project contain code and models (e.g., LLaMA2) from other sources, which are subject to their respective licenses.

Llama 2 is licensed under the LLAMA 2 Community License, Copyright (c) Meta Platforms, Inc. All Rights Reserved.

Acknowledgement

InternVL is built with reference to the code of the following projects: OpenAI CLIP, Open CLIP, CLIP Benchmark, EVA, InternImage, ViT-Adapter, MMSegmentation, Transformers, DINOv2, BLIP-2, Qwen-VL, and LLaVA-1.5. Thanks for their awesome work!