Upload folder using huggingface_hub
Browse files
README.md
CHANGED
@@ -3,11 +3,19 @@ license: mit
|
|
3 |
pipeline_tag: image-text-to-text
|
4 |
---
|
5 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
6 |
<div align="center">
|
7 |
<img src="https://raw.githubusercontent.com/InternLM/lmdeploy/0be9e7ab6fe9a066cfb0a09d0e0c8d2e28435e58/resources/lmdeploy-logo.svg" width="450"/>
|
8 |
</div>
|
9 |
|
10 |
-
|
11 |
|
12 |
LMDeploy adopts [AWQ](https://arxiv.org/abs/2306.00978) algorithm for 4bit weight-only quantization. By developed the high-performance cuda kernel, the 4bit quantized model inference achieves up to 2.4x faster than FP16.
|
13 |
|
@@ -34,7 +42,7 @@ This article comprises the following sections:
|
|
34 |
|
35 |
<!-- tocstop -->
|
36 |
|
37 |
-
|
38 |
|
39 |
Trying the following codes, you can perform the batched offline inference with the quantized model:
|
40 |
|
@@ -56,7 +64,7 @@ print(response.text)
|
|
56 |
|
57 |
For more information about the pipeline parameters, please refer to [here](https://github.com/InternLM/lmdeploy/blob/main/docs/en/inference/pipeline.md).
|
58 |
|
59 |
-
|
60 |
|
61 |
To deploy InternVL2 as an API, please configure the chat template config first. Create the following JSON file `chat_template.json`.
|
62 |
|
|
|
3 |
pipeline_tag: image-text-to-text
|
4 |
---
|
5 |
|
6 |
+
# InternVL2-2B-AWQ
|
7 |
+
|
8 |
+
[\[π GitHub\]](https://github.com/OpenGVLab/InternVL) [\[π Blog\]](https://internvl.github.io/blog/) [\[π InternVL 1.0 Paper\]](https://arxiv.org/abs/2312.14238) [\[π InternVL 1.5 Report\]](https://arxiv.org/abs/2404.16821)
|
9 |
+
|
10 |
+
[\[π¨οΈ Chat Demo\]](https://internvl.opengvlab.com/) [\[π€ HF Demo\]](https://huggingface.co/spaces/OpenGVLab/InternVL) [\[π Quick Start\]](#quick-start) [\[π δΈζ解读\]](https://zhuanlan.zhihu.com/p/706547971) \[π [ιζη€ΎεΊ](https://modelscope.cn/organization/OpenGVLab) | [ζη¨](https://mp.weixin.qq.com/s/OUaVLkxlk1zhFb1cvMCFjg) \]
|
11 |
+
|
12 |
+
## Introduction
|
13 |
+
|
14 |
<div align="center">
|
15 |
<img src="https://raw.githubusercontent.com/InternLM/lmdeploy/0be9e7ab6fe9a066cfb0a09d0e0c8d2e28435e58/resources/lmdeploy-logo.svg" width="450"/>
|
16 |
</div>
|
17 |
|
18 |
+
### INT4 Weight-only Quantization and Deployment (W4A16)
|
19 |
|
20 |
LMDeploy adopts [AWQ](https://arxiv.org/abs/2306.00978) algorithm for 4bit weight-only quantization. By developed the high-performance cuda kernel, the 4bit quantized model inference achieves up to 2.4x faster than FP16.
|
21 |
|
|
|
42 |
|
43 |
<!-- tocstop -->
|
44 |
|
45 |
+
### Inference
|
46 |
|
47 |
Trying the following codes, you can perform the batched offline inference with the quantized model:
|
48 |
|
|
|
64 |
|
65 |
For more information about the pipeline parameters, please refer to [here](https://github.com/InternLM/lmdeploy/blob/main/docs/en/inference/pipeline.md).
|
66 |
|
67 |
+
### Service
|
68 |
|
69 |
To deploy InternVL2 as an API, please configure the chat template config first. Create the following JSON file `chat_template.json`.
|
70 |
|