[init]
Browse files- config.json +58 -0
- configuration_internlm2.py +180 -0
- model-00001-of-00004.safetensors +3 -0
- model-00002-of-00004.safetensors +3 -0
- model-00003-of-00004.safetensors +3 -0
- model-00004-of-00004.safetensors +3 -0
- model.safetensors.index.json +0 -0
- model_config.py +24 -0
- modeling_base.py +190 -0
- modeling_internlm2.py +1808 -0
- modeling_internvideo2_vit.py +987 -0
- modeling_qformer.py +1263 -0
- modeling_videochat2.py +319 -0
- special_tokens_map.json +32 -0
- tokenization_internlm2.py +236 -0
- tokenizer.model +3 -0
- tokenizer_config.json +106 -0
- training_args.bin +3 -0
config.json
ADDED
@@ -0,0 +1,58 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_name_or_path": "/mnt/petrelfs/wangchenting/multimodalllm/logs/scripts/pt/1b_qformer_internlm2.5_7b/stage2_8f.sh_20240807_005800/checkpoint-last",
|
3 |
+
"model_cls": "InternVideo2_VideoChat2",
|
4 |
+
"architectures": [
|
5 |
+
"InternVideo2_VideoChat2"
|
6 |
+
],
|
7 |
+
"attn_implementation": "eager",
|
8 |
+
"auto_map": {
|
9 |
+
"AutoConfig": "model_config.VideoChat2Config",
|
10 |
+
"AutoModel": "modeling_videochat2.InternVideo2_VideoChat2"
|
11 |
+
},
|
12 |
+
"model_config": {
|
13 |
+
"bridge": {
|
14 |
+
"extra_num_query_token": 64,
|
15 |
+
"name": "qformer",
|
16 |
+
"num_query_token": 32,
|
17 |
+
"qformer_attention_probs_dropout_prob": 0.1,
|
18 |
+
"qformer_drop_path_rate": 0.2,
|
19 |
+
"qformer_hidden_dropout_prob": 0.1
|
20 |
+
},
|
21 |
+
"freeze_bridge": false,
|
22 |
+
"freeze_llm": false,
|
23 |
+
"freeze_vision_encoder": false,
|
24 |
+
"llm": {
|
25 |
+
"lora_alpha": 32,
|
26 |
+
"lora_dropout": 0.1,
|
27 |
+
"lora_r": 16,
|
28 |
+
"name": "internlm2_5_7b",
|
29 |
+
"pretrained_llm_path": "internlm/internlm2_5-7b-chat-1m",
|
30 |
+
"use_lora": true
|
31 |
+
},
|
32 |
+
"loss": {
|
33 |
+
"use_vision_regression_loss": false
|
34 |
+
},
|
35 |
+
"pretrained_paths": {},
|
36 |
+
"use_flash_attention": true,
|
37 |
+
"vision_encoder": {
|
38 |
+
"checkpoint_num": 48,
|
39 |
+
"d_model": 1408,
|
40 |
+
"encoder_embed_dim": 1408,
|
41 |
+
"img_size": 224,
|
42 |
+
"name": "internvideo2-1B",
|
43 |
+
"num_frames": 8,
|
44 |
+
"origin_num_frames": 4,
|
45 |
+
"patch_size": 14,
|
46 |
+
"pretrained": null,
|
47 |
+
"sep_image_video_pos_embed": true,
|
48 |
+
"tubelet_size": 1,
|
49 |
+
"use_checkpoint": true,
|
50 |
+
"vit_add_ln": true,
|
51 |
+
"x_vis_only": true,
|
52 |
+
"x_vis_return_idx": -2
|
53 |
+
}
|
54 |
+
},
|
55 |
+
"torch_dtype": "float32",
|
56 |
+
"transformers_version": "4.38.0",
|
57 |
+
"use_cache": true
|
58 |
+
}
|
configuration_internlm2.py
ADDED
@@ -0,0 +1,180 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Copyright (c) The InternLM team and The HuggingFace Inc. team. All rights reserved.
|
3 |
+
#
|
4 |
+
# This code is based on transformers/src/transformers/models/llama/configuration_llama.py
|
5 |
+
#
|
6 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
7 |
+
# you may not use this file except in compliance with the License.
|
8 |
+
# You may obtain a copy of the License at
|
9 |
+
#
|
10 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
11 |
+
#
|
12 |
+
# Unless required by applicable law or agreed to in writing, software
|
13 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
14 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
15 |
+
# See the License for the specific language governing permissions and
|
16 |
+
# limitations under the License.
|
17 |
+
""" InternLM2 model configuration"""
|
18 |
+
|
19 |
+
from transformers.configuration_utils import PretrainedConfig
|
20 |
+
from transformers.utils import logging
|
21 |
+
|
22 |
+
logger = logging.get_logger(__name__)
|
23 |
+
|
24 |
+
INTERNLM2_PRETRAINED_CONFIG_ARCHIVE_MAP = {}
|
25 |
+
|
26 |
+
|
27 |
+
# Modified from transformers.model.llama.configuration_llama.LlamaConfig
|
28 |
+
class InternLM2Config(PretrainedConfig):
|
29 |
+
r"""
|
30 |
+
This is the configuration class to store the configuration of a [`InternLM2Model`]. It is used to instantiate
|
31 |
+
an InternLM2 model according to the specified arguments, defining the model architecture. Instantiating a
|
32 |
+
configuration with the defaults will yield a similar configuration to that of the InternLM2-7B.
|
33 |
+
|
34 |
+
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
|
35 |
+
documentation from [`PretrainedConfig`] for more information.
|
36 |
+
|
37 |
+
|
38 |
+
Args:
|
39 |
+
vocab_size (`int`, *optional*, defaults to 32000):
|
40 |
+
Vocabulary size of the InternLM2 model. Defines the number of different tokens that can be represented by the
|
41 |
+
`inputs_ids` passed when calling [`InternLM2Model`]
|
42 |
+
hidden_size (`int`, *optional*, defaults to 4096):
|
43 |
+
Dimension of the hidden representations.
|
44 |
+
intermediate_size (`int`, *optional*, defaults to 11008):
|
45 |
+
Dimension of the MLP representations.
|
46 |
+
num_hidden_layers (`int`, *optional*, defaults to 32):
|
47 |
+
Number of hidden layers in the Transformer decoder.
|
48 |
+
num_attention_heads (`int`, *optional*, defaults to 32):
|
49 |
+
Number of attention heads for each attention layer in the Transformer decoder.
|
50 |
+
num_key_value_heads (`int`, *optional*):
|
51 |
+
This is the number of key_value heads that should be used to implement Grouped Query Attention. If
|
52 |
+
`num_key_value_heads=num_attention_heads`, the model will use Multi Head Attention (MHA), if
|
53 |
+
`num_key_value_heads=1 the model will use Multi Query Attention (MQA) otherwise GQA is used. When
|
54 |
+
converting a multi-head checkpoint to a GQA checkpoint, each group key and value head should be constructed
|
55 |
+
by meanpooling all the original heads within that group. For more details checkout [this
|
56 |
+
paper](https://arxiv.org/pdf/2305.13245.pdf). If it is not specified, will default to
|
57 |
+
`num_attention_heads`.
|
58 |
+
hidden_act (`str` or `function`, *optional*, defaults to `"silu"`):
|
59 |
+
The non-linear activation function (function or string) in the decoder.
|
60 |
+
max_position_embeddings (`int`, *optional*, defaults to 2048):
|
61 |
+
The maximum sequence length that this model might ever be used with. InternLM2 supports up to 32768 tokens.
|
62 |
+
initializer_range (`float`, *optional*, defaults to 0.02):
|
63 |
+
The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
|
64 |
+
rms_norm_eps (`float`, *optional*, defaults to 1e-06):
|
65 |
+
The epsilon used by the rms normalization layers.
|
66 |
+
use_cache (`bool`, *optional*, defaults to `True`):
|
67 |
+
Whether or not the model should return the last key/values attentions (not used by all models). Only
|
68 |
+
relevant if `config.is_decoder=True`.
|
69 |
+
pad_token_id (`int`, *optional*):
|
70 |
+
Padding token id.
|
71 |
+
bos_token_id (`int`, *optional*, defaults to 1):
|
72 |
+
Beginning of stream token id.
|
73 |
+
eos_token_id (`int`, *optional*, defaults to 2):
|
74 |
+
End of stream token id.
|
75 |
+
pretraining_tp (`int`, *optional*, defaults to 1):
|
76 |
+
Experimental feature. Tensor parallelism rank used during pretraining. Please refer to [this
|
77 |
+
document](https://huggingface.co/docs/transformers/main/perf_train_gpu_many#tensor-parallelism)
|
78 |
+
to understand more about it. This value is necessary to ensure exact reproducibility
|
79 |
+
of the pretraining results. Please refer to [this
|
80 |
+
issue](https://github.com/pytorch/pytorch/issues/76232).
|
81 |
+
tie_word_embeddings (`bool`, *optional*, defaults to `False`):
|
82 |
+
Whether to tie weight embeddings
|
83 |
+
rope_theta (`float`, *optional*, defaults to 10000.0):
|
84 |
+
The base period of the RoPE embeddings.
|
85 |
+
rope_scaling (`Dict`, *optional*):
|
86 |
+
Dictionary containing the scaling configuration for the RoPE embeddings. Currently supports two scaling
|
87 |
+
strategies: linear and dynamic. Their scaling factor must be a float greater than 1. The expected format is
|
88 |
+
`{"type": strategy name, "factor": scaling factor}`. When using this flag, don't update
|
89 |
+
`max_position_embeddings` to the expected new maximum. See the following thread for more information on how
|
90 |
+
these scaling strategies behave:
|
91 |
+
https://www.reddit.com/r/LocalLLaMA/comments/14mrgpr/dynamically_scaled_rope_further_increases/. This is an
|
92 |
+
experimental feature, subject to breaking API changes in future versions.
|
93 |
+
"""
|
94 |
+
_auto_class = "AutoConfig"
|
95 |
+
model_type = "internlm2"
|
96 |
+
keys_to_ignore_at_inference = ["past_key_values"]
|
97 |
+
|
98 |
+
def __init__( # pylint: disable=W0102
|
99 |
+
self,
|
100 |
+
vocab_size=103168,
|
101 |
+
hidden_size=4096,
|
102 |
+
intermediate_size=11008,
|
103 |
+
num_hidden_layers=32,
|
104 |
+
num_attention_heads=32,
|
105 |
+
num_key_value_heads=None,
|
106 |
+
hidden_act="silu",
|
107 |
+
max_position_embeddings=2048,
|
108 |
+
initializer_range=0.02,
|
109 |
+
rms_norm_eps=1e-6,
|
110 |
+
use_cache=True,
|
111 |
+
pad_token_id=0,
|
112 |
+
bos_token_id=1,
|
113 |
+
eos_token_id=2,
|
114 |
+
pretraining_tp=1,
|
115 |
+
tie_word_embeddings=False,
|
116 |
+
bias=True,
|
117 |
+
rope_theta=10000,
|
118 |
+
rope_scaling=None,
|
119 |
+
attn_implementation=None,
|
120 |
+
**kwargs,
|
121 |
+
):
|
122 |
+
self.vocab_size = vocab_size
|
123 |
+
self.max_position_embeddings = max_position_embeddings
|
124 |
+
self.hidden_size = hidden_size
|
125 |
+
self.intermediate_size = intermediate_size
|
126 |
+
self.num_hidden_layers = num_hidden_layers
|
127 |
+
self.num_attention_heads = num_attention_heads
|
128 |
+
self.bias = bias
|
129 |
+
|
130 |
+
if num_key_value_heads is None:
|
131 |
+
num_key_value_heads = num_attention_heads
|
132 |
+
self.num_key_value_heads = num_key_value_heads
|
133 |
+
|
134 |
+
self.hidden_act = hidden_act
|
135 |
+
self.initializer_range = initializer_range
|
136 |
+
self.rms_norm_eps = rms_norm_eps
|
137 |
+
self.pretraining_tp = pretraining_tp
|
138 |
+
self.use_cache = use_cache
|
139 |
+
self.rope_theta = rope_theta
|
140 |
+
self.rope_scaling = rope_scaling
|
141 |
+
self._rope_scaling_validation()
|
142 |
+
self.attn_implementation = attn_implementation
|
143 |
+
if self.attn_implementation is None:
|
144 |
+
self.attn_implementation = "eager"
|
145 |
+
|
146 |
+
super().__init__(
|
147 |
+
pad_token_id=pad_token_id,
|
148 |
+
bos_token_id=bos_token_id,
|
149 |
+
eos_token_id=eos_token_id,
|
150 |
+
tie_word_embeddings=tie_word_embeddings,
|
151 |
+
**kwargs,
|
152 |
+
)
|
153 |
+
|
154 |
+
def _rope_scaling_validation(self):
|
155 |
+
"""
|
156 |
+
Validate the `rope_scaling` configuration.
|
157 |
+
"""
|
158 |
+
if self.rope_scaling is None:
|
159 |
+
return
|
160 |
+
|
161 |
+
if not isinstance(self.rope_scaling, dict) or len(self.rope_scaling) != 2:
|
162 |
+
raise ValueError(
|
163 |
+
"`rope_scaling` must be a dictionary with with two fields, `type` and `factor`, "
|
164 |
+
f"got {self.rope_scaling}"
|
165 |
+
)
|
166 |
+
rope_scaling_type = self.rope_scaling.get("type", None)
|
167 |
+
rope_scaling_factor = self.rope_scaling.get("factor", None)
|
168 |
+
if rope_scaling_type is None or rope_scaling_type not in ["linear", "dynamic"]:
|
169 |
+
raise ValueError(
|
170 |
+
f"`rope_scaling`'s type field must be one of ['linear', 'dynamic'], got {rope_scaling_type}"
|
171 |
+
)
|
172 |
+
if (
|
173 |
+
rope_scaling_factor is None
|
174 |
+
or not isinstance(rope_scaling_factor, (float, int))
|
175 |
+
or rope_scaling_factor < 1.0
|
176 |
+
):
|
177 |
+
raise ValueError(
|
178 |
+
f"`rope_scaling`'s factor field must be a number >= 1, got {rope_scaling_factor} "
|
179 |
+
f"of type {type(rope_scaling_factor)}"
|
180 |
+
)
|
model-00001-of-00004.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:ef1857238242f6e81191155d762384eb255c00169e123501ca8a03841b9b73e0
|
3 |
+
size 4979479072
|
model-00002-of-00004.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:69046c0047c219b5357c5cd15d2871b1c7a93bd2096298977f67eebeb36d5523
|
3 |
+
size 4976290664
|
model-00003-of-00004.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:51e8870c7ce5ad64e1e342078b35e9694ee26ed465dae076b0212702b7a10706
|
3 |
+
size 4942473752
|
model-00004-of-00004.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:7bcd1aa2e9dbbbe669544a525ee2f39ffb6005c715e9015137880f7b55ad4741
|
3 |
+
size 3014479504
|
model.safetensors.index.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|
model_config.py
ADDED
@@ -0,0 +1,24 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import copy
|
2 |
+
import re, ast
|
3 |
+
from transformers import AutoConfig, LlamaConfig
|
4 |
+
from transformers.configuration_utils import PretrainedConfig
|
5 |
+
from transformers.utils import logging
|
6 |
+
|
7 |
+
from easydict import EasyDict as MyEasyDict
|
8 |
+
from importlib import import_module
|
9 |
+
import os.path as osp
|
10 |
+
import argparse
|
11 |
+
import json
|
12 |
+
from copy import deepcopy
|
13 |
+
import sys
|
14 |
+
|
15 |
+
|
16 |
+
class VideoChat2Config(PretrainedConfig):
|
17 |
+
model_type = 'InternVideo2_VideoChat2'
|
18 |
+
|
19 |
+
def __init__(
|
20 |
+
self,
|
21 |
+
model_config=None,
|
22 |
+
**kwargs):
|
23 |
+
super().__init__(**kwargs)
|
24 |
+
self.model_config = MyEasyDict(model_config)
|
modeling_base.py
ADDED
@@ -0,0 +1,190 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import io
|
2 |
+
import os
|
3 |
+
import warnings
|
4 |
+
import logging
|
5 |
+
import torch
|
6 |
+
import torch.utils.checkpoint
|
7 |
+
from torch import nn
|
8 |
+
from torch.nn import MSELoss
|
9 |
+
|
10 |
+
from torch.cuda.amp import autocast as autocast
|
11 |
+
|
12 |
+
from .modeling_internvideo2_vit import pretrain_internvideo2_giant_patch14_224_clean
|
13 |
+
from .modeling_qformer import build_qformer
|
14 |
+
|
15 |
+
logger = logging.getLogger(__name__)
|
16 |
+
|
17 |
+
from transformers import LlamaTokenizer,AutoTokenizer,AutoModel,AutoModelForCausalLM,AutoProcessor
|
18 |
+
from transformers import AutoConfig, PreTrainedModel
|
19 |
+
from .model_config import VideoChat2Config
|
20 |
+
|
21 |
+
|
22 |
+
def disabled_train(self, mode=True):
|
23 |
+
"""Overwrite model.train with this function to make sure train/eval mode
|
24 |
+
does not change anymore."""
|
25 |
+
return self
|
26 |
+
|
27 |
+
|
28 |
+
def freeze_module(module):
|
29 |
+
for _, param in module.named_parameters():
|
30 |
+
param.requires_grad = False
|
31 |
+
module = module.eval()
|
32 |
+
module.train = disabled_train
|
33 |
+
return module
|
34 |
+
|
35 |
+
|
36 |
+
class LLMConfig(AutoConfig):
|
37 |
+
model_type = ""
|
38 |
+
|
39 |
+
|
40 |
+
class BaseMLLM(PreTrainedModel):
|
41 |
+
config_class = VideoChat2Config
|
42 |
+
def __init__(self, config):
|
43 |
+
# super().__init__(config)
|
44 |
+
self.model_config = config.model_config
|
45 |
+
config.model_config = None
|
46 |
+
super().__init__(config)
|
47 |
+
self.build_vision_encoder()
|
48 |
+
self.build_llm()
|
49 |
+
self.build_bridge()
|
50 |
+
self.build_loss()
|
51 |
+
# NOTE place it after freeze llm
|
52 |
+
for n, p in self.named_parameters():
|
53 |
+
if p.requires_grad:
|
54 |
+
logger.info(f'{n} requires_grad')
|
55 |
+
|
56 |
+
|
57 |
+
def build_vision_encoder(self):
|
58 |
+
# load pretrained internvideo2-1b here, simplified as it receives no args
|
59 |
+
# note that we haven't load the internvideo pretrained version
|
60 |
+
if 'internvideo2' in self.model_config.vision_encoder.name.lower():
|
61 |
+
encoder_name = self.model_config.vision_encoder.name
|
62 |
+
logger.info(f"Build vision_encoder: {encoder_name}")
|
63 |
+
if encoder_name == 'internvideo2-1B':
|
64 |
+
self.vision_encoder = pretrain_internvideo2_giant_patch14_224_clean(self.model_config)
|
65 |
+
else:
|
66 |
+
raise ValueError(f"Not implemented: {encoder_name}")
|
67 |
+
else:
|
68 |
+
raise NotImplementedError(self.model_config.vision_encoder.name)
|
69 |
+
|
70 |
+
if self.model_config.vision_encoder.vit_add_ln:
|
71 |
+
self.vision_layernorm = nn.LayerNorm(self.model_config.vision_encoder.encoder_embed_dim, eps=1e-12)
|
72 |
+
else:
|
73 |
+
self.vision_layernorm = nn.Identity()
|
74 |
+
|
75 |
+
self.freeze_vision_encoder = self.model_config.get("freeze_vision_encoder", False)
|
76 |
+
|
77 |
+
if self.freeze_vision_encoder:
|
78 |
+
logger.info("freeze vision encoder")
|
79 |
+
freeze_module(self.vision_encoder)
|
80 |
+
freeze_module(self.vision_layernorm)
|
81 |
+
|
82 |
+
|
83 |
+
def build_bridge(self):
|
84 |
+
# ViT to LM: 1792 -> 6656 NOTE 768 is qformer dim
|
85 |
+
self.project_up = nn.Linear(768, self.lm.config.hidden_size) # whether bias is needed?
|
86 |
+
# LM to ViT: 6656 -> 1792
|
87 |
+
self.project_down = nn.Linear(self.lm.config.hidden_size, 768)
|
88 |
+
|
89 |
+
if 'qformer' in self.model_config.bridge.name.lower():
|
90 |
+
from transformers import BertTokenizer
|
91 |
+
self.qformer_tokenizer = BertTokenizer.from_pretrained("bert-base-uncased", truncation_side="left")
|
92 |
+
self.qformer_tokenizer.add_special_tokens({"bos_token": "[DEC]"})
|
93 |
+
self.qformer_tokenizer.padding_side = "left"
|
94 |
+
if self.model_config.bridge.name == 'qformer':
|
95 |
+
self.qformer, self.query_tokens = build_qformer(
|
96 |
+
self.model_config.bridge.num_query_token, self.model_config.vision_encoder.encoder_embed_dim,
|
97 |
+
qformer_hidden_dropout_prob=self.model_config.bridge.qformer_hidden_dropout_prob,
|
98 |
+
qformer_attention_probs_dropout_prob=self.model_config.bridge.qformer_attention_probs_dropout_prob,
|
99 |
+
qformer_drop_path_rate=self.model_config.bridge.qformer_drop_path_rate,
|
100 |
+
)
|
101 |
+
self.qformer.resize_token_embeddings(len(self.qformer_tokenizer))
|
102 |
+
self.qformer.cls = None
|
103 |
+
self.extra_num_query_token = self.model_config.bridge.extra_num_query_token
|
104 |
+
if self.model_config.bridge.extra_num_query_token > 0:
|
105 |
+
logger.info(f"Add extra {self.model_config.bridge.extra_num_query_token} tokens in QFormer")
|
106 |
+
self.extra_query_tokens = nn.Parameter(
|
107 |
+
torch.zeros(1, self.model_config.bridge.extra_num_query_token, self.query_tokens.shape[-1])
|
108 |
+
)
|
109 |
+
|
110 |
+
self.freeze_bridge = self.model_config.get("freeze_bridge", False)
|
111 |
+
if self.freeze_bridge:
|
112 |
+
logger.info("freeze bridge")
|
113 |
+
freeze_module(self.qformer)
|
114 |
+
self.query_tokens.requires_grad = False
|
115 |
+
|
116 |
+
def build_llm(self):
|
117 |
+
self.lm_name = self.model_config.llm.name
|
118 |
+
if self.model_config.llm.name == 'mistral_7b':
|
119 |
+
from transformers import AutoModelForCausalLM
|
120 |
+
config = AutoConfig.from_pretrained(
|
121 |
+
self.model_config.llm.pretrained_llm_path,
|
122 |
+
torch_dtype=torch.bfloat16,
|
123 |
+
token=token,
|
124 |
+
# attn_implementation="flash_attention_2",
|
125 |
+
)
|
126 |
+
self.lm = AutoModelForCausalLM.from_config(config)
|
127 |
+
elif self.model_config.llm.name == 'internlm_20b':
|
128 |
+
from transformers import AutoModelForCausalLM
|
129 |
+
self.lm = AutoModelForCausalLM.from_pretrained(
|
130 |
+
self.model_config.llm.pretrained_llm_path,
|
131 |
+
torch_dtype=torch.bfloat16,
|
132 |
+
trust_remote_code=True,
|
133 |
+
)
|
134 |
+
self.lm.gradient_checkpointing = True
|
135 |
+
self.lm._set_gradient_checkpointing()
|
136 |
+
elif self.model_config.llm.name == 'internlm2_5_7b':
|
137 |
+
from transformers import AutoModelForCausalLM
|
138 |
+
config = AutoConfig.from_pretrained(
|
139 |
+
self.model_config.llm.pretrained_llm_path,
|
140 |
+
torch_dtype=torch.bfloat16,
|
141 |
+
trust_remote_code=True,
|
142 |
+
)
|
143 |
+
self.lm = AutoModelForCausalLM.from_config(config,trust_remote_code=True)
|
144 |
+
else:
|
145 |
+
raise NotImplementedError(self.model_config.llm.name)
|
146 |
+
|
147 |
+
self.freeze_llm = self.model_config.get("freeze_llm", True)
|
148 |
+
logger.info(f'freeze_llm: {self.freeze_llm}')
|
149 |
+
if self.freeze_llm:
|
150 |
+
logger.info("freeze llm")
|
151 |
+
freeze_module(self.lm)
|
152 |
+
|
153 |
+
if self.model_config.llm.use_lora:
|
154 |
+
self.use_lora = True
|
155 |
+
from peft import get_peft_model, LoraConfig, TaskType
|
156 |
+
logger.info("Use lora")
|
157 |
+
if "internlm" in self.model_config.llm.name:
|
158 |
+
peft_config = LoraConfig(
|
159 |
+
task_type=TaskType.CAUSAL_LM, inference_mode=False,
|
160 |
+
r=self.model_config.llm.lora_r, lora_alpha=self.model_config.llm.lora_alpha, lora_dropout=self.model_config.llm.lora_dropout,
|
161 |
+
target_modules=['wqkv', 'wo', 'w1', 'w2', 'w3']
|
162 |
+
)
|
163 |
+
else:
|
164 |
+
peft_config = LoraConfig(
|
165 |
+
task_type=TaskType.CAUSAL_LM, inference_mode=False,
|
166 |
+
r=self.model_config.llm.lora_r, lora_alpha=self.model_config.llm.lora_alpha, lora_dropout=self.model_config.llm.lora_dropout,
|
167 |
+
target_modules=["q_proj", "k_proj", "v_proj", "o_proj",
|
168 |
+
"gate_proj", "up_proj", "down_proj", "lm_head"]
|
169 |
+
)
|
170 |
+
|
171 |
+
self.lm = get_peft_model(self.lm, peft_config)
|
172 |
+
self.lm.enable_input_require_grads()
|
173 |
+
self.lm.print_trainable_parameters()
|
174 |
+
else:
|
175 |
+
self.use_lora = False
|
176 |
+
|
177 |
+
|
178 |
+
def build_loss(self):
|
179 |
+
self.use_vision_regression_loss = self.model_config.loss.get("use_vision_regression_loss", False)
|
180 |
+
if self.use_vision_regression_loss:
|
181 |
+
self.image_loss_fct = MSELoss()
|
182 |
+
|
183 |
+
@property
|
184 |
+
def dtype(self):
|
185 |
+
return self.lm.dtype
|
186 |
+
|
187 |
+
|
188 |
+
@property
|
189 |
+
def device(self):
|
190 |
+
return self.lm.device
|
modeling_internlm2.py
ADDED
@@ -0,0 +1,1808 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (c) The InternLM team and The HuggingFace Inc. team. All rights reserved.
|
2 |
+
#
|
3 |
+
# This code is based on transformers/src/transformers/models/llama/modeling_llama.py
|
4 |
+
#
|
5 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
6 |
+
# you may not use this file except in compliance with the License.
|
7 |
+
# You may obtain a copy of the License at
|
8 |
+
#
|
9 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
10 |
+
#
|
11 |
+
# Unless required by applicable law or agreed to in writing, software
|
12 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
13 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
14 |
+
# See the License for the specific language governing permissions and
|
15 |
+
# limitations under the License.
|
16 |
+
"""PyTorch InternLM2 model."""
|
17 |
+
import math
|
18 |
+
import queue
|
19 |
+
import threading
|
20 |
+
from typing import List, Optional, Tuple, Union
|
21 |
+
|
22 |
+
import torch
|
23 |
+
import torch.nn.functional as F
|
24 |
+
import torch.utils.checkpoint
|
25 |
+
from einops import rearrange
|
26 |
+
from torch import nn
|
27 |
+
from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss
|
28 |
+
from transformers.activations import ACT2FN
|
29 |
+
from transformers.cache_utils import Cache, DynamicCache, StaticCache
|
30 |
+
from transformers.modeling_attn_mask_utils import AttentionMaskConverter
|
31 |
+
from transformers.modeling_outputs import (
|
32 |
+
BaseModelOutputWithPast,
|
33 |
+
CausalLMOutputWithPast,
|
34 |
+
QuestionAnsweringModelOutput,
|
35 |
+
SequenceClassifierOutputWithPast,
|
36 |
+
TokenClassifierOutput,
|
37 |
+
)
|
38 |
+
from transformers.modeling_utils import PreTrainedModel
|
39 |
+
from transformers.pytorch_utils import ALL_LAYERNORM_LAYERS
|
40 |
+
from transformers.utils import (
|
41 |
+
add_start_docstrings,
|
42 |
+
add_start_docstrings_to_model_forward,
|
43 |
+
is_flash_attn_greater_or_equal_2_10,
|
44 |
+
logging,
|
45 |
+
replace_return_docstrings,
|
46 |
+
)
|
47 |
+
|
48 |
+
try:
|
49 |
+
from transformers.generation.streamers import BaseStreamer
|
50 |
+
except Exception:
|
51 |
+
BaseStreamer = None
|
52 |
+
|
53 |
+
from .configuration_internlm2 import InternLM2Config
|
54 |
+
|
55 |
+
|
56 |
+
try:
|
57 |
+
from flash_attn import flash_attn_func, flash_attn_varlen_func
|
58 |
+
from flash_attn.bert_padding import index_first_axis, pad_input, unpad_input
|
59 |
+
except:
|
60 |
+
pass
|
61 |
+
|
62 |
+
try:
|
63 |
+
support_bf16_triu = torch.__version__ >= "2.1.0"
|
64 |
+
except Exception:
|
65 |
+
support_bf16_triu = False
|
66 |
+
|
67 |
+
logger = logging.get_logger(__name__)
|
68 |
+
|
69 |
+
_CONFIG_FOR_DOC = "InternLM2Config"
|
70 |
+
|
71 |
+
|
72 |
+
def _get_unpad_data(attention_mask):
|
73 |
+
seqlens_in_batch = attention_mask.sum(dim=-1, dtype=torch.int32)
|
74 |
+
indices = torch.nonzero(attention_mask.flatten(), as_tuple=False).flatten()
|
75 |
+
max_seqlen_in_batch = seqlens_in_batch.max().item()
|
76 |
+
cu_seqlens = F.pad(torch.cumsum(seqlens_in_batch, dim=0, dtype=torch.int32), (1, 0)) # pylint: disable=E1102
|
77 |
+
return (
|
78 |
+
indices,
|
79 |
+
cu_seqlens,
|
80 |
+
max_seqlen_in_batch,
|
81 |
+
)
|
82 |
+
|
83 |
+
|
84 |
+
class InternLM2RMSNorm(nn.Module):
|
85 |
+
"""InternLM2RMSNorm is equivalent to T5LayerNorm."""
|
86 |
+
|
87 |
+
def __init__(self, hidden_size, eps=1e-6):
|
88 |
+
super().__init__()
|
89 |
+
self.weight = nn.Parameter(torch.ones(hidden_size))
|
90 |
+
self.variance_epsilon = eps
|
91 |
+
|
92 |
+
def forward(self, hidden_states):
|
93 |
+
input_dtype = hidden_states.dtype
|
94 |
+
hidden_states = hidden_states.to(torch.float32)
|
95 |
+
variance = hidden_states.pow(2).mean(-1, keepdim=True)
|
96 |
+
hidden_states = hidden_states * torch.rsqrt(variance + self.variance_epsilon)
|
97 |
+
return self.weight * hidden_states.to(input_dtype)
|
98 |
+
|
99 |
+
|
100 |
+
ALL_LAYERNORM_LAYERS.append(InternLM2RMSNorm)
|
101 |
+
|
102 |
+
|
103 |
+
class InternLM2RotaryEmbedding(nn.Module):
|
104 |
+
"""Rotary Position Embedding for the InternLM2 model. Credits to the Reddit user /u/lucidrains."""
|
105 |
+
|
106 |
+
def __init__(self, dim, max_position_embeddings=2048, base=10000, device=None, scaling_factor=1.0):
|
107 |
+
super().__init__()
|
108 |
+
self.scaling_factor = scaling_factor
|
109 |
+
self.dim = dim
|
110 |
+
self.max_position_embeddings = max_position_embeddings
|
111 |
+
self.base = base
|
112 |
+
inv_freq = 1.0 / (self.base ** (torch.arange(0, self.dim, 2, dtype=torch.int64).float().to(device) / self.dim))
|
113 |
+
self.register_buffer("inv_freq", inv_freq, persistent=False)
|
114 |
+
# For BC we register cos and sin cached
|
115 |
+
self.max_seq_len_cached = max_position_embeddings
|
116 |
+
|
117 |
+
@torch.no_grad()
|
118 |
+
def forward(self, x, position_ids):
|
119 |
+
# x: [bs, num_attention_heads, seq_len, head_size]
|
120 |
+
inv_freq_expanded = self.inv_freq[None, :, None].float().expand(position_ids.shape[0], -1, 1)
|
121 |
+
position_ids_expanded = position_ids[:, None, :].float()
|
122 |
+
# Force float32 since bfloat16 loses precision on long contexts
|
123 |
+
# See https://github.com/huggingface/transformers/pull/29285
|
124 |
+
device_type = x.device.type
|
125 |
+
device_type = device_type if isinstance(device_type, str) and device_type != "mps" else "cpu"
|
126 |
+
with torch.autocast(device_type=device_type, enabled=False):
|
127 |
+
freqs = (inv_freq_expanded.float() @ position_ids_expanded.float()).transpose(1, 2)
|
128 |
+
emb = torch.cat((freqs, freqs), dim=-1)
|
129 |
+
cos = emb.cos()
|
130 |
+
sin = emb.sin()
|
131 |
+
return cos.to(dtype=x.dtype), sin.to(dtype=x.dtype)
|
132 |
+
|
133 |
+
|
134 |
+
class InternLM2LinearScalingRotaryEmbedding(InternLM2RotaryEmbedding):
|
135 |
+
"""InternLM2RotaryEmbedding extended with linear scaling. Credits to the Reddit user /u/kaiokendev"""
|
136 |
+
|
137 |
+
def forward(self, x, position_ids):
|
138 |
+
# difference to the original RoPE: a scaling factor is aplied to the position ids
|
139 |
+
position_ids = position_ids.float() / self.scaling_factor
|
140 |
+
cos, sin = super().forward(x, position_ids)
|
141 |
+
return cos, sin
|
142 |
+
|
143 |
+
|
144 |
+
class InternLM2DynamicNTKScalingRotaryEmbedding(InternLM2RotaryEmbedding):
|
145 |
+
"""InternLM2RotaryEmbedding extended with Dynamic NTK scaling.
|
146 |
+
Credits to the Reddit users /u/bloc97 and /u/emozilla"""
|
147 |
+
|
148 |
+
def forward(self, x, position_ids):
|
149 |
+
# difference to the original RoPE: inv_freq is recomputed when the sequence length > original length
|
150 |
+
seq_len = torch.max(position_ids) + 1
|
151 |
+
if seq_len > self.max_position_embeddings:
|
152 |
+
base = self.base * (
|
153 |
+
(self.scaling_factor * seq_len / self.max_position_embeddings) - (self.scaling_factor - 1)
|
154 |
+
) ** (self.dim / (self.dim - 2))
|
155 |
+
inv_freq = 1.0 / (base ** (torch.arange(0, self.dim, 2, dtype=torch.int64).float().to(x.device) / self.dim))
|
156 |
+
self.register_buffer("inv_freq", inv_freq, persistent=False) # TODO joao: this may break with compilation
|
157 |
+
|
158 |
+
cos, sin = super().forward(x, position_ids)
|
159 |
+
return cos, sin
|
160 |
+
|
161 |
+
|
162 |
+
def rotate_half(x):
|
163 |
+
"""Rotates half the hidden dims of the input."""
|
164 |
+
x1 = x[..., : x.shape[-1] // 2]
|
165 |
+
x2 = x[..., x.shape[-1] // 2 :]
|
166 |
+
return torch.cat((-x2, x1), dim=-1)
|
167 |
+
|
168 |
+
|
169 |
+
def apply_rotary_pos_emb(q, k, cos, sin, position_ids=None, unsqueeze_dim=1): # pylint: disable=unused-argument
|
170 |
+
"""Applies Rotary Position Embedding to the query and key tensors.
|
171 |
+
|
172 |
+
Args:
|
173 |
+
q (`torch.Tensor`): The query tensor.
|
174 |
+
k (`torch.Tensor`): The key tensor.
|
175 |
+
cos (`torch.Tensor`): The cosine part of the rotary embedding.
|
176 |
+
sin (`torch.Tensor`): The sine part of the rotary embedding.
|
177 |
+
position_ids (`torch.Tensor`, *optional*):
|
178 |
+
Deprecated and unused.
|
179 |
+
unsqueeze_dim (`int`, *optional*, defaults to 1):
|
180 |
+
The 'unsqueeze_dim' argument specifies the dimension along which to unsqueeze cos[position_ids] and
|
181 |
+
sin[position_ids] so that they can be properly broadcasted to the dimensions of q and k. For example, note
|
182 |
+
that cos[position_ids] and sin[position_ids] have the shape [batch_size, seq_len, head_dim]. Then, if q and
|
183 |
+
k have the shape [batch_size, heads, seq_len, head_dim], then setting unsqueeze_dim=1 makes
|
184 |
+
cos[position_ids] and sin[position_ids] broadcastable to the shapes of q and k. Similarly, if q and k have
|
185 |
+
the shape [batch_size, seq_len, heads, head_dim], then set unsqueeze_dim=2.
|
186 |
+
Returns:
|
187 |
+
`tuple(torch.Tensor)` comprising of the query and key tensors rotated using the Rotary Position Embedding.
|
188 |
+
"""
|
189 |
+
cos = cos.unsqueeze(unsqueeze_dim)
|
190 |
+
sin = sin.unsqueeze(unsqueeze_dim)
|
191 |
+
q_embed = (q * cos) + (rotate_half(q) * sin)
|
192 |
+
k_embed = (k * cos) + (rotate_half(k) * sin)
|
193 |
+
return q_embed, k_embed
|
194 |
+
|
195 |
+
|
196 |
+
class InternLM2MLP(nn.Module):
|
197 |
+
"""MLP for InternLM2 model."""
|
198 |
+
|
199 |
+
def __init__(self, config):
|
200 |
+
super().__init__()
|
201 |
+
self.config = config
|
202 |
+
self.hidden_size = config.hidden_size
|
203 |
+
self.intermediate_size = config.intermediate_size
|
204 |
+
self.w1 = nn.Linear(self.hidden_size, self.intermediate_size, bias=False)
|
205 |
+
self.w3 = nn.Linear(self.hidden_size, self.intermediate_size, bias=False)
|
206 |
+
self.w2 = nn.Linear(self.intermediate_size, self.hidden_size, bias=False)
|
207 |
+
self.act_fn = ACT2FN[config.hidden_act]
|
208 |
+
|
209 |
+
def forward(self, x):
|
210 |
+
down_proj = self.w2(self.act_fn(self.w1(x)) * self.w3(x))
|
211 |
+
|
212 |
+
return down_proj
|
213 |
+
|
214 |
+
|
215 |
+
def repeat_kv(hidden_states: torch.Tensor, n_rep: int) -> torch.Tensor:
|
216 |
+
"""
|
217 |
+
This is the equivalent of torch.repeat_interleave(x, dim=1, repeats=n_rep). The hidden states go from (batch,
|
218 |
+
num_key_value_heads, seqlen, head_dim) to (batch, num_attention_heads, seqlen, head_dim)
|
219 |
+
"""
|
220 |
+
batch, num_key_value_heads, slen, head_dim = hidden_states.shape
|
221 |
+
if n_rep == 1:
|
222 |
+
return hidden_states
|
223 |
+
hidden_states = hidden_states[:, :, None, :, :].expand(batch, num_key_value_heads, n_rep, slen, head_dim)
|
224 |
+
return hidden_states.reshape(batch, num_key_value_heads * n_rep, slen, head_dim)
|
225 |
+
|
226 |
+
|
227 |
+
class InternLM2Attention(nn.Module):
|
228 |
+
"""Multi-headed attention from 'Attention Is All You Need' paper"""
|
229 |
+
|
230 |
+
def __init__(self, config: InternLM2Config, layer_idx: Optional[int] = None):
|
231 |
+
super().__init__()
|
232 |
+
self.config = config
|
233 |
+
self.layer_idx = layer_idx
|
234 |
+
if layer_idx is None:
|
235 |
+
logger.warning_once(
|
236 |
+
f"Instantiating {self.__class__.__name__} without passing a `layer_idx` is not recommended and will "
|
237 |
+
"lead to errors during the forward call if caching is used. Please make sure to provide a `layer_idx` "
|
238 |
+
"when creating this class."
|
239 |
+
)
|
240 |
+
|
241 |
+
self.hidden_size = config.hidden_size
|
242 |
+
self.num_heads = config.num_attention_heads
|
243 |
+
self.head_dim = self.hidden_size // self.num_heads
|
244 |
+
self.num_key_value_heads = config.num_key_value_heads
|
245 |
+
self.num_key_value_groups = self.num_heads // self.num_key_value_heads
|
246 |
+
self.max_position_embeddings = config.max_position_embeddings
|
247 |
+
self.rope_theta = config.rope_theta
|
248 |
+
self.is_causal = True
|
249 |
+
|
250 |
+
if (self.head_dim * self.num_heads) != self.hidden_size:
|
251 |
+
raise ValueError(
|
252 |
+
f"hidden_size must be divisible by num_heads (got `hidden_size`: {self.hidden_size}"
|
253 |
+
f" and `num_heads`: {self.num_heads})."
|
254 |
+
)
|
255 |
+
|
256 |
+
self.wqkv = nn.Linear(
|
257 |
+
self.hidden_size,
|
258 |
+
(self.num_heads + 2 * self.num_key_value_heads) * self.head_dim,
|
259 |
+
bias=config.bias,
|
260 |
+
)
|
261 |
+
self.wo = nn.Linear(self.num_heads * self.head_dim, self.hidden_size, bias=config.bias)
|
262 |
+
|
263 |
+
self._init_rope()
|
264 |
+
|
265 |
+
def _init_rope(self):
|
266 |
+
if self.config.rope_scaling is None:
|
267 |
+
self.rotary_emb = InternLM2RotaryEmbedding(
|
268 |
+
self.head_dim,
|
269 |
+
max_position_embeddings=self.max_position_embeddings,
|
270 |
+
base=self.rope_theta,
|
271 |
+
)
|
272 |
+
else:
|
273 |
+
scaling_type = self.config.rope_scaling["type"]
|
274 |
+
scaling_factor = self.config.rope_scaling["factor"]
|
275 |
+
if scaling_type == "linear":
|
276 |
+
self.rotary_emb = InternLM2LinearScalingRotaryEmbedding(
|
277 |
+
self.head_dim,
|
278 |
+
max_position_embeddings=self.max_position_embeddings,
|
279 |
+
scaling_factor=scaling_factor,
|
280 |
+
base=self.rope_theta,
|
281 |
+
)
|
282 |
+
elif scaling_type == "dynamic":
|
283 |
+
self.rotary_emb = InternLM2DynamicNTKScalingRotaryEmbedding(
|
284 |
+
self.head_dim,
|
285 |
+
max_position_embeddings=self.max_position_embeddings,
|
286 |
+
scaling_factor=scaling_factor,
|
287 |
+
base=self.rope_theta,
|
288 |
+
)
|
289 |
+
else:
|
290 |
+
raise ValueError(f"Unknown RoPE scaling type {scaling_type}")
|
291 |
+
|
292 |
+
def forward(
|
293 |
+
self,
|
294 |
+
hidden_states: torch.Tensor,
|
295 |
+
attention_mask: Optional[torch.Tensor] = None,
|
296 |
+
position_ids: Optional[torch.LongTensor] = None,
|
297 |
+
past_key_value: Optional[Cache] = None,
|
298 |
+
output_attentions: bool = False,
|
299 |
+
use_cache: bool = False, # pylint: disable=unused-argument
|
300 |
+
cache_position: Optional[torch.LongTensor] = None,
|
301 |
+
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
|
302 |
+
bsz, q_len, _ = hidden_states.size()
|
303 |
+
|
304 |
+
if self.config.pretraining_tp > 1:
|
305 |
+
# split qkv_states by tp size
|
306 |
+
key_value_slicing = (self.num_key_value_heads * self.head_dim) // self.config.pretraining_tp
|
307 |
+
qkv_slices = self.wqkv.weight.split(key_value_slicing, dim=0)
|
308 |
+
qkv_states = torch.cat(
|
309 |
+
[F.linear(hidden_states, qkv_slice) for qkv_slice in qkv_slices], dim=-1 # pylint: disable=E1102
|
310 |
+
)
|
311 |
+
else:
|
312 |
+
qkv_states = self.wqkv(hidden_states)
|
313 |
+
|
314 |
+
qkv_states = rearrange(
|
315 |
+
qkv_states,
|
316 |
+
"b q (h gs d) -> b q h gs d",
|
317 |
+
gs=2 + self.num_key_value_groups,
|
318 |
+
d=self.head_dim,
|
319 |
+
)
|
320 |
+
|
321 |
+
query_states = qkv_states[..., : self.num_key_value_groups, :]
|
322 |
+
query_states = rearrange(query_states, "b q h gs d -> b q (h gs) d").transpose(1, 2)
|
323 |
+
key_states = qkv_states[..., -2, :].transpose(1, 2)
|
324 |
+
value_states = qkv_states[..., -1, :].transpose(1, 2)
|
325 |
+
|
326 |
+
cos, sin = self.rotary_emb(value_states, position_ids)
|
327 |
+
query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin, position_ids)
|
328 |
+
|
329 |
+
if past_key_value is not None:
|
330 |
+
# sin and cos are specific to RoPE models; cache_position needed for the static cache
|
331 |
+
cache_kwargs = {"sin": sin, "cos": cos, "cache_position": cache_position}
|
332 |
+
key_states, value_states = past_key_value.update(key_states, value_states, self.layer_idx, cache_kwargs)
|
333 |
+
|
334 |
+
key_states = repeat_kv(key_states, self.num_key_value_groups)
|
335 |
+
value_states = repeat_kv(value_states, self.num_key_value_groups)
|
336 |
+
|
337 |
+
attn_weights = torch.matmul(query_states, key_states.transpose(2, 3)) / math.sqrt(self.head_dim)
|
338 |
+
|
339 |
+
if attention_mask is not None: # no matter the length, we just slice it
|
340 |
+
causal_mask = attention_mask[:, :, :, : key_states.shape[-2]]
|
341 |
+
attn_weights = attn_weights + causal_mask
|
342 |
+
|
343 |
+
# upcast attention to fp32
|
344 |
+
attn_weights = nn.functional.softmax(attn_weights, dim=-1, dtype=torch.float32).to(query_states.dtype)
|
345 |
+
attn_output = torch.matmul(attn_weights, value_states)
|
346 |
+
|
347 |
+
if attn_output.size() != (bsz, self.num_heads, q_len, self.head_dim):
|
348 |
+
raise ValueError(
|
349 |
+
f"`attn_output` should be of size {(bsz, self.num_heads, q_len, self.head_dim)}, but is"
|
350 |
+
f" {attn_output.size()}"
|
351 |
+
)
|
352 |
+
|
353 |
+
attn_output = attn_output.transpose(1, 2).contiguous()
|
354 |
+
|
355 |
+
attn_output = attn_output.reshape(bsz, q_len, self.hidden_size)
|
356 |
+
|
357 |
+
if self.config.pretraining_tp > 1:
|
358 |
+
attn_output = attn_output.split(self.hidden_size // self.config.pretraining_tp, dim=2)
|
359 |
+
o_proj_slices = self.wo.weight.split(self.hidden_size // self.config.pretraining_tp, dim=1)
|
360 |
+
attn_output = sum(
|
361 |
+
[
|
362 |
+
F.linear(attn_output[i], o_proj_slices[i]) # pylint: disable=E1102
|
363 |
+
for i in range(self.config.pretraining_tp)
|
364 |
+
]
|
365 |
+
)
|
366 |
+
else:
|
367 |
+
attn_output = self.wo(attn_output)
|
368 |
+
|
369 |
+
if not output_attentions:
|
370 |
+
attn_weights = None
|
371 |
+
|
372 |
+
return attn_output, attn_weights, past_key_value
|
373 |
+
|
374 |
+
|
375 |
+
class InternLM2FlashAttention2(InternLM2Attention):
|
376 |
+
"""
|
377 |
+
InternLM2 flash attention module. This module inherits from `InternLM2Attention` as the weights of the module stays
|
378 |
+
untouched. The only required change would be on the forward pass where it needs to correctly call the public API of
|
379 |
+
flash attention and deal with padding tokens in case the input contains any of them.
|
380 |
+
"""
|
381 |
+
|
382 |
+
def __init__(self, *args, **kwargs):
|
383 |
+
super().__init__(*args, **kwargs)
|
384 |
+
|
385 |
+
# TODO: Should be removed once Flash Attention for RoCm is bumped to 2.1.
|
386 |
+
# flash_attn<2.1 generates top-left aligned causal mask, while what is needed here is bottom-right alignement,
|
387 |
+
# that was made default for flash_attn>=2.1. This attribute is used to handle this difference.
|
388 |
+
# Reference: https://github.com/Dao-AILab/flash-attention/releases/tag/v2.1.0.
|
389 |
+
# Beware that with flash_attn<2.1, using q_seqlen != k_seqlen (except for the case q_seqlen == 1)
|
390 |
+
# produces a wrong mask (top-left).
|
391 |
+
self._flash_attn_uses_top_left_mask = not is_flash_attn_greater_or_equal_2_10()
|
392 |
+
|
393 |
+
def forward(
|
394 |
+
self,
|
395 |
+
hidden_states: torch.Tensor,
|
396 |
+
attention_mask: Optional[torch.LongTensor] = None,
|
397 |
+
position_ids: Optional[torch.LongTensor] = None,
|
398 |
+
past_key_value: Optional[Cache] = None,
|
399 |
+
output_attentions: bool = False,
|
400 |
+
use_cache: bool = False,
|
401 |
+
cache_position: Optional[torch.LongTensor] = None,
|
402 |
+
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
|
403 |
+
if isinstance(past_key_value, StaticCache):
|
404 |
+
raise ValueError(
|
405 |
+
"`static` cache implementation is not compatible with `attn_implementation==flash_attention_2` "
|
406 |
+
"make sure to use `sdpa` in the mean time, and open an issue at "
|
407 |
+
"https://github.com/huggingface/transformers"
|
408 |
+
)
|
409 |
+
|
410 |
+
output_attentions = False
|
411 |
+
|
412 |
+
bsz, q_len, _ = hidden_states.size()
|
413 |
+
|
414 |
+
qkv_states = self.wqkv(hidden_states)
|
415 |
+
|
416 |
+
qkv_states = rearrange(
|
417 |
+
qkv_states,
|
418 |
+
"b q (h gs d) -> b q h gs d",
|
419 |
+
gs=2 + self.num_key_value_groups,
|
420 |
+
d=self.head_dim,
|
421 |
+
)
|
422 |
+
|
423 |
+
query_states = qkv_states[..., : self.num_key_value_groups, :]
|
424 |
+
query_states = rearrange(query_states, "b q h gs d -> b q (h gs) d")
|
425 |
+
key_states = qkv_states[..., -2, :]
|
426 |
+
value_states = qkv_states[..., -1, :]
|
427 |
+
|
428 |
+
query_states = query_states.transpose(1, 2)
|
429 |
+
key_states = key_states.transpose(1, 2)
|
430 |
+
value_states = value_states.transpose(1, 2)
|
431 |
+
|
432 |
+
cos, sin = self.rotary_emb(value_states, position_ids)
|
433 |
+
query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin)
|
434 |
+
|
435 |
+
if past_key_value is not None:
|
436 |
+
# sin and cos are specific to RoPE models; cache_position needed for the static cache
|
437 |
+
cache_kwargs = {"sin": sin, "cos": cos, "cache_position": cache_position}
|
438 |
+
key_states, value_states = past_key_value.update(key_states, value_states, self.layer_idx, cache_kwargs)
|
439 |
+
|
440 |
+
# TODO: These transpose are quite inefficient but Flash Attention requires the layout
|
441 |
+
# [batch_size, sequence_length, num_heads, head_dim]. We would need to refactor the KV cache
|
442 |
+
# to be able to avoid many of these transpose/reshape/view.
|
443 |
+
query_states = query_states.transpose(1, 2)
|
444 |
+
key_states = key_states.transpose(1, 2)
|
445 |
+
value_states = value_states.transpose(1, 2)
|
446 |
+
|
447 |
+
# dropout_rate = self.attention_dropout if self.training else 0.0
|
448 |
+
dropout_rate = 0.0
|
449 |
+
|
450 |
+
# In PEFT, usually we cast the layer norms in float32 for training stability reasons
|
451 |
+
# therefore the input hidden states gets silently casted in float32. Hence, we need
|
452 |
+
# cast them back in the correct dtype just to be sure everything works as expected.
|
453 |
+
# This might slowdown training & inference so it is recommended to not cast the LayerNorms
|
454 |
+
# in fp32. (InternLM2RMSNorm handles it correctly)
|
455 |
+
|
456 |
+
input_dtype = query_states.dtype
|
457 |
+
if input_dtype == torch.float32:
|
458 |
+
if torch.is_autocast_enabled():
|
459 |
+
target_dtype = torch.get_autocast_gpu_dtype()
|
460 |
+
# Handle the case where the model is quantized
|
461 |
+
elif hasattr(self.config, "_pre_quantization_dtype"):
|
462 |
+
target_dtype = self.config._pre_quantization_dtype
|
463 |
+
else:
|
464 |
+
target_dtype = self.wqkv.weight.dtype
|
465 |
+
|
466 |
+
logger.warning_once(
|
467 |
+
f"The input hidden states seems to be silently casted in float32, this might be related to"
|
468 |
+
f" the fact you have upcasted embedding or layer norm layers in float32. We will cast back the input in"
|
469 |
+
f" {target_dtype}."
|
470 |
+
)
|
471 |
+
|
472 |
+
query_states = query_states.to(target_dtype)
|
473 |
+
key_states = key_states.to(target_dtype)
|
474 |
+
value_states = value_states.to(target_dtype)
|
475 |
+
|
476 |
+
attn_output = self._flash_attention_forward(
|
477 |
+
query_states, key_states, value_states, attention_mask, q_len, dropout=dropout_rate
|
478 |
+
)
|
479 |
+
|
480 |
+
attn_output = attn_output.reshape(bsz, q_len, self.hidden_size).contiguous()
|
481 |
+
attn_output = self.wo(attn_output)
|
482 |
+
|
483 |
+
if not output_attentions:
|
484 |
+
attn_weights = None
|
485 |
+
|
486 |
+
return attn_output, attn_weights, past_key_value # pylint: disable=E0606
|
487 |
+
|
488 |
+
def _flash_attention_forward(
|
489 |
+
self, query_states, key_states, value_states, attention_mask, query_length, dropout=0.0, softmax_scale=None
|
490 |
+
):
|
491 |
+
"""
|
492 |
+
Calls the forward method of Flash Attention - if the input hidden states contain at least one padding token
|
493 |
+
first unpad the input, then computes the attention scores and pad the final attention scores.
|
494 |
+
|
495 |
+
Args:
|
496 |
+
query_states (`torch.Tensor`):
|
497 |
+
Input query states to be passed to Flash Attention API
|
498 |
+
key_states (`torch.Tensor`):
|
499 |
+
Input key states to be passed to Flash Attention API
|
500 |
+
value_states (`torch.Tensor`):
|
501 |
+
Input value states to be passed to Flash Attention API
|
502 |
+
attention_mask (`torch.Tensor`):
|
503 |
+
The padding mask - corresponds to a tensor of size `(batch_size, seq_len)` where 0 stands for the
|
504 |
+
position of padding tokens and 1 for the position of non-padding tokens.
|
505 |
+
dropout (`float`):
|
506 |
+
Attention dropout
|
507 |
+
softmax_scale (`float`, *optional*):
|
508 |
+
The scaling of QK^T before applying softmax. Default to 1 / sqrt(head_dim)
|
509 |
+
"""
|
510 |
+
if not self._flash_attn_uses_top_left_mask:
|
511 |
+
causal = self.is_causal
|
512 |
+
else:
|
513 |
+
# TODO: Remove the `query_length != 1` check once Flash Attention for RoCm is bumped to 2.1.
|
514 |
+
# For details, please see the comment in InternLM2FlashAttention2 __init__.
|
515 |
+
causal = self.is_causal and query_length != 1
|
516 |
+
|
517 |
+
# Contains at least one padding token in the sequence
|
518 |
+
if attention_mask is not None:
|
519 |
+
batch_size = query_states.shape[0]
|
520 |
+
query_states, key_states, value_states, indices_q, cu_seq_lens, max_seq_lens = self._upad_input(
|
521 |
+
query_states, key_states, value_states, attention_mask, query_length
|
522 |
+
)
|
523 |
+
|
524 |
+
cu_seqlens_q, cu_seqlens_k = cu_seq_lens
|
525 |
+
max_seqlen_in_batch_q, max_seqlen_in_batch_k = max_seq_lens
|
526 |
+
|
527 |
+
attn_output_unpad = flash_attn_varlen_func( # pylint: disable=E0606
|
528 |
+
query_states,
|
529 |
+
key_states,
|
530 |
+
value_states,
|
531 |
+
cu_seqlens_q=cu_seqlens_q,
|
532 |
+
cu_seqlens_k=cu_seqlens_k,
|
533 |
+
max_seqlen_q=max_seqlen_in_batch_q,
|
534 |
+
max_seqlen_k=max_seqlen_in_batch_k,
|
535 |
+
dropout_p=dropout,
|
536 |
+
softmax_scale=softmax_scale,
|
537 |
+
causal=causal,
|
538 |
+
)
|
539 |
+
|
540 |
+
attn_output = pad_input(attn_output_unpad, indices_q, batch_size, query_length) # pylint: disable=E0606
|
541 |
+
else:
|
542 |
+
attn_output = flash_attn_func( # pylint: disable=E0606
|
543 |
+
query_states, key_states, value_states, dropout, softmax_scale=softmax_scale, causal=causal
|
544 |
+
)
|
545 |
+
|
546 |
+
return attn_output
|
547 |
+
|
548 |
+
def _upad_input(self, query_layer, key_layer, value_layer, attention_mask, query_length):
|
549 |
+
indices_k, cu_seqlens_k, max_seqlen_in_batch_k = _get_unpad_data(attention_mask)
|
550 |
+
batch_size, kv_seq_len, num_key_value_heads, head_dim = key_layer.shape
|
551 |
+
|
552 |
+
key_layer = index_first_axis( # pylint: disable=E0606
|
553 |
+
key_layer.reshape(batch_size * kv_seq_len, num_key_value_heads, head_dim), indices_k
|
554 |
+
)
|
555 |
+
value_layer = index_first_axis( # pylint: disable=E0606
|
556 |
+
value_layer.reshape(batch_size * kv_seq_len, num_key_value_heads, head_dim), indices_k
|
557 |
+
)
|
558 |
+
if query_length == kv_seq_len:
|
559 |
+
query_layer = index_first_axis( # pylint: disable=E0606
|
560 |
+
query_layer.reshape(batch_size * kv_seq_len, self.num_heads, head_dim), indices_k
|
561 |
+
)
|
562 |
+
cu_seqlens_q = cu_seqlens_k
|
563 |
+
max_seqlen_in_batch_q = max_seqlen_in_batch_k
|
564 |
+
indices_q = indices_k
|
565 |
+
elif query_length == 1:
|
566 |
+
max_seqlen_in_batch_q = 1
|
567 |
+
cu_seqlens_q = torch.arange(
|
568 |
+
batch_size + 1, dtype=torch.int32, device=query_layer.device
|
569 |
+
) # There is a memcpy here, that is very bad.
|
570 |
+
indices_q = cu_seqlens_q[:-1]
|
571 |
+
query_layer = query_layer.squeeze(1)
|
572 |
+
else:
|
573 |
+
# The -q_len: slice assumes left padding.
|
574 |
+
attention_mask = attention_mask[:, -query_length:]
|
575 |
+
query_layer, indices_q, cu_seqlens_q, max_seqlen_in_batch_q = unpad_input( # pylint: disable=E0606
|
576 |
+
query_layer, attention_mask
|
577 |
+
)
|
578 |
+
|
579 |
+
return (
|
580 |
+
query_layer,
|
581 |
+
key_layer,
|
582 |
+
value_layer,
|
583 |
+
indices_q,
|
584 |
+
(cu_seqlens_q, cu_seqlens_k),
|
585 |
+
(max_seqlen_in_batch_q, max_seqlen_in_batch_k),
|
586 |
+
)
|
587 |
+
|
588 |
+
|
589 |
+
# Copied from transformers.models.llama.modeling_llama.LllamaSdpaAttention with Llama->InternLM2
|
590 |
+
class InternLM2SdpaAttention(InternLM2Attention):
|
591 |
+
"""
|
592 |
+
InternLM2 attention module using torch.nn.functional.scaled_dot_product_attention. This module inherits from
|
593 |
+
`InternLM2Attention` as the weights of the module stays untouched. The only changes are on the forward pass
|
594 |
+
to adapt to SDPA API.
|
595 |
+
"""
|
596 |
+
|
597 |
+
# Adapted from InternLM2Attention.forward
|
598 |
+
def forward(
|
599 |
+
self,
|
600 |
+
hidden_states: torch.Tensor,
|
601 |
+
attention_mask: Optional[torch.Tensor] = None,
|
602 |
+
position_ids: Optional[torch.LongTensor] = None,
|
603 |
+
past_key_value: Optional[Cache] = None,
|
604 |
+
output_attentions: bool = False,
|
605 |
+
use_cache: bool = False,
|
606 |
+
cache_position: Optional[torch.LongTensor] = None,
|
607 |
+
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
|
608 |
+
if output_attentions:
|
609 |
+
# TODO: Improve this warning with e.g. `model.config.attn_implementation = "manual"`
|
610 |
+
# once this is implemented.
|
611 |
+
logger.warning_once(
|
612 |
+
"InternLM2Model uses InternLM2SdpaAttention, but `torch.nn.functional.scaled_dot_product_attention` "
|
613 |
+
"does not support `output_attentions=True`. Falling back to the manual attention implementation, "
|
614 |
+
"but specifying the manual implementation will be required from Transformers version v5.0.0 onwards. "
|
615 |
+
'This warning can be removed using the argument `attn_implementation="eager"` when loading the model.'
|
616 |
+
)
|
617 |
+
return super().forward(
|
618 |
+
hidden_states=hidden_states,
|
619 |
+
attention_mask=attention_mask,
|
620 |
+
position_ids=position_ids,
|
621 |
+
past_key_value=past_key_value,
|
622 |
+
output_attentions=output_attentions,
|
623 |
+
use_cache=use_cache,
|
624 |
+
cache_position=cache_position,
|
625 |
+
)
|
626 |
+
|
627 |
+
bsz, q_len, _ = hidden_states.size()
|
628 |
+
|
629 |
+
qkv_states = self.wqkv(hidden_states)
|
630 |
+
|
631 |
+
qkv_states = rearrange(
|
632 |
+
qkv_states,
|
633 |
+
"b q (h gs d) -> b q h gs d",
|
634 |
+
gs=2 + self.num_key_value_groups,
|
635 |
+
d=self.head_dim,
|
636 |
+
)
|
637 |
+
|
638 |
+
query_states = qkv_states[..., : self.num_key_value_groups, :]
|
639 |
+
query_states = rearrange(query_states, "b q h gs d -> b q (h gs) d")
|
640 |
+
key_states = qkv_states[..., -2, :]
|
641 |
+
value_states = qkv_states[..., -1, :]
|
642 |
+
|
643 |
+
query_states = query_states.transpose(1, 2)
|
644 |
+
key_states = key_states.transpose(1, 2)
|
645 |
+
value_states = value_states.transpose(1, 2)
|
646 |
+
|
647 |
+
cos, sin = self.rotary_emb(value_states, position_ids)
|
648 |
+
query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin)
|
649 |
+
|
650 |
+
if past_key_value is not None:
|
651 |
+
# sin and cos are specific to RoPE models; cache_position needed for the static cache
|
652 |
+
cache_kwargs = {"sin": sin, "cos": cos, "cache_position": cache_position}
|
653 |
+
key_states, value_states = past_key_value.update(key_states, value_states, self.layer_idx, cache_kwargs)
|
654 |
+
|
655 |
+
key_states = repeat_kv(key_states, self.num_key_value_groups)
|
656 |
+
value_states = repeat_kv(value_states, self.num_key_value_groups)
|
657 |
+
|
658 |
+
causal_mask = attention_mask
|
659 |
+
if attention_mask is not None:
|
660 |
+
causal_mask = causal_mask[:, :, :, : key_states.shape[-2]]
|
661 |
+
|
662 |
+
# SDPA with memory-efficient backend is currently (torch==2.1.2) bugged with non-contiguous inputs with
|
663 |
+
# custom attn_mask, Reference: https://github.com/pytorch/pytorch/issues/112577.
|
664 |
+
if query_states.device.type == "cuda" and causal_mask is not None:
|
665 |
+
query_states = query_states.contiguous()
|
666 |
+
key_states = key_states.contiguous()
|
667 |
+
value_states = value_states.contiguous()
|
668 |
+
|
669 |
+
# We dispatch to SDPA's Flash Attention or Efficient kernels via this `is_causal` if statement instead of
|
670 |
+
# an inline conditional assignment in SDPA to support both torch.compile's dynamic shapes and full graph
|
671 |
+
# options. An inline conditional prevents dynamic shapes from compiling.
|
672 |
+
is_causal = bool(causal_mask is None and q_len > 1)
|
673 |
+
|
674 |
+
attn_output = torch.nn.functional.scaled_dot_product_attention( # pylint: disable=E1102
|
675 |
+
query_states,
|
676 |
+
key_states,
|
677 |
+
value_states,
|
678 |
+
attn_mask=causal_mask,
|
679 |
+
dropout_p=0.0,
|
680 |
+
is_causal=is_causal,
|
681 |
+
)
|
682 |
+
|
683 |
+
attn_output = attn_output.transpose(1, 2).contiguous()
|
684 |
+
attn_output = attn_output.view(bsz, q_len, self.hidden_size)
|
685 |
+
|
686 |
+
attn_output = self.wo(attn_output)
|
687 |
+
|
688 |
+
return attn_output, None, past_key_value
|
689 |
+
|
690 |
+
|
691 |
+
INTERNLM2_ATTENTION_CLASSES = {
|
692 |
+
"eager": InternLM2Attention,
|
693 |
+
"flash_attention_2": InternLM2FlashAttention2,
|
694 |
+
"sdpa": InternLM2SdpaAttention,
|
695 |
+
}
|
696 |
+
|
697 |
+
|
698 |
+
# Modified from transformers.models.llama.modeling_llama.LlamaDecoderLayer with Llama->InternLM2
|
699 |
+
class InternLM2DecoderLayer(nn.Module):
|
700 |
+
"""InternLM2 Decoder Layer. This module is a single layer of the InternLM2 model."""
|
701 |
+
|
702 |
+
def __init__(self, config: InternLM2Config, layer_idx: int):
|
703 |
+
super().__init__()
|
704 |
+
self.hidden_size = config.hidden_size
|
705 |
+
self.layer_idx = layer_idx
|
706 |
+
|
707 |
+
self.attention = INTERNLM2_ATTENTION_CLASSES[config.attn_implementation](config=config, layer_idx=layer_idx)
|
708 |
+
|
709 |
+
self.feed_forward = InternLM2MLP(config)
|
710 |
+
self.attention_norm = InternLM2RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
|
711 |
+
self.ffn_norm = InternLM2RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
|
712 |
+
|
713 |
+
def forward(
|
714 |
+
self,
|
715 |
+
hidden_states: torch.Tensor,
|
716 |
+
attention_mask: Optional[torch.Tensor] = None,
|
717 |
+
position_ids: Optional[torch.LongTensor] = None,
|
718 |
+
past_key_value: Optional[Cache] = None,
|
719 |
+
output_attentions: Optional[bool] = False,
|
720 |
+
use_cache: Optional[bool] = False,
|
721 |
+
cache_position: Optional[torch.LongTensor] = None,
|
722 |
+
) -> Tuple[torch.FloatTensor, Optional[Tuple[torch.FloatTensor, torch.FloatTensor]]]:
|
723 |
+
"""
|
724 |
+
Args:
|
725 |
+
hidden_states (`torch.FloatTensor`): input to the layer of shape `(batch, seq_len, embed_dim)`
|
726 |
+
attention_mask (`torch.FloatTensor`, *optional*):
|
727 |
+
attention mask of size `(batch_size, sequence_length)` if flash attention is used or `(batch_size, 1,
|
728 |
+
query_sequence_length, key_sequence_length)` if default attention is used.
|
729 |
+
output_attentions (`bool`, *optional*):
|
730 |
+
Whether or not to return the attentions tensors of all attention layers. See `attentions` under
|
731 |
+
returned tensors for more detail.
|
732 |
+
use_cache (`bool`, *optional*):
|
733 |
+
If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding
|
734 |
+
(see `past_key_values`).
|
735 |
+
past_key_value (`Tuple(torch.FloatTensor)`, *optional*): cached past key and value projection states
|
736 |
+
"""
|
737 |
+
residual = hidden_states
|
738 |
+
|
739 |
+
hidden_states = self.attention_norm(hidden_states)
|
740 |
+
|
741 |
+
# Self Attention
|
742 |
+
hidden_states, self_attn_weights, present_key_value = self.attention(
|
743 |
+
hidden_states=hidden_states,
|
744 |
+
attention_mask=attention_mask,
|
745 |
+
position_ids=position_ids,
|
746 |
+
past_key_value=past_key_value,
|
747 |
+
output_attentions=output_attentions,
|
748 |
+
use_cache=use_cache,
|
749 |
+
cache_position=cache_position,
|
750 |
+
)
|
751 |
+
hidden_states = residual + hidden_states
|
752 |
+
|
753 |
+
# Fully Connected
|
754 |
+
residual = hidden_states
|
755 |
+
hidden_states = self.ffn_norm(hidden_states)
|
756 |
+
hidden_states = self.feed_forward(hidden_states)
|
757 |
+
hidden_states = residual + hidden_states
|
758 |
+
|
759 |
+
outputs = (hidden_states,)
|
760 |
+
|
761 |
+
if output_attentions:
|
762 |
+
outputs += (self_attn_weights,)
|
763 |
+
|
764 |
+
if use_cache:
|
765 |
+
outputs += (present_key_value,)
|
766 |
+
|
767 |
+
return outputs
|
768 |
+
|
769 |
+
|
770 |
+
InternLM2_START_DOCSTRING = r"""
|
771 |
+
This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the
|
772 |
+
library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads
|
773 |
+
etc.)
|
774 |
+
|
775 |
+
This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass.
|
776 |
+
Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage
|
777 |
+
and behavior.
|
778 |
+
|
779 |
+
Parameters:
|
780 |
+
config ([`InternLM2Config`]):
|
781 |
+
Model configuration class with all the parameters of the model. Initializing with a config file does not
|
782 |
+
load the weights associated with the model, only the configuration. Check out the
|
783 |
+
[`~PreTrainedModel.from_pretrained`] method to load the model weights.
|
784 |
+
"""
|
785 |
+
|
786 |
+
|
787 |
+
# Copied from transformers.models.llama.modeling_llama.LlamaPreTrainedModel with Llama->InternLM2
|
788 |
+
@add_start_docstrings(
|
789 |
+
"The bare InternLM2 Model outputting raw hidden-states without any specific head on top.",
|
790 |
+
InternLM2_START_DOCSTRING,
|
791 |
+
)
|
792 |
+
class InternLM2PreTrainedModel(PreTrainedModel):
|
793 |
+
"""
|
794 |
+
InternLM2 pretraiend model's base class.
|
795 |
+
"""
|
796 |
+
|
797 |
+
config_class = InternLM2Config
|
798 |
+
base_model_prefix = "model"
|
799 |
+
supports_gradient_checkpointing = True
|
800 |
+
_no_split_modules = ["InternLM2DecoderLayer"]
|
801 |
+
_skip_keys_device_placement = ["past_key_values"]
|
802 |
+
_supports_flash_attn_2 = True
|
803 |
+
_supports_sdpa = True
|
804 |
+
_supports_cache_class = True
|
805 |
+
_supports_quantized_cache = True
|
806 |
+
_supports_static_cache = True
|
807 |
+
|
808 |
+
def _init_weights(self, module):
|
809 |
+
std = self.config.initializer_range
|
810 |
+
if isinstance(module, nn.Linear):
|
811 |
+
module.weight.data.normal_(mean=0.0, std=std)
|
812 |
+
if module.bias is not None:
|
813 |
+
module.bias.data.zero_()
|
814 |
+
elif isinstance(module, nn.Embedding):
|
815 |
+
module.weight.data.normal_(mean=0.0, std=std)
|
816 |
+
if module.padding_idx is not None:
|
817 |
+
module.weight.data[module.padding_idx].zero_()
|
818 |
+
|
819 |
+
|
820 |
+
InternLM2_INPUTS_DOCSTRING = r"""
|
821 |
+
Args:
|
822 |
+
input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`):
|
823 |
+
Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide
|
824 |
+
it.
|
825 |
+
|
826 |
+
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
|
827 |
+
[`PreTrainedTokenizer.__call__`] for details.
|
828 |
+
|
829 |
+
[What are input IDs?](../glossary#input-ids)
|
830 |
+
attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
|
831 |
+
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
|
832 |
+
|
833 |
+
- 1 for tokens that are **not masked**,
|
834 |
+
- 0 for tokens that are **masked**.
|
835 |
+
|
836 |
+
[What are attention masks?](../glossary#attention-mask)
|
837 |
+
|
838 |
+
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
|
839 |
+
[`PreTrainedTokenizer.__call__`] for details.
|
840 |
+
|
841 |
+
If `past_key_values` is used, optionally only the last `input_ids` have to be input (see
|
842 |
+
`past_key_values`).
|
843 |
+
|
844 |
+
If you want to change padding behavior, you should read [`modeling_opt._prepare_decoder_attention_mask`]
|
845 |
+
and modify to your needs. See diagram 1 in [the paper](https://arxiv.org/abs/1910.13461) for more
|
846 |
+
information on the default strategy.
|
847 |
+
|
848 |
+
- 1 indicates the head is **not masked**,
|
849 |
+
- 0 indicates the head is **masked**.
|
850 |
+
position_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
|
851 |
+
Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0,
|
852 |
+
config.n_positions - 1]`.
|
853 |
+
|
854 |
+
[What are position IDs?](../glossary#position-ids)
|
855 |
+
past_key_values (`Cache` or `tuple(tuple(torch.FloatTensor))`, *optional*):
|
856 |
+
Pre-computed hidden-states (key and values in the self-attention blocks and in the cross-attention
|
857 |
+
blocks) that can be used to speed up sequential decoding. This typically consists in the `past_key_values`
|
858 |
+
returned by the model at a previous stage of decoding, when `use_cache=True` or `config.use_cache=True`.
|
859 |
+
|
860 |
+
Two formats are allowed:
|
861 |
+
- a [`~cache_utils.Cache`] instance;
|
862 |
+
- Tuple of `tuple(torch.FloatTensor)` of length `config.n_layers`, with each tuple having 2 tensors of
|
863 |
+
shape `(batch_size, num_heads, sequence_length, embed_size_per_head)`). This is also known as the legacy
|
864 |
+
cache format.
|
865 |
+
|
866 |
+
The model will output the same cache format that is fed as input. If no `past_key_values` are passed, the
|
867 |
+
legacy cache format will be returned.
|
868 |
+
|
869 |
+
If `past_key_values` are used, the user can optionally input only the last `input_ids` (those that don't
|
870 |
+
have their past key value states given to this model) of shape `(batch_size, 1)` instead of all `input_ids`
|
871 |
+
of shape `(batch_size, sequence_length)`.
|
872 |
+
inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
|
873 |
+
Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This
|
874 |
+
is useful if you want more control over how to convert `input_ids` indices into associated vectors than the
|
875 |
+
model's internal embedding lookup matrix.
|
876 |
+
use_cache (`bool`, *optional*):
|
877 |
+
If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see
|
878 |
+
`past_key_values`).
|
879 |
+
output_attentions (`bool`, *optional*):
|
880 |
+
Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
|
881 |
+
tensors for more detail.
|
882 |
+
output_hidden_states (`bool`, *optional*):
|
883 |
+
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
|
884 |
+
more detail.
|
885 |
+
return_dict (`bool`, *optional*):
|
886 |
+
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
|
887 |
+
cache_position (`torch.LongTensor` of shape `(sequence_length)`, *optional*):
|
888 |
+
Indices depicting the position of the input sequence tokens in the sequence. Contrarily to `position_ids`,
|
889 |
+
this tensor is not affected by padding. It is used to update the cache in the correct position and to infer
|
890 |
+
the complete sequence length.
|
891 |
+
"""
|
892 |
+
|
893 |
+
|
894 |
+
# Modified from transformers.models.llama.modeling_llama.LlamaModel with Llama->InternLM2
|
895 |
+
@add_start_docstrings(
|
896 |
+
"The bare InternLM2 Model outputting raw hidden-states without any specific head on top.",
|
897 |
+
InternLM2_START_DOCSTRING,
|
898 |
+
)
|
899 |
+
class InternLM2Model(InternLM2PreTrainedModel):
|
900 |
+
"""
|
901 |
+
Transformer decoder consisting of *config.num_hidden_layers* layers. Each layer is a [`InternLM2DecoderLayer`]
|
902 |
+
|
903 |
+
Args:
|
904 |
+
config: InternLM2Config
|
905 |
+
"""
|
906 |
+
|
907 |
+
_auto_class = "AutoModel"
|
908 |
+
|
909 |
+
def __init__(self, config: InternLM2Config):
|
910 |
+
super().__init__(config)
|
911 |
+
self.padding_idx = config.pad_token_id
|
912 |
+
self.vocab_size = config.vocab_size
|
913 |
+
self.config = config
|
914 |
+
|
915 |
+
self.tok_embeddings = nn.Embedding(config.vocab_size, config.hidden_size, self.padding_idx)
|
916 |
+
|
917 |
+
self.layers = nn.ModuleList(
|
918 |
+
[InternLM2DecoderLayer(config, layer_idx) for layer_idx in range(config.num_hidden_layers)]
|
919 |
+
)
|
920 |
+
self.norm = InternLM2RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
|
921 |
+
|
922 |
+
self.gradient_checkpointing = False
|
923 |
+
# Initialize weights and apply final processing
|
924 |
+
self.post_init()
|
925 |
+
|
926 |
+
def get_input_embeddings(self):
|
927 |
+
return self.tok_embeddings
|
928 |
+
|
929 |
+
def set_input_embeddings(self, value):
|
930 |
+
self.tok_embeddings = value
|
931 |
+
|
932 |
+
@add_start_docstrings_to_model_forward(InternLM2_INPUTS_DOCSTRING)
|
933 |
+
def forward(
|
934 |
+
self,
|
935 |
+
input_ids: torch.LongTensor = None,
|
936 |
+
attention_mask: Optional[torch.Tensor] = None,
|
937 |
+
position_ids: Optional[torch.LongTensor] = None,
|
938 |
+
past_key_values: Optional[Union[Cache, List[torch.FloatTensor]]] = None,
|
939 |
+
inputs_embeds: Optional[torch.FloatTensor] = None,
|
940 |
+
use_cache: Optional[bool] = None,
|
941 |
+
output_attentions: Optional[bool] = None,
|
942 |
+
output_hidden_states: Optional[bool] = None,
|
943 |
+
return_dict: Optional[bool] = None,
|
944 |
+
cache_position: Optional[torch.LongTensor] = None,
|
945 |
+
) -> Union[Tuple, BaseModelOutputWithPast]:
|
946 |
+
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
947 |
+
output_hidden_states = (
|
948 |
+
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
949 |
+
)
|
950 |
+
use_cache = use_cache if use_cache is not None else self.config.use_cache
|
951 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
952 |
+
|
953 |
+
if (input_ids is None) ^ (inputs_embeds is not None):
|
954 |
+
raise ValueError(
|
955 |
+
"You cannot specify both input_ids and inputs_embeds at the same time, and must specify either one"
|
956 |
+
)
|
957 |
+
|
958 |
+
if self.gradient_checkpointing and self.training and use_cache:
|
959 |
+
logger.warning_once(
|
960 |
+
"`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`."
|
961 |
+
)
|
962 |
+
use_cache = False
|
963 |
+
|
964 |
+
if inputs_embeds is None:
|
965 |
+
inputs_embeds = self.tok_embeddings(input_ids)
|
966 |
+
|
967 |
+
return_legacy_cache = False
|
968 |
+
if use_cache and not isinstance(past_key_values, Cache): # kept for BC (non `Cache` `past_key_values` inputs)
|
969 |
+
return_legacy_cache = True
|
970 |
+
past_key_values = DynamicCache.from_legacy_cache(past_key_values)
|
971 |
+
|
972 |
+
if cache_position is None:
|
973 |
+
past_seen_tokens = past_key_values.get_seq_length() if past_key_values is not None else 0
|
974 |
+
cache_position = torch.arange(
|
975 |
+
past_seen_tokens, past_seen_tokens + inputs_embeds.shape[1], device=inputs_embeds.device
|
976 |
+
)
|
977 |
+
if position_ids is None:
|
978 |
+
position_ids = cache_position.unsqueeze(0)
|
979 |
+
|
980 |
+
causal_mask = self._update_causal_mask(
|
981 |
+
attention_mask, inputs_embeds, cache_position, past_key_values, output_attentions
|
982 |
+
)
|
983 |
+
|
984 |
+
# embed positions
|
985 |
+
hidden_states = inputs_embeds
|
986 |
+
|
987 |
+
# decoder layers
|
988 |
+
all_hidden_states = () if output_hidden_states else None
|
989 |
+
all_self_attns = () if output_attentions else None
|
990 |
+
next_decoder_cache = None
|
991 |
+
|
992 |
+
for decoder_layer in self.layers:
|
993 |
+
if output_hidden_states:
|
994 |
+
all_hidden_states += (hidden_states,)
|
995 |
+
|
996 |
+
if self.gradient_checkpointing and self.training:
|
997 |
+
layer_outputs = self._gradient_checkpointing_func(
|
998 |
+
decoder_layer.__call__,
|
999 |
+
hidden_states,
|
1000 |
+
causal_mask,
|
1001 |
+
position_ids,
|
1002 |
+
past_key_values,
|
1003 |
+
output_attentions,
|
1004 |
+
use_cache,
|
1005 |
+
cache_position,
|
1006 |
+
)
|
1007 |
+
else:
|
1008 |
+
layer_outputs = decoder_layer(
|
1009 |
+
hidden_states,
|
1010 |
+
attention_mask=causal_mask,
|
1011 |
+
position_ids=position_ids,
|
1012 |
+
past_key_value=past_key_values,
|
1013 |
+
output_attentions=output_attentions,
|
1014 |
+
use_cache=use_cache,
|
1015 |
+
cache_position=cache_position,
|
1016 |
+
)
|
1017 |
+
|
1018 |
+
hidden_states = layer_outputs[0]
|
1019 |
+
|
1020 |
+
if use_cache:
|
1021 |
+
next_decoder_cache = layer_outputs[2 if output_attentions else 1]
|
1022 |
+
|
1023 |
+
if output_attentions:
|
1024 |
+
all_self_attns += (layer_outputs[1],)
|
1025 |
+
|
1026 |
+
hidden_states = self.norm(hidden_states)
|
1027 |
+
|
1028 |
+
# add hidden states from the last decoder layer
|
1029 |
+
if output_hidden_states:
|
1030 |
+
all_hidden_states += (hidden_states,)
|
1031 |
+
|
1032 |
+
next_cache = next_decoder_cache if use_cache else None
|
1033 |
+
if return_legacy_cache:
|
1034 |
+
next_cache = next_cache.to_legacy_cache()
|
1035 |
+
|
1036 |
+
if not return_dict:
|
1037 |
+
return tuple(v for v in [hidden_states, next_cache, all_hidden_states, all_self_attns] if v is not None)
|
1038 |
+
return BaseModelOutputWithPast(
|
1039 |
+
last_hidden_state=hidden_states,
|
1040 |
+
past_key_values=next_cache,
|
1041 |
+
hidden_states=all_hidden_states,
|
1042 |
+
attentions=all_self_attns,
|
1043 |
+
)
|
1044 |
+
|
1045 |
+
def _update_causal_mask(
|
1046 |
+
self,
|
1047 |
+
attention_mask: torch.Tensor,
|
1048 |
+
input_tensor: torch.Tensor,
|
1049 |
+
cache_position: torch.Tensor,
|
1050 |
+
past_key_values: Cache,
|
1051 |
+
output_attentions: bool,
|
1052 |
+
):
|
1053 |
+
# TODO: As of torch==2.2.0, the `attention_mask` passed to the model in `generate` is 2D and of dynamic length
|
1054 |
+
# even when the static KV cache is used. This is an issue for torch.compile which then recaptures cudagraphs at
|
1055 |
+
# each decode steps due to the dynamic shapes. (`recording cudagraph tree for symint key 13`, etc.), which is
|
1056 |
+
# VERY slow. A workaround is `@torch.compiler.disable`, but this prevents using `fullgraph=True`.
|
1057 |
+
# See more context in https://github.com/huggingface/transformers/pull/29114
|
1058 |
+
|
1059 |
+
if self.config.attn_implementation == "flash_attention_2":
|
1060 |
+
if attention_mask is not None and 0.0 in attention_mask:
|
1061 |
+
return attention_mask
|
1062 |
+
return None
|
1063 |
+
|
1064 |
+
# For SDPA, when possible, we will rely on its `is_causal` argument instead of its `attn_mask` argument, in
|
1065 |
+
# order to dispatch on Flash Attention 2. This feature is not compatible with static cache, as SDPA will fail
|
1066 |
+
# to infer the attention mask.
|
1067 |
+
past_seen_tokens = past_key_values.get_seq_length() if past_key_values is not None else 0
|
1068 |
+
using_static_cache = isinstance(past_key_values, StaticCache)
|
1069 |
+
|
1070 |
+
# When output attentions is True, sdpa implementation's forward method calls the eager implementation's forward
|
1071 |
+
if self.config.attn_implementation == "sdpa" and not using_static_cache and not output_attentions:
|
1072 |
+
if AttentionMaskConverter._ignore_causal_mask_sdpa(
|
1073 |
+
attention_mask,
|
1074 |
+
inputs_embeds=input_tensor,
|
1075 |
+
past_key_values_length=past_seen_tokens,
|
1076 |
+
is_training=self.training,
|
1077 |
+
):
|
1078 |
+
return None
|
1079 |
+
|
1080 |
+
dtype, device = input_tensor.dtype, input_tensor.device
|
1081 |
+
min_dtype = torch.finfo(dtype).min
|
1082 |
+
sequence_length = input_tensor.shape[1]
|
1083 |
+
if using_static_cache:
|
1084 |
+
target_length = past_key_values.get_max_length()
|
1085 |
+
else:
|
1086 |
+
target_length = (
|
1087 |
+
attention_mask.shape[-1]
|
1088 |
+
if isinstance(attention_mask, torch.Tensor)
|
1089 |
+
else past_seen_tokens + sequence_length + 1
|
1090 |
+
)
|
1091 |
+
|
1092 |
+
if attention_mask is not None and attention_mask.dim() == 4:
|
1093 |
+
# in this case we assume that the mask comes already in inverted form and requires no inversion or slicing
|
1094 |
+
if attention_mask.max() != 0:
|
1095 |
+
raise ValueError("Custom 4D attention mask should be passed in inverted form with max==0`")
|
1096 |
+
causal_mask = attention_mask
|
1097 |
+
else:
|
1098 |
+
causal_mask = torch.full((sequence_length, target_length), fill_value=min_dtype, dtype=dtype, device=device)
|
1099 |
+
if sequence_length != 1:
|
1100 |
+
if support_bf16_triu or dtype == torch.float32:
|
1101 |
+
causal_mask = torch.triu(causal_mask, diagonal=1)
|
1102 |
+
else:
|
1103 |
+
triu_mask = torch.triu(torch.ones(causal_mask.size(), device=device), diagonal=1).bool()
|
1104 |
+
causal_mask.masked_fill_(~triu_mask, 0)
|
1105 |
+
causal_mask *= torch.arange(target_length, device=device) > cache_position.reshape(-1, 1)
|
1106 |
+
causal_mask = causal_mask[None, None, :, :].expand(input_tensor.shape[0], 1, -1, -1)
|
1107 |
+
if attention_mask is not None:
|
1108 |
+
causal_mask = causal_mask.clone() # copy to contiguous memory for in-place edit
|
1109 |
+
mask_length = attention_mask.shape[-1]
|
1110 |
+
padding_mask = causal_mask[:, :, :, :mask_length] + attention_mask[:, None, None, :]
|
1111 |
+
padding_mask = padding_mask == 0
|
1112 |
+
causal_mask[:, :, :, :mask_length] = causal_mask[:, :, :, :mask_length].masked_fill(
|
1113 |
+
padding_mask, min_dtype
|
1114 |
+
)
|
1115 |
+
if (
|
1116 |
+
self.config.attn_implementation == "sdpa"
|
1117 |
+
and attention_mask is not None
|
1118 |
+
and attention_mask.device.type == "cuda"
|
1119 |
+
and not output_attentions
|
1120 |
+
):
|
1121 |
+
# Attend to all tokens in fully masked rows in the causal_mask, for example the relevant first rows when
|
1122 |
+
# using left padding. This is required by F.scaled_dot_product_attention memory-efficient attention path.
|
1123 |
+
# Details: https://github.com/pytorch/pytorch/issues/110213
|
1124 |
+
causal_mask = AttentionMaskConverter._unmask_unattended(causal_mask, min_dtype) # pylint: disable=E1120
|
1125 |
+
|
1126 |
+
return causal_mask
|
1127 |
+
|
1128 |
+
|
1129 |
+
# Modified from transformers.models.llama.modeling_llama.LlamaForCausalLM
|
1130 |
+
class InternLM2ForCausalLM(InternLM2PreTrainedModel):
|
1131 |
+
"""Causal language model (CLM) for InternLM2."""
|
1132 |
+
|
1133 |
+
_auto_class = "AutoModelForCausalLM"
|
1134 |
+
_tied_weights_keys = ["output.weight"]
|
1135 |
+
|
1136 |
+
def __init__(self, config):
|
1137 |
+
super().__init__(config)
|
1138 |
+
self.model = InternLM2Model(config)
|
1139 |
+
self.vocab_size = config.vocab_size
|
1140 |
+
self.output = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
|
1141 |
+
|
1142 |
+
# Initialize weights and apply final processing
|
1143 |
+
self.post_init()
|
1144 |
+
|
1145 |
+
def get_input_embeddings(self):
|
1146 |
+
return self.model.tok_embeddings
|
1147 |
+
|
1148 |
+
def set_input_embeddings(self, value):
|
1149 |
+
self.model.tok_embeddings = value
|
1150 |
+
|
1151 |
+
def get_output_embeddings(self):
|
1152 |
+
return self.output
|
1153 |
+
|
1154 |
+
def set_output_embeddings(self, new_embeddings):
|
1155 |
+
self.output = new_embeddings
|
1156 |
+
|
1157 |
+
def set_decoder(self, decoder):
|
1158 |
+
self.model = decoder
|
1159 |
+
|
1160 |
+
def get_decoder(self):
|
1161 |
+
return self.model
|
1162 |
+
|
1163 |
+
@add_start_docstrings_to_model_forward(InternLM2_INPUTS_DOCSTRING)
|
1164 |
+
@replace_return_docstrings(output_type=CausalLMOutputWithPast, config_class=_CONFIG_FOR_DOC)
|
1165 |
+
def forward(
|
1166 |
+
self,
|
1167 |
+
input_ids: torch.LongTensor = None,
|
1168 |
+
attention_mask: Optional[torch.Tensor] = None,
|
1169 |
+
position_ids: Optional[torch.LongTensor] = None,
|
1170 |
+
past_key_values: Optional[Union[Cache, List[torch.FloatTensor]]] = None,
|
1171 |
+
inputs_embeds: Optional[torch.FloatTensor] = None,
|
1172 |
+
labels: Optional[torch.LongTensor] = None,
|
1173 |
+
use_cache: Optional[bool] = None,
|
1174 |
+
output_attentions: Optional[bool] = None,
|
1175 |
+
output_hidden_states: Optional[bool] = None,
|
1176 |
+
return_dict: Optional[bool] = None,
|
1177 |
+
cache_position: Optional[torch.LongTensor] = None,
|
1178 |
+
) -> Union[Tuple, CausalLMOutputWithPast]:
|
1179 |
+
r"""
|
1180 |
+
Args:
|
1181 |
+
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
|
1182 |
+
Labels for computing the masked language modeling loss. Indices should either be in `[0, ...,
|
1183 |
+
config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored
|
1184 |
+
(masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`.
|
1185 |
+
|
1186 |
+
Returns:
|
1187 |
+
|
1188 |
+
Example:
|
1189 |
+
|
1190 |
+
```python
|
1191 |
+
>>> from transformers import AutoTokenizer, InternLM2ForCausalLM
|
1192 |
+
|
1193 |
+
>>> model = InternLM2ForCausalLM.from_pretrained("meta-InternLM2/InternLM2-2-7b-hf")
|
1194 |
+
>>> tokenizer = AutoTokenizer.from_pretrained("meta-InternLM2/InternLM2-2-7b-hf")
|
1195 |
+
|
1196 |
+
>>> prompt = "Hey, are you conscious? Can you talk to me?"
|
1197 |
+
>>> inputs = tokenizer(prompt, return_tensors="pt")
|
1198 |
+
|
1199 |
+
>>> # Generate
|
1200 |
+
>>> generate_ids = model.generate(inputs.input_ids, max_length=30)
|
1201 |
+
>>> tokenizer.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0]
|
1202 |
+
"Hey, are you conscious? Can you talk to me?\nI'm not conscious, but I can talk to you."
|
1203 |
+
```"""
|
1204 |
+
|
1205 |
+
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
1206 |
+
output_hidden_states = (
|
1207 |
+
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
1208 |
+
)
|
1209 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
1210 |
+
|
1211 |
+
# decoder outputs consists of (dec_features, layer_state, dec_hidden, dec_attn)
|
1212 |
+
outputs = self.model(
|
1213 |
+
input_ids=input_ids,
|
1214 |
+
attention_mask=attention_mask,
|
1215 |
+
position_ids=position_ids,
|
1216 |
+
past_key_values=past_key_values,
|
1217 |
+
inputs_embeds=inputs_embeds,
|
1218 |
+
use_cache=use_cache,
|
1219 |
+
output_attentions=output_attentions,
|
1220 |
+
output_hidden_states=output_hidden_states,
|
1221 |
+
return_dict=return_dict,
|
1222 |
+
cache_position=cache_position,
|
1223 |
+
)
|
1224 |
+
|
1225 |
+
hidden_states = outputs[0]
|
1226 |
+
if self.config.pretraining_tp > 1:
|
1227 |
+
output_slices = self.output.weight.split(self.vocab_size // self.config.pretraining_tp, dim=0)
|
1228 |
+
logits = [
|
1229 |
+
F.linear(hidden_states, output_slices[i]) # pylint: disable=not-callable
|
1230 |
+
for i in range(self.config.pretraining_tp)
|
1231 |
+
]
|
1232 |
+
logits = torch.cat(logits, dim=-1)
|
1233 |
+
else:
|
1234 |
+
logits = self.output(hidden_states)
|
1235 |
+
logits = logits.float()
|
1236 |
+
|
1237 |
+
loss = None
|
1238 |
+
if labels is not None:
|
1239 |
+
# Shift so that tokens < n predict n
|
1240 |
+
shift_logits = logits[..., :-1, :].contiguous()
|
1241 |
+
shift_labels = labels[..., 1:].contiguous()
|
1242 |
+
# Flatten the tokens
|
1243 |
+
loss_fct = CrossEntropyLoss()
|
1244 |
+
shift_logits = shift_logits.view(-1, self.config.vocab_size)
|
1245 |
+
shift_labels = shift_labels.view(-1)
|
1246 |
+
# Enable model parallelism
|
1247 |
+
shift_labels = shift_labels.to(shift_logits.device)
|
1248 |
+
loss = loss_fct(shift_logits, shift_labels)
|
1249 |
+
|
1250 |
+
if not return_dict:
|
1251 |
+
output = (logits,) + outputs[1:]
|
1252 |
+
return (loss,) + output if loss is not None else output
|
1253 |
+
|
1254 |
+
return CausalLMOutputWithPast(
|
1255 |
+
loss=loss,
|
1256 |
+
logits=logits,
|
1257 |
+
past_key_values=outputs.past_key_values,
|
1258 |
+
hidden_states=outputs.hidden_states,
|
1259 |
+
attentions=outputs.attentions,
|
1260 |
+
)
|
1261 |
+
|
1262 |
+
def prepare_inputs_for_generation(
|
1263 |
+
self,
|
1264 |
+
input_ids,
|
1265 |
+
past_key_values=None,
|
1266 |
+
attention_mask=None,
|
1267 |
+
inputs_embeds=None,
|
1268 |
+
cache_position=None,
|
1269 |
+
use_cache=True,
|
1270 |
+
**kwargs,
|
1271 |
+
):
|
1272 |
+
past_length = 0
|
1273 |
+
if past_key_values is not None:
|
1274 |
+
if isinstance(past_key_values, Cache):
|
1275 |
+
past_length = cache_position[0] if cache_position is not None else past_key_values.get_seq_length()
|
1276 |
+
max_cache_length = (
|
1277 |
+
torch.tensor(past_key_values.get_max_length(), device=input_ids.device)
|
1278 |
+
if past_key_values.get_max_length() is not None
|
1279 |
+
else None
|
1280 |
+
)
|
1281 |
+
cache_length = past_length if max_cache_length is None else torch.min(max_cache_length, past_length)
|
1282 |
+
# TODO joao: remove this `else` after `generate` prioritizes `Cache` objects
|
1283 |
+
else:
|
1284 |
+
cache_length = past_length = past_key_values[0][0].shape[2]
|
1285 |
+
max_cache_length = None
|
1286 |
+
|
1287 |
+
# Keep only the unprocessed tokens:
|
1288 |
+
# 1 - If the length of the attention_mask exceeds the length of input_ids, then we are in a setting where
|
1289 |
+
# some of the inputs are exclusively passed as part of the cache (e.g. when passing input_embeds as input)
|
1290 |
+
if attention_mask is not None and attention_mask.shape[1] > input_ids.shape[1]:
|
1291 |
+
input_ids = input_ids[:, -(attention_mask.shape[1] - past_length) :]
|
1292 |
+
# 2 - If the past_length is smaller than input_ids', then input_ids holds all input tokens. We can discard
|
1293 |
+
# input_ids based on the past_length.
|
1294 |
+
elif past_length < input_ids.shape[1]:
|
1295 |
+
input_ids = input_ids[:, past_length:]
|
1296 |
+
# 3 - Otherwise (past_length >= input_ids.shape[1]), let's assume input_ids only has unprocessed tokens.
|
1297 |
+
|
1298 |
+
# If we are about to go beyond the maximum cache length, we need to crop the input attention mask.
|
1299 |
+
if (
|
1300 |
+
max_cache_length is not None
|
1301 |
+
and attention_mask is not None
|
1302 |
+
and cache_length + input_ids.shape[1] > max_cache_length
|
1303 |
+
):
|
1304 |
+
attention_mask = attention_mask[:, -max_cache_length:] # pylint: disable=E1130
|
1305 |
+
|
1306 |
+
position_ids = kwargs.get("position_ids", None)
|
1307 |
+
if attention_mask is not None and position_ids is None:
|
1308 |
+
# create position_ids on the fly for batch generation
|
1309 |
+
position_ids = attention_mask.long().cumsum(-1) - 1
|
1310 |
+
position_ids.masked_fill_(attention_mask == 0, 1)
|
1311 |
+
if past_key_values:
|
1312 |
+
position_ids = position_ids[:, -input_ids.shape[1] :]
|
1313 |
+
|
1314 |
+
# if `inputs_embeds` are passed, we only want to use them in the 1st generation step
|
1315 |
+
if inputs_embeds is not None and past_key_values is None:
|
1316 |
+
model_inputs = {"inputs_embeds": inputs_embeds}
|
1317 |
+
else:
|
1318 |
+
# The `contiguous()` here is necessary to have a static stride during decoding. torchdynamo otherwise
|
1319 |
+
# recompiles graphs as the stride of the inputs is a guard.
|
1320 |
+
# Ref: https://github.com/huggingface/transformers/pull/29114
|
1321 |
+
# TODO: use `next_tokens` directly instead.
|
1322 |
+
model_inputs = {"input_ids": input_ids.contiguous()}
|
1323 |
+
|
1324 |
+
input_length = position_ids.shape[-1] if position_ids is not None else input_ids.shape[-1]
|
1325 |
+
if cache_position is None:
|
1326 |
+
cache_position = torch.arange(past_length, past_length + input_length, device=input_ids.device)
|
1327 |
+
elif use_cache:
|
1328 |
+
cache_position = cache_position[-input_length:]
|
1329 |
+
|
1330 |
+
model_inputs.update(
|
1331 |
+
{
|
1332 |
+
"position_ids": position_ids,
|
1333 |
+
"cache_position": cache_position,
|
1334 |
+
"past_key_values": past_key_values,
|
1335 |
+
"use_cache": use_cache,
|
1336 |
+
"attention_mask": attention_mask,
|
1337 |
+
}
|
1338 |
+
)
|
1339 |
+
return model_inputs
|
1340 |
+
|
1341 |
+
@staticmethod
|
1342 |
+
def _reorder_cache(past_key_values, beam_idx):
|
1343 |
+
reordered_past = ()
|
1344 |
+
for layer_past in past_key_values:
|
1345 |
+
reordered_past += (
|
1346 |
+
tuple(past_state.index_select(0, beam_idx.to(past_state.device)) for past_state in layer_past),
|
1347 |
+
)
|
1348 |
+
return reordered_past
|
1349 |
+
|
1350 |
+
def build_inputs(self, tokenizer, query: str, history: List[Tuple[str, str]] = None, meta_instruction=""):
|
1351 |
+
if history is None:
|
1352 |
+
history = []
|
1353 |
+
if tokenizer.add_bos_token:
|
1354 |
+
prompt = ""
|
1355 |
+
else:
|
1356 |
+
prompt = tokenizer.bos_token
|
1357 |
+
if meta_instruction:
|
1358 |
+
prompt += f"""<|im_start|>system\n{meta_instruction}<|im_end|>\n"""
|
1359 |
+
for record in history:
|
1360 |
+
prompt += f"""<|im_start|>user\n{record[0]}<|im_end|>\n<|im_start|>assistant\n{record[1]}<|im_end|>\n"""
|
1361 |
+
prompt += f"""<|im_start|>user\n{query}<|im_end|>\n<|im_start|>assistant\n"""
|
1362 |
+
return tokenizer([prompt], return_tensors="pt")
|
1363 |
+
|
1364 |
+
@torch.no_grad()
|
1365 |
+
def chat(
|
1366 |
+
self,
|
1367 |
+
tokenizer,
|
1368 |
+
query: str,
|
1369 |
+
history: Optional[List[Tuple[str, str]]] = None,
|
1370 |
+
streamer: Optional[BaseStreamer] = None,
|
1371 |
+
max_new_tokens: int = 1024,
|
1372 |
+
do_sample: bool = True,
|
1373 |
+
temperature: float = 0.8,
|
1374 |
+
top_p: float = 0.8,
|
1375 |
+
meta_instruction: str = "You are an AI assistant whose name is InternLM (书生·浦语).\n"
|
1376 |
+
"- InternLM (书生·浦语) is a conversational language model that is developed by Shanghai AI Laboratory "
|
1377 |
+
"(上海人工智能实验室). It is designed to be helpful, honest, and harmless.\n"
|
1378 |
+
"- InternLM (书生·浦语) can understand and communicate fluently in the language chosen by the user such "
|
1379 |
+
"as English and 中文.",
|
1380 |
+
**kwargs,
|
1381 |
+
):
|
1382 |
+
if history is None:
|
1383 |
+
history = []
|
1384 |
+
inputs = self.build_inputs(tokenizer, query, history, meta_instruction)
|
1385 |
+
inputs = {k: v.to(self.device) for k, v in inputs.items() if torch.is_tensor(v)}
|
1386 |
+
# also add end-of-assistant token in eos token id to avoid unnecessary generation
|
1387 |
+
eos_token_id = [tokenizer.eos_token_id, tokenizer.convert_tokens_to_ids(["<|im_end|>"])[0]]
|
1388 |
+
outputs = self.generate(
|
1389 |
+
**inputs,
|
1390 |
+
streamer=streamer,
|
1391 |
+
max_new_tokens=max_new_tokens,
|
1392 |
+
do_sample=do_sample,
|
1393 |
+
temperature=temperature,
|
1394 |
+
top_p=top_p,
|
1395 |
+
eos_token_id=eos_token_id,
|
1396 |
+
**kwargs,
|
1397 |
+
)
|
1398 |
+
outputs = outputs[0].cpu().tolist()[len(inputs["input_ids"][0]) :]
|
1399 |
+
response = tokenizer.decode(outputs, skip_special_tokens=True)
|
1400 |
+
response = response.split("<|im_end|>")[0]
|
1401 |
+
history = history + [(query, response)]
|
1402 |
+
return response, history
|
1403 |
+
|
1404 |
+
@torch.no_grad()
|
1405 |
+
def stream_chat(
|
1406 |
+
self,
|
1407 |
+
tokenizer,
|
1408 |
+
query: str,
|
1409 |
+
history: List[Tuple[str, str]] = None,
|
1410 |
+
max_new_tokens: int = 1024,
|
1411 |
+
do_sample: bool = True,
|
1412 |
+
temperature: float = 0.8,
|
1413 |
+
top_p: float = 0.8,
|
1414 |
+
**kwargs,
|
1415 |
+
):
|
1416 |
+
if history is None:
|
1417 |
+
history = []
|
1418 |
+
"""
|
1419 |
+
Return a generator in format: (response, history)
|
1420 |
+
Eg.
|
1421 |
+
('你好,有什么可以帮助您的吗', [('你好', '你好,有什么可以帮助您的吗')])
|
1422 |
+
('你好,有什么可以帮助您的吗?', [('你好', '你好,有什么可以帮助您的吗?')])
|
1423 |
+
"""
|
1424 |
+
if BaseStreamer is None:
|
1425 |
+
raise ModuleNotFoundError(
|
1426 |
+
"The version of `transformers` is too low. Please make sure "
|
1427 |
+
"that you have installed `transformers>=4.28.0`."
|
1428 |
+
)
|
1429 |
+
|
1430 |
+
response_queue = queue.Queue(maxsize=20)
|
1431 |
+
|
1432 |
+
class ChatStreamer(BaseStreamer):
|
1433 |
+
"""
|
1434 |
+
Streamer used in generate to print words one by one.
|
1435 |
+
"""
|
1436 |
+
|
1437 |
+
def __init__(self, tokenizer) -> None:
|
1438 |
+
super().__init__()
|
1439 |
+
self.tokenizer = tokenizer
|
1440 |
+
self.queue = response_queue
|
1441 |
+
self.query = query
|
1442 |
+
self.history = history
|
1443 |
+
self.response = ""
|
1444 |
+
self.cache = []
|
1445 |
+
self.received_inputs = False
|
1446 |
+
self.queue.put((self.response, history + [(self.query, self.response)]))
|
1447 |
+
|
1448 |
+
def put(self, value):
|
1449 |
+
if len(value.shape) > 1 and value.shape[0] > 1:
|
1450 |
+
raise ValueError("ChatStreamer only supports batch size 1")
|
1451 |
+
elif len(value.shape) > 1:
|
1452 |
+
value = value[0]
|
1453 |
+
|
1454 |
+
if not self.received_inputs:
|
1455 |
+
# The first received value is input_ids, ignore here
|
1456 |
+
self.received_inputs = True
|
1457 |
+
return
|
1458 |
+
|
1459 |
+
self.cache.extend(value.tolist())
|
1460 |
+
token = self.tokenizer.decode(self.cache, skip_special_tokens=True)
|
1461 |
+
if token.strip() != "<|im_end|>":
|
1462 |
+
self.response = self.response + token
|
1463 |
+
history = self.history + [(self.query, self.response)]
|
1464 |
+
self.queue.put((self.response, history))
|
1465 |
+
self.cache = []
|
1466 |
+
else:
|
1467 |
+
self.end()
|
1468 |
+
|
1469 |
+
def end(self):
|
1470 |
+
self.queue.put(None)
|
1471 |
+
|
1472 |
+
def stream_producer():
|
1473 |
+
return self.chat(
|
1474 |
+
tokenizer=tokenizer,
|
1475 |
+
query=query,
|
1476 |
+
streamer=ChatStreamer(tokenizer=tokenizer),
|
1477 |
+
history=history,
|
1478 |
+
max_new_tokens=max_new_tokens,
|
1479 |
+
do_sample=do_sample,
|
1480 |
+
temperature=temperature,
|
1481 |
+
top_p=top_p,
|
1482 |
+
**kwargs,
|
1483 |
+
)
|
1484 |
+
|
1485 |
+
def consumer():
|
1486 |
+
producer = threading.Thread(target=stream_producer)
|
1487 |
+
producer.start()
|
1488 |
+
while True:
|
1489 |
+
res = response_queue.get()
|
1490 |
+
if res is None:
|
1491 |
+
return
|
1492 |
+
yield res
|
1493 |
+
|
1494 |
+
return consumer()
|
1495 |
+
|
1496 |
+
|
1497 |
+
# Copied from transformers.models.llama.modeling_llama.LlamaForSequenceClassification with Llama->InternLM2
|
1498 |
+
@add_start_docstrings(
|
1499 |
+
"""
|
1500 |
+
The InternLM2 Model transformer with a sequence classification head on top (linear layer).
|
1501 |
+
|
1502 |
+
[`InternLM2ForSequenceClassification`] uses the last token in order to do the classification, as other causal models
|
1503 |
+
(e.g. GPT-2) do.
|
1504 |
+
|
1505 |
+
Since it does classification on the last token, it requires to know the position of the last token. If a
|
1506 |
+
`pad_token_id` is defined in the configuration, it finds the last token that is not a padding token in each row. If
|
1507 |
+
no `pad_token_id` is defined, it simply takes the last value in each row of the batch. Since it cannot guess the
|
1508 |
+
padding tokens when `inputs_embeds` are passed instead of `input_ids`, it does the same (take the last value in
|
1509 |
+
each row of the batch).
|
1510 |
+
""",
|
1511 |
+
InternLM2_START_DOCSTRING,
|
1512 |
+
)
|
1513 |
+
class InternLM2ForSequenceClassification(InternLM2PreTrainedModel):
|
1514 |
+
"""Sequence Classification Head for InternLM2 Model."""
|
1515 |
+
|
1516 |
+
def __init__(self, config):
|
1517 |
+
super().__init__(config)
|
1518 |
+
self.num_labels = config.num_labels
|
1519 |
+
self.model = InternLM2Model(config)
|
1520 |
+
self.score = nn.Linear(config.hidden_size, self.num_labels, bias=False)
|
1521 |
+
|
1522 |
+
# Initialize weights and apply final processing
|
1523 |
+
self.post_init()
|
1524 |
+
|
1525 |
+
def get_input_embeddings(self):
|
1526 |
+
return self.model.tok_embeddings
|
1527 |
+
|
1528 |
+
def set_input_embeddings(self, value):
|
1529 |
+
self.model.tok_embeddings = value
|
1530 |
+
|
1531 |
+
@add_start_docstrings_to_model_forward(InternLM2_INPUTS_DOCSTRING)
|
1532 |
+
def forward(
|
1533 |
+
self,
|
1534 |
+
input_ids: torch.LongTensor = None,
|
1535 |
+
attention_mask: Optional[torch.Tensor] = None,
|
1536 |
+
position_ids: Optional[torch.LongTensor] = None,
|
1537 |
+
past_key_values: Optional[Union[Cache, List[torch.FloatTensor]]] = None,
|
1538 |
+
inputs_embeds: Optional[torch.FloatTensor] = None,
|
1539 |
+
labels: Optional[torch.LongTensor] = None,
|
1540 |
+
use_cache: Optional[bool] = None,
|
1541 |
+
output_attentions: Optional[bool] = None,
|
1542 |
+
output_hidden_states: Optional[bool] = None,
|
1543 |
+
return_dict: Optional[bool] = None,
|
1544 |
+
) -> Union[Tuple, SequenceClassifierOutputWithPast]:
|
1545 |
+
r"""
|
1546 |
+
labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
|
1547 |
+
Labels for computing the sequence classification/regression loss. Indices should be in `[0, ...,
|
1548 |
+
config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If
|
1549 |
+
`config.num_labels > 1` a classification loss is computed (Cross-Entropy).
|
1550 |
+
"""
|
1551 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
1552 |
+
|
1553 |
+
transformer_outputs = self.model(
|
1554 |
+
input_ids,
|
1555 |
+
attention_mask=attention_mask,
|
1556 |
+
position_ids=position_ids,
|
1557 |
+
past_key_values=past_key_values,
|
1558 |
+
inputs_embeds=inputs_embeds,
|
1559 |
+
use_cache=use_cache,
|
1560 |
+
output_attentions=output_attentions,
|
1561 |
+
output_hidden_states=output_hidden_states,
|
1562 |
+
return_dict=return_dict,
|
1563 |
+
)
|
1564 |
+
hidden_states = transformer_outputs[0]
|
1565 |
+
logits = self.score(hidden_states)
|
1566 |
+
|
1567 |
+
if input_ids is not None:
|
1568 |
+
batch_size = input_ids.shape[0]
|
1569 |
+
else:
|
1570 |
+
batch_size = inputs_embeds.shape[0]
|
1571 |
+
|
1572 |
+
if self.config.pad_token_id is None and batch_size != 1:
|
1573 |
+
raise ValueError("Cannot handle batch sizes > 1 if no padding token is defined.")
|
1574 |
+
if self.config.pad_token_id is None:
|
1575 |
+
sequence_lengths = -1
|
1576 |
+
else:
|
1577 |
+
if input_ids is not None:
|
1578 |
+
# if no pad token found, use modulo instead of reverse indexing for ONNX compatibility
|
1579 |
+
sequence_lengths = torch.eq(input_ids, self.config.pad_token_id).int().argmax(-1) - 1
|
1580 |
+
sequence_lengths = sequence_lengths % input_ids.shape[-1]
|
1581 |
+
sequence_lengths = sequence_lengths.to(logits.device)
|
1582 |
+
else:
|
1583 |
+
sequence_lengths = -1
|
1584 |
+
|
1585 |
+
pooled_logits = logits[torch.arange(batch_size, device=logits.device), sequence_lengths]
|
1586 |
+
|
1587 |
+
loss = None
|
1588 |
+
if labels is not None:
|
1589 |
+
labels = labels.to(logits.device)
|
1590 |
+
if self.config.problem_type is None:
|
1591 |
+
if self.num_labels == 1:
|
1592 |
+
self.config.problem_type = "regression"
|
1593 |
+
elif self.num_labels > 1 and (labels.dtype in (torch.long, torch.int)):
|
1594 |
+
self.config.problem_type = "single_label_classification"
|
1595 |
+
else:
|
1596 |
+
self.config.problem_type = "multi_label_classification"
|
1597 |
+
|
1598 |
+
if self.config.problem_type == "regression":
|
1599 |
+
loss_fct = MSELoss()
|
1600 |
+
if self.num_labels == 1:
|
1601 |
+
loss = loss_fct(pooled_logits.squeeze(), labels.squeeze())
|
1602 |
+
else:
|
1603 |
+
loss = loss_fct(pooled_logits, labels)
|
1604 |
+
elif self.config.problem_type == "single_label_classification":
|
1605 |
+
loss_fct = CrossEntropyLoss()
|
1606 |
+
loss = loss_fct(pooled_logits.view(-1, self.num_labels), labels.view(-1))
|
1607 |
+
elif self.config.problem_type == "multi_label_classification":
|
1608 |
+
loss_fct = BCEWithLogitsLoss()
|
1609 |
+
loss = loss_fct(pooled_logits, labels)
|
1610 |
+
if not return_dict:
|
1611 |
+
output = (pooled_logits,) + transformer_outputs[1:]
|
1612 |
+
return ((loss,) + output) if loss is not None else output
|
1613 |
+
|
1614 |
+
return SequenceClassifierOutputWithPast(
|
1615 |
+
loss=loss,
|
1616 |
+
logits=pooled_logits,
|
1617 |
+
past_key_values=transformer_outputs.past_key_values,
|
1618 |
+
hidden_states=transformer_outputs.hidden_states,
|
1619 |
+
attentions=transformer_outputs.attentions,
|
1620 |
+
)
|
1621 |
+
|
1622 |
+
|
1623 |
+
# Copied from transformers.models.llama.modeling_llama.LlamaForQuestionAnswering with Llama->InternLM2
|
1624 |
+
@add_start_docstrings(
|
1625 |
+
"""
|
1626 |
+
The InternLM2 Model transformer with a span classification head on top for extractive question-answering tasks like
|
1627 |
+
SQuAD (a linear layer on top of the hidden-states output to compute `span start logits` and `span end logits`).
|
1628 |
+
""",
|
1629 |
+
InternLM2_START_DOCSTRING,
|
1630 |
+
)
|
1631 |
+
class InternLM2ForQuestionAnswering(InternLM2PreTrainedModel):
|
1632 |
+
"""Question Answering model for InternLM2."""
|
1633 |
+
|
1634 |
+
base_model_prefix = "transformer"
|
1635 |
+
|
1636 |
+
def __init__(self, config):
|
1637 |
+
super().__init__(config)
|
1638 |
+
self.transformer = InternLM2Model(config)
|
1639 |
+
self.qa_outputs = nn.Linear(config.hidden_size, 2)
|
1640 |
+
|
1641 |
+
# Initialize weights and apply final processing
|
1642 |
+
self.post_init()
|
1643 |
+
|
1644 |
+
def get_input_embeddings(self):
|
1645 |
+
return self.transformer.tok_embeddings
|
1646 |
+
|
1647 |
+
def set_input_embeddings(self, value):
|
1648 |
+
self.transformer.tok_embeddings = value
|
1649 |
+
|
1650 |
+
@add_start_docstrings_to_model_forward(InternLM2_INPUTS_DOCSTRING)
|
1651 |
+
def forward(
|
1652 |
+
self,
|
1653 |
+
input_ids: Optional[torch.LongTensor] = None,
|
1654 |
+
attention_mask: Optional[torch.FloatTensor] = None,
|
1655 |
+
position_ids: Optional[torch.LongTensor] = None,
|
1656 |
+
past_key_values: Optional[Union[Cache, List[torch.FloatTensor]]] = None,
|
1657 |
+
inputs_embeds: Optional[torch.FloatTensor] = None,
|
1658 |
+
start_positions: Optional[torch.LongTensor] = None,
|
1659 |
+
end_positions: Optional[torch.LongTensor] = None,
|
1660 |
+
output_attentions: Optional[bool] = None,
|
1661 |
+
output_hidden_states: Optional[bool] = None,
|
1662 |
+
return_dict: Optional[bool] = None,
|
1663 |
+
) -> Union[Tuple, QuestionAnsweringModelOutput]:
|
1664 |
+
r"""
|
1665 |
+
start_positions (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
|
1666 |
+
Labels for position (index) of the start of the labelled span for computing the token classification loss.
|
1667 |
+
Positions are clamped to the length of the sequence (`sequence_length`). Position outside of the sequence
|
1668 |
+
are not taken into account for computing the loss.
|
1669 |
+
end_positions (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
|
1670 |
+
Labels for position (index) of the end of the labelled span for computing the token classification loss.
|
1671 |
+
Positions are clamped to the length of the sequence (`sequence_length`). Position outside of the sequence
|
1672 |
+
are not taken into account for computing the loss.
|
1673 |
+
"""
|
1674 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
1675 |
+
|
1676 |
+
outputs = self.transformer(
|
1677 |
+
input_ids,
|
1678 |
+
attention_mask=attention_mask,
|
1679 |
+
position_ids=position_ids,
|
1680 |
+
past_key_values=past_key_values,
|
1681 |
+
inputs_embeds=inputs_embeds,
|
1682 |
+
output_attentions=output_attentions,
|
1683 |
+
output_hidden_states=output_hidden_states,
|
1684 |
+
return_dict=return_dict,
|
1685 |
+
)
|
1686 |
+
|
1687 |
+
sequence_output = outputs[0]
|
1688 |
+
|
1689 |
+
logits = self.qa_outputs(sequence_output)
|
1690 |
+
start_logits, end_logits = logits.split(1, dim=-1)
|
1691 |
+
start_logits = start_logits.squeeze(-1).contiguous()
|
1692 |
+
end_logits = end_logits.squeeze(-1).contiguous()
|
1693 |
+
|
1694 |
+
total_loss = None
|
1695 |
+
if start_positions is not None and end_positions is not None:
|
1696 |
+
# If we are on multi-GPU, split add a dimension
|
1697 |
+
if len(start_positions.size()) > 1:
|
1698 |
+
start_positions = start_positions.squeeze(-1).to(start_logits.device)
|
1699 |
+
if len(end_positions.size()) > 1:
|
1700 |
+
end_positions = end_positions.squeeze(-1).to(end_logits.device)
|
1701 |
+
# sometimes the start/end positions are outside our model inputs, we ignore these terms
|
1702 |
+
ignored_index = start_logits.size(1)
|
1703 |
+
start_positions = start_positions.clamp(0, ignored_index)
|
1704 |
+
end_positions = end_positions.clamp(0, ignored_index)
|
1705 |
+
|
1706 |
+
loss_fct = CrossEntropyLoss(ignore_index=ignored_index)
|
1707 |
+
start_loss = loss_fct(start_logits, start_positions)
|
1708 |
+
end_loss = loss_fct(end_logits, end_positions)
|
1709 |
+
total_loss = (start_loss + end_loss) / 2
|
1710 |
+
|
1711 |
+
if not return_dict:
|
1712 |
+
output = (start_logits, end_logits) + outputs[2:]
|
1713 |
+
return ((total_loss,) + output) if total_loss is not None else output
|
1714 |
+
|
1715 |
+
return QuestionAnsweringModelOutput(
|
1716 |
+
loss=total_loss,
|
1717 |
+
start_logits=start_logits,
|
1718 |
+
end_logits=end_logits,
|
1719 |
+
hidden_states=outputs.hidden_states,
|
1720 |
+
attentions=outputs.attentions,
|
1721 |
+
)
|
1722 |
+
|
1723 |
+
|
1724 |
+
# Copied from transformers.models.llama.modeling_llama.LlamaForTokenClassification with Llama->InternLM2
|
1725 |
+
@add_start_docstrings(
|
1726 |
+
"""
|
1727 |
+
The InternLM2 Model transformer with a token classification head on top (a linear layer on top of the hidden-states
|
1728 |
+
output) e.g. for Named-Entity-Recognition (NER) tasks.
|
1729 |
+
""",
|
1730 |
+
InternLM2_START_DOCSTRING,
|
1731 |
+
)
|
1732 |
+
class InternLM2ForTokenClassification(InternLM2PreTrainedModel):
|
1733 |
+
"""Token classification model for InternLM2."""
|
1734 |
+
|
1735 |
+
def __init__(self, config):
|
1736 |
+
super().__init__(config)
|
1737 |
+
self.num_labels = config.num_labels
|
1738 |
+
self.model = InternLM2Model(config)
|
1739 |
+
if getattr(config, "classifier_dropout", None) is not None:
|
1740 |
+
classifier_dropout = config.classifier_dropout
|
1741 |
+
elif getattr(config, "hidden_dropout", None) is not None:
|
1742 |
+
classifier_dropout = config.hidden_dropout
|
1743 |
+
else:
|
1744 |
+
classifier_dropout = 0.1
|
1745 |
+
self.dropout = nn.Dropout(classifier_dropout)
|
1746 |
+
self.score = nn.Linear(config.hidden_size, config.num_labels)
|
1747 |
+
|
1748 |
+
# Initialize weights and apply final processing
|
1749 |
+
self.post_init()
|
1750 |
+
|
1751 |
+
def get_input_embeddings(self):
|
1752 |
+
return self.model.tok_embeddings
|
1753 |
+
|
1754 |
+
def set_input_embeddings(self, value):
|
1755 |
+
self.model.tok_embeddings = value
|
1756 |
+
|
1757 |
+
@add_start_docstrings_to_model_forward(InternLM2_INPUTS_DOCSTRING)
|
1758 |
+
def forward(
|
1759 |
+
self,
|
1760 |
+
input_ids: torch.LongTensor = None,
|
1761 |
+
attention_mask: Optional[torch.Tensor] = None,
|
1762 |
+
position_ids: Optional[torch.LongTensor] = None,
|
1763 |
+
past_key_values: Optional[List[torch.FloatTensor]] = None,
|
1764 |
+
inputs_embeds: Optional[torch.FloatTensor] = None,
|
1765 |
+
labels: Optional[torch.LongTensor] = None,
|
1766 |
+
use_cache: Optional[bool] = None,
|
1767 |
+
output_attentions: Optional[bool] = None,
|
1768 |
+
output_hidden_states: Optional[bool] = None,
|
1769 |
+
return_dict: Optional[bool] = None,
|
1770 |
+
) -> Union[Tuple, SequenceClassifierOutputWithPast]:
|
1771 |
+
r"""
|
1772 |
+
labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
|
1773 |
+
Labels for computing the sequence classification/regression loss. Indices should be in `[0, ...,
|
1774 |
+
config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If
|
1775 |
+
`config.num_labels > 1` a classification loss is computed (Cross-Entropy).
|
1776 |
+
"""
|
1777 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
1778 |
+
|
1779 |
+
outputs = self.model(
|
1780 |
+
input_ids,
|
1781 |
+
attention_mask=attention_mask,
|
1782 |
+
position_ids=position_ids,
|
1783 |
+
past_key_values=past_key_values,
|
1784 |
+
inputs_embeds=inputs_embeds,
|
1785 |
+
use_cache=use_cache,
|
1786 |
+
output_attentions=output_attentions,
|
1787 |
+
output_hidden_states=output_hidden_states,
|
1788 |
+
return_dict=return_dict,
|
1789 |
+
)
|
1790 |
+
sequence_output = outputs[0]
|
1791 |
+
sequence_output = self.dropout(sequence_output)
|
1792 |
+
logits = self.score(sequence_output)
|
1793 |
+
|
1794 |
+
loss = None
|
1795 |
+
if labels is not None:
|
1796 |
+
loss_fct = CrossEntropyLoss()
|
1797 |
+
loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1))
|
1798 |
+
|
1799 |
+
if not return_dict:
|
1800 |
+
output = (logits,) + outputs[2:]
|
1801 |
+
return ((loss,) + output) if loss is not None else output
|
1802 |
+
|
1803 |
+
return TokenClassifierOutput(
|
1804 |
+
loss=loss,
|
1805 |
+
logits=logits,
|
1806 |
+
hidden_states=outputs.hidden_states,
|
1807 |
+
attentions=outputs.attentions,
|
1808 |
+
)
|
modeling_internvideo2_vit.py
ADDED
@@ -0,0 +1,987 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import math
|
2 |
+
import logging
|
3 |
+
import torch
|
4 |
+
import torch.nn.functional as F
|
5 |
+
from timm.models.layers import DropPath, to_2tuple, trunc_normal_
|
6 |
+
from torch import nn
|
7 |
+
|
8 |
+
import torch.utils.checkpoint as checkpoint
|
9 |
+
from functools import partial
|
10 |
+
from einops import rearrange
|
11 |
+
|
12 |
+
|
13 |
+
logger = logging.getLogger(__name__)
|
14 |
+
|
15 |
+
# try:
|
16 |
+
# from .flash_attention_class import FlashAttention
|
17 |
+
# except:
|
18 |
+
# logger.warn(f'flash_attn is not installed, you can install it by `pip install flash_attn` ')
|
19 |
+
# try:
|
20 |
+
# from flash_attn.modules.mlp import FusedMLP
|
21 |
+
# except:
|
22 |
+
# logger.warn(f'FusedMLP of flash_attn is not installed!!!')
|
23 |
+
|
24 |
+
# try:
|
25 |
+
# from flash_attn.ops.rms_norm import DropoutAddRMSNorm
|
26 |
+
# except:
|
27 |
+
# logger.warn(f'DropoutAddRMSNorm of flash_attn is not installed!!!')
|
28 |
+
|
29 |
+
import numpy as np
|
30 |
+
import torch
|
31 |
+
import logging
|
32 |
+
|
33 |
+
logger = logging.getLogger(__name__)
|
34 |
+
|
35 |
+
# --------------------------------------------------------
|
36 |
+
# 3D sine-cosine position embedding
|
37 |
+
# References:
|
38 |
+
# MVD: https://github.com/ruiwang2021/mvd/blob/main/modeling_finetune.py
|
39 |
+
# --------------------------------------------------------
|
40 |
+
def get_3d_sincos_pos_embed(embed_dim, grid_size, t_size, cls_token=False):
|
41 |
+
"""
|
42 |
+
grid_size: int of the grid height and width
|
43 |
+
t_size: int of the temporal size
|
44 |
+
return:
|
45 |
+
pos_embed: [t_size*grid_size*grid_size, embed_dim] or [1+t_size*grid_size*grid_size, embed_dim] (w/ or w/o cls_token)
|
46 |
+
"""
|
47 |
+
assert embed_dim % 4 == 0
|
48 |
+
embed_dim_spatial = embed_dim // 4 * 3
|
49 |
+
embed_dim_temporal = embed_dim // 4
|
50 |
+
|
51 |
+
# spatial
|
52 |
+
grid_h = np.arange(grid_size, dtype=np.float32)
|
53 |
+
grid_w = np.arange(grid_size, dtype=np.float32)
|
54 |
+
grid = np.meshgrid(grid_w, grid_h) # here w goes first
|
55 |
+
grid = np.stack(grid, axis=0)
|
56 |
+
|
57 |
+
grid = grid.reshape([2, 1, grid_size, grid_size])
|
58 |
+
pos_embed_spatial = get_2d_sincos_pos_embed_from_grid(
|
59 |
+
embed_dim_spatial, grid
|
60 |
+
)
|
61 |
+
|
62 |
+
# temporal
|
63 |
+
grid_t = np.arange(t_size, dtype=np.float32)
|
64 |
+
pos_embed_temporal = get_1d_sincos_pos_embed_from_grid(
|
65 |
+
embed_dim_temporal, grid_t
|
66 |
+
)
|
67 |
+
|
68 |
+
# concate: [T, H, W] order
|
69 |
+
pos_embed_temporal = pos_embed_temporal[:, np.newaxis, :]
|
70 |
+
pos_embed_temporal = np.repeat(
|
71 |
+
pos_embed_temporal, grid_size**2, axis=1
|
72 |
+
) # [T, H*W, D // 4]
|
73 |
+
pos_embed_spatial = pos_embed_spatial[np.newaxis, :, :]
|
74 |
+
pos_embed_spatial = np.repeat(
|
75 |
+
pos_embed_spatial, t_size, axis=0
|
76 |
+
) # [T, H*W, D // 4 * 3]
|
77 |
+
|
78 |
+
pos_embed = np.concatenate([pos_embed_temporal, pos_embed_spatial], axis=-1)
|
79 |
+
pos_embed = pos_embed.reshape([-1, embed_dim]) # [T*H*W, D]
|
80 |
+
|
81 |
+
if cls_token:
|
82 |
+
pos_embed = np.concatenate(
|
83 |
+
[np.zeros([1, embed_dim]), pos_embed], axis=0
|
84 |
+
)
|
85 |
+
return pos_embed
|
86 |
+
|
87 |
+
|
88 |
+
# --------------------------------------------------------
|
89 |
+
# 2D sine-cosine position embedding
|
90 |
+
# References:
|
91 |
+
# Transformer: https://github.com/tensorflow/models/blob/master/official/nlp/transformer/model_utils.py
|
92 |
+
# MoCo v3: https://github.com/facebookresearch/moco-v3
|
93 |
+
# --------------------------------------------------------
|
94 |
+
def get_2d_sincos_pos_embed(embed_dim, grid_size, cls_token=False):
|
95 |
+
"""
|
96 |
+
grid_size: int of the grid height and width
|
97 |
+
return:
|
98 |
+
pos_embed: [grid_size*grid_size, embed_dim] or [1+grid_size*grid_size, embed_dim] (w/ or w/o cls_token)
|
99 |
+
"""
|
100 |
+
grid_h = np.arange(grid_size, dtype=np.float32)
|
101 |
+
grid_w = np.arange(grid_size, dtype=np.float32)
|
102 |
+
grid = np.meshgrid(grid_w, grid_h) # here w goes first
|
103 |
+
grid = np.stack(grid, axis=0)
|
104 |
+
|
105 |
+
grid = grid.reshape([2, 1, grid_size, grid_size])
|
106 |
+
pos_embed = get_2d_sincos_pos_embed_from_grid(embed_dim, grid)
|
107 |
+
if cls_token:
|
108 |
+
pos_embed = np.concatenate(
|
109 |
+
[np.zeros([1, embed_dim]), pos_embed], axis=0
|
110 |
+
)
|
111 |
+
return pos_embed
|
112 |
+
|
113 |
+
|
114 |
+
def get_1d_sincos_pos_embed(embed_dim, t_size, cls_token=False):
|
115 |
+
"""
|
116 |
+
t_size: int of the temporal size
|
117 |
+
return:
|
118 |
+
pos_embed: [t_size, embed_dim] or [1+t_size, embed_dim] (w/ or w/o cls_token)
|
119 |
+
"""
|
120 |
+
grid_t = np.arange(t_size, dtype=np.float32)
|
121 |
+
pos_embed = get_1d_sincos_pos_embed_from_grid(embed_dim, grid_t)
|
122 |
+
if cls_token:
|
123 |
+
pos_embed = np.concatenate(
|
124 |
+
[np.zeros([1, embed_dim]), pos_embed], axis=0
|
125 |
+
)
|
126 |
+
return pos_embed
|
127 |
+
|
128 |
+
|
129 |
+
def get_2d_sincos_pos_embed_from_grid(embed_dim, grid):
|
130 |
+
assert embed_dim % 2 == 0
|
131 |
+
|
132 |
+
# use half of dimensions to encode grid_h
|
133 |
+
emb_h = get_1d_sincos_pos_embed_from_grid(
|
134 |
+
embed_dim // 2, grid[0]
|
135 |
+
) # (H*W, D/2)
|
136 |
+
emb_w = get_1d_sincos_pos_embed_from_grid(
|
137 |
+
embed_dim // 2, grid[1]
|
138 |
+
) # (H*W, D/2)
|
139 |
+
|
140 |
+
emb = np.concatenate([emb_h, emb_w], axis=1) # (H*W, D)
|
141 |
+
return emb
|
142 |
+
|
143 |
+
|
144 |
+
def get_1d_sincos_pos_embed_from_grid(embed_dim, pos):
|
145 |
+
"""
|
146 |
+
embed_dim: output dimension for each position
|
147 |
+
pos: a list of positions to be encoded: size (M,)
|
148 |
+
out: (M, D)
|
149 |
+
"""
|
150 |
+
assert embed_dim % 2 == 0
|
151 |
+
omega = np.arange(embed_dim // 2, dtype=np.float32)
|
152 |
+
omega /= embed_dim / 2.0
|
153 |
+
omega = 1.0 / 10000**omega # (D/2,)
|
154 |
+
|
155 |
+
pos = pos.reshape(-1) # (M,)
|
156 |
+
out = np.einsum("m,d->md", pos, omega) # (M, D/2), outer product
|
157 |
+
|
158 |
+
emb_sin = np.sin(out) # (M, D/2)
|
159 |
+
emb_cos = np.cos(out) # (M, D/2)
|
160 |
+
|
161 |
+
emb = np.concatenate([emb_sin, emb_cos], axis=1) # (M, D)
|
162 |
+
return emb
|
163 |
+
|
164 |
+
|
165 |
+
def interpolate_pos_embed_internvideo2(checkpoint_model, model, orig_t_size = 8):
|
166 |
+
# interpolate position embedding
|
167 |
+
for pos_name in ['pos_embed', 'clip_pos_embed']:
|
168 |
+
if pos_name in checkpoint_model:
|
169 |
+
pos_embed_checkpoint = checkpoint_model[pos_name]
|
170 |
+
embedding_size = pos_embed_checkpoint.shape[-1] # channel dim
|
171 |
+
num_patches = model.patch_embed.num_patches #
|
172 |
+
num_extra_tokens = model.pos_embed.shape[-2] - num_patches # 0/1
|
173 |
+
|
174 |
+
# we use 8 frames for pretraining
|
175 |
+
# new_t_size = args.num_frames * args.num_segments // model.patch_embed.tubelet_size
|
176 |
+
new_t_size = model.num_frames // model.tubelet_size
|
177 |
+
# height (== width) for the checkpoint position embedding
|
178 |
+
orig_size = int(((pos_embed_checkpoint.shape[-2] - num_extra_tokens)//(orig_t_size)) ** 0.5)
|
179 |
+
# height (== width) for the new position embedding
|
180 |
+
new_size = int((num_patches // (new_t_size))** 0.5)
|
181 |
+
|
182 |
+
# class_token and dist_token are kept unchanged
|
183 |
+
if orig_t_size != new_t_size:
|
184 |
+
logger.info(f"Temporal interpolate from {orig_t_size} to {new_t_size} ({pos_name})")
|
185 |
+
extra_tokens = pos_embed_checkpoint[:, :num_extra_tokens]
|
186 |
+
# only the position tokens are interpolated
|
187 |
+
pos_tokens = pos_embed_checkpoint[:, num_extra_tokens:]
|
188 |
+
# B, L, C -> B, T, HW, C -> BHW, C, T (B = 1)
|
189 |
+
pos_tokens = pos_tokens.view(1, orig_t_size, -1, embedding_size)
|
190 |
+
pos_tokens = pos_tokens.permute(0, 2, 3, 1).reshape(-1, embedding_size, orig_t_size)
|
191 |
+
pos_tokens = torch.nn.functional.interpolate(pos_tokens, size=new_t_size, mode='linear')
|
192 |
+
pos_tokens = pos_tokens.view(1, -1, embedding_size, new_t_size)
|
193 |
+
pos_tokens = pos_tokens.permute(0, 3, 1, 2).reshape(1, -1, embedding_size)
|
194 |
+
new_pos_embed = torch.cat((extra_tokens, pos_tokens), dim=1)
|
195 |
+
checkpoint_model[pos_name] = new_pos_embed
|
196 |
+
pos_embed_checkpoint = new_pos_embed
|
197 |
+
|
198 |
+
# class_token and dist_token are kept unchanged
|
199 |
+
if orig_size != new_size:
|
200 |
+
logger.info(f"Position interpolate from {orig_size}x{orig_size} to {new_size}x{new_size} ({pos_name})")
|
201 |
+
extra_tokens = pos_embed_checkpoint[:, :num_extra_tokens]
|
202 |
+
# only the position tokens are interpolated
|
203 |
+
pos_tokens = pos_embed_checkpoint[:, num_extra_tokens:]
|
204 |
+
# B, L, C -> BT, H, W, C -> BT, C, H, W
|
205 |
+
pos_tokens = pos_tokens.reshape(-1, new_t_size, orig_size, orig_size, embedding_size)
|
206 |
+
pos_tokens = pos_tokens.reshape(-1, orig_size, orig_size, embedding_size).permute(0, 3, 1, 2)
|
207 |
+
pos_tokens = torch.nn.functional.interpolate(
|
208 |
+
pos_tokens, size=(new_size, new_size), mode='bicubic', align_corners=False)
|
209 |
+
# BT, C, H, W -> BT, H, W, C -> B, T, H, W, C
|
210 |
+
pos_tokens = pos_tokens.permute(0, 2, 3, 1).reshape(-1, new_t_size, new_size, new_size, embedding_size)
|
211 |
+
pos_tokens = pos_tokens.flatten(1, 3) # B, L, C
|
212 |
+
new_pos_embed = torch.cat((extra_tokens, pos_tokens), dim=1)
|
213 |
+
checkpoint_model[pos_name] = new_pos_embed
|
214 |
+
|
215 |
+
|
216 |
+
if 'pos_embed_spatial' in checkpoint_model or 'pos_embed_temporal' in checkpoint_model:
|
217 |
+
raise NotImplementedError
|
218 |
+
|
219 |
+
def interpolate_pos_embed_internvideo2_new(checkpoint_model, model, orig_t_size = 8):
|
220 |
+
pos_names = []
|
221 |
+
for k in checkpoint_model.keys():
|
222 |
+
if ('pos_embed' in k or 'clip_pos_embed' in k) and 'img_pos_embed' not in k: # NOTE 暂时不插值img_pos,高分辨率时可能需要再加
|
223 |
+
pos_names.append(k)
|
224 |
+
|
225 |
+
logger.info(f"pos names list for interpolating: {pos_names}")
|
226 |
+
|
227 |
+
assert len(pos_names) > 0, checkpoint_model.keys()
|
228 |
+
|
229 |
+
if 'pos_embed_spatial' in checkpoint_model.keys() or 'pos_embed_temporal' in checkpoint_model.keys():
|
230 |
+
raise NotImplementedError
|
231 |
+
|
232 |
+
# interpolate position embedding
|
233 |
+
for pos_name in pos_names:
|
234 |
+
|
235 |
+
pos_embed_checkpoint = checkpoint_model[pos_name]
|
236 |
+
embedding_size = pos_embed_checkpoint.shape[-1] # channel dim
|
237 |
+
num_patches = model.patch_embed.num_patches #
|
238 |
+
num_extra_tokens = model.pos_embed.shape[-2] - num_patches # 0/1
|
239 |
+
|
240 |
+
# we use 8 frames for pretraining
|
241 |
+
# new_t_size = args.num_frames * args.num_segments // model.patch_embed.tubelet_size
|
242 |
+
new_t_size = model.num_frames // model.tubelet_size
|
243 |
+
# height (== width) for the checkpoint position embedding
|
244 |
+
orig_size = int(((pos_embed_checkpoint.shape[-2] - num_extra_tokens)//(orig_t_size)) ** 0.5)
|
245 |
+
# height (== width) for the new position embedding
|
246 |
+
new_size = int((num_patches // (new_t_size))** 0.5)
|
247 |
+
|
248 |
+
# class_token and dist_token are kept unchanged
|
249 |
+
if orig_t_size != new_t_size:
|
250 |
+
logger.info(f"Temporal interpolate from {orig_t_size} to {new_t_size} ({pos_name})")
|
251 |
+
extra_tokens = pos_embed_checkpoint[:, :num_extra_tokens]
|
252 |
+
# only the position tokens are interpolated
|
253 |
+
pos_tokens = pos_embed_checkpoint[:, num_extra_tokens:]
|
254 |
+
# B, L, C -> B, T, HW, C -> BHW, C, T (B = 1)
|
255 |
+
pos_tokens = pos_tokens.view(1, orig_t_size, -1, embedding_size)
|
256 |
+
pos_tokens = pos_tokens.permute(0, 2, 3, 1).reshape(-1, embedding_size, orig_t_size)
|
257 |
+
pos_tokens = torch.nn.functional.interpolate(pos_tokens, size=new_t_size, mode='linear')
|
258 |
+
pos_tokens = pos_tokens.view(1, -1, embedding_size, new_t_size)
|
259 |
+
pos_tokens = pos_tokens.permute(0, 3, 1, 2).reshape(1, -1, embedding_size)
|
260 |
+
new_pos_embed = torch.cat((extra_tokens, pos_tokens), dim=1)
|
261 |
+
checkpoint_model[pos_name] = new_pos_embed
|
262 |
+
pos_embed_checkpoint = new_pos_embed
|
263 |
+
|
264 |
+
# class_token and dist_token are kept unchanged
|
265 |
+
if orig_size != new_size:
|
266 |
+
logger.info(f"Position interpolate from {orig_size}x{orig_size} to {new_size}x{new_size} ({pos_name})")
|
267 |
+
extra_tokens = pos_embed_checkpoint[:, :num_extra_tokens]
|
268 |
+
# only the position tokens are interpolated
|
269 |
+
pos_tokens = pos_embed_checkpoint[:, num_extra_tokens:]
|
270 |
+
# B, L, C -> BT, H, W, C -> BT, C, H, W
|
271 |
+
pos_tokens = pos_tokens.reshape(-1, new_t_size, orig_size, orig_size, embedding_size)
|
272 |
+
pos_tokens = pos_tokens.reshape(-1, orig_size, orig_size, embedding_size).permute(0, 3, 1, 2)
|
273 |
+
pos_tokens = torch.nn.functional.interpolate(
|
274 |
+
pos_tokens, size=(new_size, new_size), mode='bicubic', align_corners=False)
|
275 |
+
# BT, C, H, W -> BT, H, W, C -> B, T, H, W, C
|
276 |
+
pos_tokens = pos_tokens.permute(0, 2, 3, 1).reshape(-1, new_t_size, new_size, new_size, embedding_size)
|
277 |
+
pos_tokens = pos_tokens.flatten(1, 3) # B, L, C
|
278 |
+
new_pos_embed = torch.cat((extra_tokens, pos_tokens), dim=1)
|
279 |
+
checkpoint_model[pos_name] = new_pos_embed
|
280 |
+
|
281 |
+
|
282 |
+
|
283 |
+
def interpolate_pos_embed(checkpoint_model, model, orig_t_size=4, pos_name='vision_encoder.pos_embed'):
|
284 |
+
if pos_name in checkpoint_model:
|
285 |
+
pos_embed_checkpoint = checkpoint_model[pos_name]
|
286 |
+
embedding_size = pos_embed_checkpoint.shape[-1] # channel dim
|
287 |
+
num_patches = model.patch_embed.num_patches #
|
288 |
+
num_extra_tokens = model.pos_embed.shape[-2] - num_patches # 0/1
|
289 |
+
|
290 |
+
# we use 4 frames for pretraining
|
291 |
+
new_t_size = model.T
|
292 |
+
# height (== width) for the checkpoint position embedding
|
293 |
+
orig_size = int(((pos_embed_checkpoint.shape[-2] - num_extra_tokens)//(orig_t_size)) ** 0.5)
|
294 |
+
# height (== width) for the new position embedding
|
295 |
+
new_size = int((num_patches // (new_t_size))** 0.5)
|
296 |
+
|
297 |
+
# class_token and dist_token are kept unchanged
|
298 |
+
if orig_t_size != new_t_size:
|
299 |
+
print(f"Temporal interpolate from {orig_t_size} to {new_t_size} ({pos_name})")
|
300 |
+
extra_tokens = pos_embed_checkpoint[:, :num_extra_tokens]
|
301 |
+
# only the position tokens are interpolated
|
302 |
+
pos_tokens = pos_embed_checkpoint[:, num_extra_tokens:]
|
303 |
+
# B, L, C -> B, T, HW, C -> BHW, C, T (B = 1)
|
304 |
+
pos_tokens = pos_tokens.view(1, orig_t_size, -1, embedding_size)
|
305 |
+
pos_tokens = pos_tokens.permute(0, 2, 3, 1).reshape(-1, embedding_size, orig_t_size)
|
306 |
+
pos_tokens = torch.nn.functional.interpolate(pos_tokens, size=new_t_size, mode='linear')
|
307 |
+
pos_tokens = pos_tokens.view(1, -1, embedding_size, new_t_size)
|
308 |
+
pos_tokens = pos_tokens.permute(0, 3, 1, 2).reshape(1, -1, embedding_size)
|
309 |
+
new_pos_embed = torch.cat((extra_tokens, pos_tokens), dim=1)
|
310 |
+
checkpoint_model[pos_name] = new_pos_embed
|
311 |
+
pos_embed_checkpoint = new_pos_embed
|
312 |
+
|
313 |
+
# class_token and dist_token are kept unchanged
|
314 |
+
if orig_size != new_size:
|
315 |
+
print(f"Position interpolate from {orig_size}x{orig_size} to {new_size}x{new_size} ({pos_name})")
|
316 |
+
extra_tokens = pos_embed_checkpoint[:, :num_extra_tokens]
|
317 |
+
# only the position tokens are interpolated
|
318 |
+
pos_tokens = pos_embed_checkpoint[:, num_extra_tokens:]
|
319 |
+
# B, L, C -> BT, H, W, C -> BT, C, H, W
|
320 |
+
pos_tokens = pos_tokens.reshape(-1, new_t_size, orig_size, orig_size, embedding_size)
|
321 |
+
pos_tokens = pos_tokens.reshape(-1, orig_size, orig_size, embedding_size).permute(0, 3, 1, 2)
|
322 |
+
pos_tokens = torch.nn.functional.interpolate(
|
323 |
+
pos_tokens, size=(new_size, new_size), mode='bicubic', align_corners=False)
|
324 |
+
# BT, C, H, W -> BT, H, W, C -> B, T, H, W, C
|
325 |
+
pos_tokens = pos_tokens.permute(0, 2, 3, 1).reshape(-1, new_t_size, new_size, new_size, embedding_size)
|
326 |
+
pos_tokens = pos_tokens.flatten(1, 3) # B, L, C
|
327 |
+
new_pos_embed = torch.cat((extra_tokens, pos_tokens), dim=1)
|
328 |
+
checkpoint_model[pos_name] = new_pos_embed
|
329 |
+
else:
|
330 |
+
raise NotImplementedError
|
331 |
+
|
332 |
+
|
333 |
+
|
334 |
+
class CrossAttention(nn.Module):
|
335 |
+
def __init__(
|
336 |
+
self, dim, num_heads=8, qkv_bias=False, qk_scale=None, attn_drop=0.,
|
337 |
+
proj_drop=0., attn_head_dim=None, out_dim=None):
|
338 |
+
super().__init__()
|
339 |
+
if out_dim is None:
|
340 |
+
out_dim = dim
|
341 |
+
self.num_heads = num_heads
|
342 |
+
head_dim = dim // num_heads
|
343 |
+
if attn_head_dim is not None:
|
344 |
+
head_dim = attn_head_dim
|
345 |
+
all_head_dim = head_dim * self.num_heads
|
346 |
+
self.scale = qk_scale or head_dim ** -0.5
|
347 |
+
assert all_head_dim == dim
|
348 |
+
|
349 |
+
self.q = nn.Linear(dim, all_head_dim, bias=False)
|
350 |
+
self.k = nn.Linear(dim, all_head_dim, bias=False)
|
351 |
+
self.v = nn.Linear(dim, all_head_dim, bias=False)
|
352 |
+
|
353 |
+
if qkv_bias:
|
354 |
+
self.q_bias = nn.Parameter(torch.zeros(all_head_dim))
|
355 |
+
self.k_bias = nn.Parameter(torch.zeros(all_head_dim))
|
356 |
+
self.v_bias = nn.Parameter(torch.zeros(all_head_dim))
|
357 |
+
else:
|
358 |
+
self.q_bias = None
|
359 |
+
self.k_bias = None
|
360 |
+
self.v_bias = None
|
361 |
+
|
362 |
+
self.attn_drop = nn.Dropout(attn_drop)
|
363 |
+
self.proj = nn.Linear(all_head_dim, out_dim)
|
364 |
+
self.proj_drop = nn.Dropout(proj_drop)
|
365 |
+
|
366 |
+
def forward(self, x, k=None, v=None):
|
367 |
+
B, N, C = x.shape
|
368 |
+
N_k = k.shape[1]
|
369 |
+
N_v = v.shape[1]
|
370 |
+
|
371 |
+
q_bias, k_bias, v_bias = None, None, None
|
372 |
+
if self.q_bias is not None:
|
373 |
+
q_bias = self.q_bias
|
374 |
+
k_bias = self.k_bias
|
375 |
+
v_bias = self.v_bias
|
376 |
+
|
377 |
+
q = F.linear(input=x, weight=self.q.weight, bias=q_bias)
|
378 |
+
q = q.reshape(B, N, 1, self.num_heads, -1).permute(2, 0, 3, 1, 4).squeeze(0) # (B, N_head, N_q, dim)
|
379 |
+
|
380 |
+
k = F.linear(input=k, weight=self.k.weight, bias=k_bias)
|
381 |
+
k = k.reshape(B, N_k, 1, self.num_heads, -1).permute(2, 0, 3, 1, 4).squeeze(0)
|
382 |
+
|
383 |
+
v = F.linear(input=v, weight=self.v.weight, bias=v_bias)
|
384 |
+
v = v.reshape(B, N_v, 1, self.num_heads, -1).permute(2, 0, 3, 1, 4).squeeze(0)
|
385 |
+
|
386 |
+
q = q * self.scale
|
387 |
+
attn = (q @ k.transpose(-2, -1)) # (B, N_head, N_q, N_k)
|
388 |
+
|
389 |
+
attn = attn.softmax(dim=-1)
|
390 |
+
attn = self.attn_drop(attn)
|
391 |
+
|
392 |
+
x = (attn @ v).transpose(1, 2).reshape(B, N, -1)
|
393 |
+
x = self.proj(x)
|
394 |
+
x = self.proj_drop(x)
|
395 |
+
|
396 |
+
return x
|
397 |
+
|
398 |
+
|
399 |
+
class AttentiveBlock(nn.Module):
|
400 |
+
|
401 |
+
def __init__(self, dim, num_heads, qkv_bias=False, qk_scale=None, drop=0., attn_drop=0.,
|
402 |
+
drop_path=0., norm_layer=nn.LayerNorm, attn_head_dim=None, out_dim=None):
|
403 |
+
super().__init__()
|
404 |
+
|
405 |
+
self.norm1_q = norm_layer(dim)
|
406 |
+
self.norm1_k = norm_layer(dim)
|
407 |
+
self.norm1_v = norm_layer(dim)
|
408 |
+
self.cross_attn = CrossAttention(
|
409 |
+
dim, num_heads=num_heads, qkv_bias=qkv_bias, qk_scale=qk_scale, attn_drop=attn_drop,
|
410 |
+
proj_drop=drop, attn_head_dim=attn_head_dim, out_dim=out_dim)
|
411 |
+
|
412 |
+
self.drop_path = DropPath(drop_path) if drop_path > 0. else nn.Identity()
|
413 |
+
|
414 |
+
def forward(self, x_q, x_kv, pos_q, pos_k, bool_masked_pos, rel_pos_bias=None):
|
415 |
+
x_q = self.norm1_q(x_q + pos_q)
|
416 |
+
x_k = self.norm1_k(x_kv + pos_k)
|
417 |
+
x_v = self.norm1_v(x_kv)
|
418 |
+
x = self.cross_attn(x_q, k=x_k, v=x_v)
|
419 |
+
|
420 |
+
return x
|
421 |
+
|
422 |
+
|
423 |
+
class AttentionPoolingBlock(AttentiveBlock):
|
424 |
+
|
425 |
+
def forward(self, x):
|
426 |
+
x_q = x.mean(1, keepdim=True)
|
427 |
+
x_kv, pos_q, pos_k = x, 0, 0
|
428 |
+
x = super().forward(x_q, x_kv, pos_q, pos_k, bool_masked_pos=None, rel_pos_bias=None)
|
429 |
+
x = x.squeeze(1)
|
430 |
+
return x
|
431 |
+
|
432 |
+
|
433 |
+
class RMSNorm(nn.Module):
|
434 |
+
def __init__(self, hidden_size, eps=1e-6):
|
435 |
+
super().__init__()
|
436 |
+
self.weight = nn.Parameter(torch.ones(hidden_size))
|
437 |
+
self.variance_epsilon = eps
|
438 |
+
|
439 |
+
def forward(self, hidden_states):
|
440 |
+
input_dtype = hidden_states.dtype
|
441 |
+
hidden_states = hidden_states.to(torch.float32)
|
442 |
+
variance = hidden_states.pow(2).mean(-1, keepdim=True)
|
443 |
+
hidden_states = hidden_states * torch.rsqrt(variance + self.variance_epsilon)
|
444 |
+
return self.weight * hidden_states.to(input_dtype)
|
445 |
+
|
446 |
+
|
447 |
+
class Attention(nn.Module):
|
448 |
+
def __init__(self, dim, num_heads=8, qkv_bias=False, attn_drop=0., proj_drop=0., use_flash_attn=False,
|
449 |
+
causal=False, norm_layer=nn.LayerNorm, qk_normalization=False, use_fused_rmsnorm=False):
|
450 |
+
super().__init__()
|
451 |
+
assert dim % num_heads == 0, 'dim should be divisible by num_heads'
|
452 |
+
self.num_heads = num_heads
|
453 |
+
head_dim = dim // num_heads
|
454 |
+
self.scale = head_dim ** -0.5
|
455 |
+
|
456 |
+
self.qkv = nn.Linear(dim, dim * 3, bias=qkv_bias)
|
457 |
+
self.attn_drop = nn.Dropout(attn_drop)
|
458 |
+
self.proj = nn.Linear(dim, dim)
|
459 |
+
self.proj_drop = nn.Dropout(proj_drop)
|
460 |
+
|
461 |
+
self.use_flash_attn = use_flash_attn
|
462 |
+
if use_flash_attn:
|
463 |
+
self.causal = causal
|
464 |
+
self.inner_attn = FlashAttention(attention_dropout=attn_drop)
|
465 |
+
|
466 |
+
self.qk_normalization = qk_normalization
|
467 |
+
self.q_norm = norm_layer(dim) if qk_normalization else nn.Identity()
|
468 |
+
self.k_norm = norm_layer(dim) if qk_normalization else nn.Identity()
|
469 |
+
self.use_fused_rmsnorm = use_fused_rmsnorm
|
470 |
+
|
471 |
+
def _naive_attn(self, x):
|
472 |
+
B, N, C = x.shape
|
473 |
+
# print(x.shape, torch.cuda.memory_allocated(), torch.cuda.memory_allocated())
|
474 |
+
qkv = self.qkv(x).reshape(B, N, 3, self.num_heads, C // self.num_heads).permute(2, 0, 3, 1, 4)
|
475 |
+
q, k, v = qkv.unbind(0) # make torchscript happy (cannot use tensor as tuple)
|
476 |
+
|
477 |
+
if self.qk_normalization:
|
478 |
+
B_, H_, N_, D_ = q.shape
|
479 |
+
q = self.q_norm(q.transpose(1, 2).flatten(-2, -1)).view(B_, N_, H_, D_).transpose(1, 2)
|
480 |
+
k = self.k_norm(k.transpose(1, 2).flatten(-2, -1)).view(B_, N_, H_, D_).transpose(1, 2)
|
481 |
+
|
482 |
+
attn = ((q * self.scale) @ k.transpose(-2, -1))
|
483 |
+
# attn = attn - attn.max(-1)[0].unsqueeze(-1) # in case of overflow for fp16
|
484 |
+
attn = attn.softmax(dim=-1)
|
485 |
+
attn = self.attn_drop(attn)
|
486 |
+
# print(torch.cuda.memory_allocated(), torch.cuda.memory_allocated())
|
487 |
+
x = (attn @ v).transpose(1, 2).reshape(B, N, C)
|
488 |
+
# print(f"\033[31m这{x.device}是{self.proj.weight.device} {self.proj.bias.device}\033[0m")
|
489 |
+
# print(f"\033[31m类型{x.dtype}是{self.proj.weight.dtype} {self.proj.bias.dtype}\033[0m")
|
490 |
+
x = self.proj(x)
|
491 |
+
x = self.proj_drop(x)
|
492 |
+
return x
|
493 |
+
|
494 |
+
def _flash_attn(self, x, key_padding_mask=None, need_weights=False):
|
495 |
+
|
496 |
+
qkv = self.qkv(x)
|
497 |
+
qkv = rearrange(qkv, "b s (three h d) -> b s three h d", three=3, h=self.num_heads)
|
498 |
+
|
499 |
+
if self.qk_normalization:
|
500 |
+
q, k, v = qkv.unbind(2)
|
501 |
+
if self.use_fused_rmsnorm:
|
502 |
+
q = self.q_norm(q.flatten(-2, -1))[0].view(q.shape)
|
503 |
+
k = self.k_norm(k.flatten(-2, -1))[0].view(k.shape)
|
504 |
+
else:
|
505 |
+
q = self.q_norm(q.flatten(-2, -1)).view(q.shape)
|
506 |
+
k = self.k_norm(k.flatten(-2, -1)).view(k.shape)
|
507 |
+
qkv = torch.stack([q, k, v], dim=2)
|
508 |
+
|
509 |
+
context, _ = self.inner_attn(
|
510 |
+
qkv, key_padding_mask=key_padding_mask, need_weights=need_weights, causal=self.causal
|
511 |
+
)
|
512 |
+
outs = self.proj(rearrange(context, "b s h d -> b s (h d)"))
|
513 |
+
outs = self.proj_drop(outs)
|
514 |
+
return outs
|
515 |
+
|
516 |
+
def forward(self, x):
|
517 |
+
x = self._naive_attn(x) if not self.use_flash_attn else self._flash_attn(x)
|
518 |
+
return x
|
519 |
+
|
520 |
+
|
521 |
+
class Mlp(nn.Module):
|
522 |
+
""" MLP as used in Vision Transformer, MLP-Mixer and related networks
|
523 |
+
"""
|
524 |
+
|
525 |
+
def __init__(self, in_features, hidden_features=None, out_features=None, act_layer=nn.GELU,
|
526 |
+
bias=True, drop=0.):
|
527 |
+
super().__init__()
|
528 |
+
out_features = out_features or in_features
|
529 |
+
hidden_features = hidden_features or in_features
|
530 |
+
bias = to_2tuple(bias)
|
531 |
+
drop_probs = to_2tuple(drop)
|
532 |
+
|
533 |
+
self.fc1 = nn.Linear(in_features, hidden_features, bias=bias[0])
|
534 |
+
self.act = act_layer()
|
535 |
+
self.drop1 = nn.Dropout(drop_probs[0])
|
536 |
+
self.fc2 = nn.Linear(hidden_features, out_features, bias=bias[1])
|
537 |
+
self.drop2 = nn.Dropout(drop_probs[1])
|
538 |
+
|
539 |
+
def forward(self, x):
|
540 |
+
x = self.fc1(x)
|
541 |
+
x = self.act(x)
|
542 |
+
x = self.drop1(x)
|
543 |
+
x = self.fc2(x)
|
544 |
+
x = self.drop2(x)
|
545 |
+
return x
|
546 |
+
|
547 |
+
|
548 |
+
class Block(nn.Module):
|
549 |
+
|
550 |
+
def __init__(
|
551 |
+
self, dim, num_heads, mlp_ratio=4., qkv_bias=False, drop=0., attn_drop=0., init_values=None,
|
552 |
+
drop_path=0., act_layer=nn.GELU, norm_layer=nn.LayerNorm, use_flash_attn=False, use_fused_mlp=False,
|
553 |
+
fused_mlp_heuristic=1, with_cp=False, qk_normalization=False, layerscale_no_force_fp32=False,
|
554 |
+
use_fused_rmsnorm=False):
|
555 |
+
super().__init__()
|
556 |
+
|
557 |
+
self.norm1 = norm_layer(dim)
|
558 |
+
self.attn = Attention(dim, num_heads=num_heads, qkv_bias=qkv_bias, attn_drop=attn_drop, proj_drop=drop,
|
559 |
+
use_flash_attn=use_flash_attn, causal=False, norm_layer=norm_layer,
|
560 |
+
qk_normalization=qk_normalization,
|
561 |
+
use_fused_rmsnorm=use_fused_rmsnorm)
|
562 |
+
self.ls1 = nn.Parameter(init_values * torch.ones(dim))
|
563 |
+
# NOTE: drop path for stochastic depth, we shall see if this is better than dropout here
|
564 |
+
self.drop_path1 = DropPath(drop_path) if drop_path > 0. else nn.Identity()
|
565 |
+
|
566 |
+
self.norm2 = norm_layer(dim)
|
567 |
+
mlp_hidden_dim = int(dim * mlp_ratio)
|
568 |
+
if use_fused_mlp:
|
569 |
+
self.mlp = FusedMLP(in_features=dim, hidden_features=mlp_hidden_dim, heuristic=fused_mlp_heuristic)
|
570 |
+
else:
|
571 |
+
self.mlp = Mlp(in_features=dim, hidden_features=mlp_hidden_dim, act_layer=act_layer, drop=drop)
|
572 |
+
self.ls2 = nn.Parameter(init_values * torch.ones(dim))
|
573 |
+
self.drop_path2 = DropPath(drop_path) if drop_path > 0. else nn.Identity()
|
574 |
+
|
575 |
+
self.with_cp = with_cp
|
576 |
+
self.use_fused_rmsnorm = use_fused_rmsnorm
|
577 |
+
|
578 |
+
def forward(self, x, residual=None):
|
579 |
+
|
580 |
+
def _inner_forward(x, residual=None):
|
581 |
+
if self.use_fused_rmsnorm:
|
582 |
+
x, residual = self.norm1(x, residual)
|
583 |
+
x = self.drop_path1(self.ls1 * self.attn(x) )
|
584 |
+
x, residual = self.norm2(x, residual)
|
585 |
+
x = self.drop_path2(self.ls2 * self.mlp(x) )
|
586 |
+
return x, residual
|
587 |
+
else:
|
588 |
+
assert residual is None
|
589 |
+
x = x + self.drop_path1(self.ls1 * self.attn(self.norm1(x)))
|
590 |
+
x = x + self.drop_path2(self.ls2 * self.mlp(self.norm2(x)))
|
591 |
+
return x
|
592 |
+
|
593 |
+
if self.with_cp:
|
594 |
+
# print(f"\033[31m use_checkpoint [0m")
|
595 |
+
return checkpoint.checkpoint(_inner_forward, x, residual)
|
596 |
+
else:
|
597 |
+
return _inner_forward(x, residual=residual)
|
598 |
+
|
599 |
+
|
600 |
+
class PatchEmbed(nn.Module):
|
601 |
+
""" 3D Image to Patch Embedding
|
602 |
+
"""
|
603 |
+
|
604 |
+
def __init__(
|
605 |
+
self, img_size=224, patch_size=16, in_chans=3, embed_dim=768,
|
606 |
+
num_frames=8, tubelet_size=1, norm_layer=None
|
607 |
+
):
|
608 |
+
super().__init__()
|
609 |
+
img_size = to_2tuple(img_size)
|
610 |
+
patch_size = to_2tuple(patch_size)
|
611 |
+
self.tubelet_size = tubelet_size
|
612 |
+
self.img_size = img_size
|
613 |
+
self.patch_size = patch_size
|
614 |
+
self.grid_size = (
|
615 |
+
num_frames // tubelet_size,
|
616 |
+
img_size[0] // patch_size[0],
|
617 |
+
img_size[1] // patch_size[1]
|
618 |
+
) # (T, H, W)
|
619 |
+
self.num_patches = self.grid_size[0] * self.grid_size[1] * self.grid_size[2]
|
620 |
+
self.num_img_patches = self.grid_size[1] * self.grid_size[2]
|
621 |
+
|
622 |
+
self.proj = nn.Conv3d(
|
623 |
+
in_channels=in_chans, out_channels=embed_dim,
|
624 |
+
kernel_size=(tubelet_size, patch_size[0], patch_size[1]),
|
625 |
+
stride=(tubelet_size, patch_size[0], patch_size[1])
|
626 |
+
)
|
627 |
+
self.norm = norm_layer(embed_dim) if norm_layer else nn.Identity()
|
628 |
+
|
629 |
+
def forward(self, x):
|
630 |
+
x = self.proj(x)
|
631 |
+
x = x.flatten(3).permute(0, 2, 3, 1) # B x C x T x HW => B x T x HW x C
|
632 |
+
x = self.norm(x)
|
633 |
+
return x
|
634 |
+
|
635 |
+
class PretrainVisionTransformer_clean(nn.Module):
|
636 |
+
def __init__(
|
637 |
+
self,
|
638 |
+
in_chans: int = 3,
|
639 |
+
patch_size: int = 14,
|
640 |
+
img_size: int = 224,
|
641 |
+
qkv_bias: bool = False, # follow internvl_clip to set False
|
642 |
+
drop_path_rate: float = 0.25, # may need ablation
|
643 |
+
embed_dim: int = 1408,
|
644 |
+
num_heads: int = 16,
|
645 |
+
mlp_ratio: float = 48/11,
|
646 |
+
init_values: float = 1e-5, # may need ablation
|
647 |
+
qk_normalization: bool = True,
|
648 |
+
depth: int = 40,
|
649 |
+
use_flash_attn: bool = True,
|
650 |
+
use_fused_rmsnorm: bool = True,
|
651 |
+
use_fused_mlp: bool = True,
|
652 |
+
fused_mlp_heuristic: int = 1,
|
653 |
+
attn_pool_num_heads: int = 16,
|
654 |
+
clip_embed_dim: int = 768,
|
655 |
+
layerscale_no_force_fp32: bool = False, # whether True for training?
|
656 |
+
num_frames: int = 8,
|
657 |
+
tubelet_size: int = 1,
|
658 |
+
sep_pos_embed: bool = False,
|
659 |
+
sep_image_video_pos_embed: bool = False,
|
660 |
+
use_checkpoint: bool = False,
|
661 |
+
checkpoint_num: int = 0,
|
662 |
+
# for unmasked teacher
|
663 |
+
x_vis_return_idx=-1,
|
664 |
+
x_vis_only=False
|
665 |
+
):
|
666 |
+
super().__init__()
|
667 |
+
|
668 |
+
self.num_frames = num_frames
|
669 |
+
self.tubelet_size = tubelet_size
|
670 |
+
assert use_flash_attn == use_fused_rmsnorm == use_fused_mlp, 'use_flash_attn, use_fused_rmsnorm and use_fused_mlp should be consistent'
|
671 |
+
|
672 |
+
self.use_flash_attn = use_flash_attn
|
673 |
+
self.embed_dim = embed_dim
|
674 |
+
|
675 |
+
logger.info(f"Origin depth: {depth}")
|
676 |
+
depth = depth + x_vis_return_idx + 1
|
677 |
+
logger.info(f"New depth: {depth}")
|
678 |
+
self.depth = depth
|
679 |
+
|
680 |
+
self.x_vis_only = x_vis_only
|
681 |
+
|
682 |
+
if use_fused_rmsnorm:
|
683 |
+
norm_layer_for_blocks = partial(DropoutAddRMSNorm, eps=1e-6, prenorm=True)
|
684 |
+
else:
|
685 |
+
norm_layer_for_blocks = partial(RMSNorm, eps=1e-6)
|
686 |
+
self.norm_layer_for_blocks = norm_layer_for_blocks
|
687 |
+
self.patch_embed = PatchEmbed(
|
688 |
+
img_size, patch_size, in_chans, embed_dim,
|
689 |
+
num_frames=num_frames, tubelet_size=tubelet_size,
|
690 |
+
)
|
691 |
+
num_patches = self.patch_embed.num_patches
|
692 |
+
num_img_patches = self.patch_embed.num_img_patches
|
693 |
+
# print(f"num_patches: {num_patches}, num_img_patches: {num_img_patches}")
|
694 |
+
self.cls_token = nn.Parameter(torch.zeros(1, 1, embed_dim))
|
695 |
+
|
696 |
+
# stolen from https://github.com/facebookresearch/mae_st/blob/dc072aaaf640d06892e23a33b42223a994efe272/models_vit.py#L65-L73C17
|
697 |
+
self.sep_pos_embed = sep_pos_embed
|
698 |
+
self.sep_image_video_pos_embed = sep_image_video_pos_embed
|
699 |
+
if sep_pos_embed:
|
700 |
+
raise NotImplementedError
|
701 |
+
else:
|
702 |
+
if sep_image_video_pos_embed:
|
703 |
+
logger.info("Use joint position embedding, for image and video we use different pos_embed.")
|
704 |
+
self.pos_embed = nn.Parameter(torch.zeros(1, num_patches + 1, embed_dim))
|
705 |
+
self.img_pos_embed = nn.Parameter(torch.zeros(1, num_img_patches + 1, embed_dim))
|
706 |
+
else:
|
707 |
+
logger.info("Use joint position embedding, for image and video we use same pos_embed.")
|
708 |
+
self.pos_embed = nn.Parameter(torch.zeros(1, num_patches + 1, embed_dim))
|
709 |
+
|
710 |
+
dpr = [x.item() for x in torch.linspace(0, drop_path_rate, depth)]
|
711 |
+
# choose which layer to use checkpoint
|
712 |
+
with_cp_list = [False] * depth
|
713 |
+
if use_checkpoint:
|
714 |
+
for idx in range(depth):
|
715 |
+
if idx < checkpoint_num:
|
716 |
+
with_cp_list[idx] = True
|
717 |
+
logger.info(f"Droppath rate: {dpr}")
|
718 |
+
logger.info(f"Checkpoint list: {with_cp_list}")
|
719 |
+
|
720 |
+
self.blocks = nn.ModuleList([
|
721 |
+
Block(embed_dim, num_heads, mlp_ratio, qkv_bias=qkv_bias,
|
722 |
+
norm_layer=norm_layer_for_blocks,
|
723 |
+
drop_path=dpr[i], init_values=init_values, attn_drop=0.,
|
724 |
+
use_flash_attn=use_flash_attn, use_fused_mlp=use_fused_mlp,
|
725 |
+
fused_mlp_heuristic=fused_mlp_heuristic,
|
726 |
+
with_cp=with_cp_list[i],
|
727 |
+
qk_normalization=qk_normalization,
|
728 |
+
layerscale_no_force_fp32=layerscale_no_force_fp32,
|
729 |
+
use_fused_rmsnorm=use_fused_rmsnorm)
|
730 |
+
for i in range(depth)])
|
731 |
+
|
732 |
+
if not self.x_vis_only:
|
733 |
+
self.clip_projector = AttentionPoolingBlock(
|
734 |
+
dim=embed_dim, num_heads=attn_pool_num_heads, qkv_bias=True, qk_scale=None,
|
735 |
+
drop=0., attn_drop=0., norm_layer=partial(nn.LayerNorm, eps=1e-5), out_dim=clip_embed_dim)
|
736 |
+
|
737 |
+
|
738 |
+
|
739 |
+
self.init_pos_embed()
|
740 |
+
# trunc_normal_(self.cls_token, std=.02)
|
741 |
+
# self.apply(self._init_weights)
|
742 |
+
# self.fix_init_weight()
|
743 |
+
|
744 |
+
def init_pos_embed(self):
|
745 |
+
logger.info("Init pos_embed from sincos pos_embed")
|
746 |
+
if self.sep_pos_embed:
|
747 |
+
raise NotImplementedError
|
748 |
+
else:
|
749 |
+
pos_embed = get_3d_sincos_pos_embed(
|
750 |
+
self.pos_embed.shape[-1],
|
751 |
+
self.patch_embed.grid_size[1], # height & weight
|
752 |
+
self.patch_embed.grid_size[0], # t_size
|
753 |
+
cls_token=True
|
754 |
+
)
|
755 |
+
self.pos_embed.data.copy_(torch.from_numpy(pos_embed).float().unsqueeze(0))
|
756 |
+
|
757 |
+
if self.sep_image_video_pos_embed:
|
758 |
+
img_pos_embed = get_3d_sincos_pos_embed(
|
759 |
+
self.pos_embed.shape[-1],
|
760 |
+
self.patch_embed.grid_size[1], # height & weight
|
761 |
+
1,
|
762 |
+
cls_token=True
|
763 |
+
)
|
764 |
+
self.img_pos_embed.data.copy_(torch.from_numpy(img_pos_embed).float().unsqueeze(0))
|
765 |
+
|
766 |
+
|
767 |
+
def _init_weights(self, m):
|
768 |
+
if isinstance(m, nn.Linear):
|
769 |
+
trunc_normal_(m.weight, std=.02)
|
770 |
+
if isinstance(m, nn.Linear) and m.bias is not None:
|
771 |
+
nn.init.constant_(m.bias, 0)
|
772 |
+
elif isinstance(m, nn.LayerNorm):
|
773 |
+
nn.init.constant_(m.bias, 0)
|
774 |
+
nn.init.constant_(m.weight, 1.0)
|
775 |
+
|
776 |
+
def fix_init_weight(self):
|
777 |
+
def rescale(param, layer_id):
|
778 |
+
param.div_(math.sqrt(2.0 * layer_id))
|
779 |
+
|
780 |
+
for layer_id, layer in enumerate(self.blocks):
|
781 |
+
rescale(layer.attn.proj.weight.data, layer_id + 1)
|
782 |
+
rescale(layer.mlp.fc2.weight.data, layer_id + 1)
|
783 |
+
|
784 |
+
@property
|
785 |
+
def dtype(self):
|
786 |
+
return self.patch_embed.proj.weight.dtype
|
787 |
+
|
788 |
+
def get_num_layers(self):
|
789 |
+
return len(self.blocks)
|
790 |
+
|
791 |
+
@torch.jit.ignore
|
792 |
+
def no_weight_decay(self):
|
793 |
+
return {
|
794 |
+
'pos_embed',
|
795 |
+
'pos_embed_spatial',
|
796 |
+
'pos_embed_temporal',
|
797 |
+
'pos_embed_cls',
|
798 |
+
'img_pos_embed',
|
799 |
+
'cls_token'
|
800 |
+
}
|
801 |
+
|
802 |
+
def expand_pos_embed(self, pos_embed, new_t_size, L, use_vitar_fuzzing=False):
|
803 |
+
'''
|
804 |
+
@param:
|
805 |
+
pos_embed: original pos_embed, (1, T*L + 1, embed_dim)
|
806 |
+
T: frames
|
807 |
+
L: w * h
|
808 |
+
method: interpolation method
|
809 |
+
'''
|
810 |
+
pos_embed_checkpoint = pos_embed
|
811 |
+
embedding_size = pos_embed_checkpoint.shape[-1]
|
812 |
+
num_extra_tokens = 1
|
813 |
+
|
814 |
+
# height (== width) for the checkpoint position embedding
|
815 |
+
orig_size = int(((pos_embed_checkpoint.shape[-2] - num_extra_tokens)//(self.num_frames / self.patch_embed.tubelet_size)) ** 0.5)
|
816 |
+
# height (== width) for the new position embedding
|
817 |
+
new_size = int(L ** 0.5)
|
818 |
+
|
819 |
+
# class_token and dist_token are kept unchanged
|
820 |
+
if self.num_frames != new_t_size:
|
821 |
+
logger.info(f"Temporal interpolate from {self.num_frames} to {new_t_size} ")
|
822 |
+
extra_tokens = pos_embed_checkpoint[:, :num_extra_tokens]
|
823 |
+
# only the position tokens are interpolated
|
824 |
+
pos_tokens = pos_embed_checkpoint[:, num_extra_tokens:]
|
825 |
+
# B, L, C -> B, T, HW, C -> BHW, C, T (B = 1)
|
826 |
+
pos_tokens = pos_tokens.view(1, self.num_frames, -1, embedding_size)
|
827 |
+
pos_tokens = pos_tokens.permute(0, 2, 3, 1).reshape(-1, embedding_size, self.num_frames)
|
828 |
+
pos_tokens = torch.nn.functional.interpolate(pos_tokens.cpu(), size=new_t_size, mode='linear').cuda()
|
829 |
+
pos_tokens = pos_tokens.view(1, -1, embedding_size, new_t_size)
|
830 |
+
pos_tokens = pos_tokens.permute(0, 3, 1, 2).reshape(1, -1, embedding_size)
|
831 |
+
new_pos_embed = torch.cat((extra_tokens, pos_tokens), dim=1)
|
832 |
+
pos_embed_checkpoint = new_pos_embed
|
833 |
+
|
834 |
+
# class_token and dist_token are kept unchanged
|
835 |
+
if orig_size != new_size:
|
836 |
+
logger.info(f"Position interpolate from {orig_size}x{orig_size} to {new_size}x{new_size}")
|
837 |
+
extra_tokens = pos_embed_checkpoint[:, :num_extra_tokens]
|
838 |
+
# only the position tokens are interpolated
|
839 |
+
pos_tokens = pos_embed_checkpoint[:, num_extra_tokens:]
|
840 |
+
# B, L, C -> BT, H, W, C -> BT, C, H, W
|
841 |
+
pos_tokens = pos_tokens.reshape(-1, new_t_size, orig_size, orig_size, embedding_size)
|
842 |
+
pos_tokens = pos_tokens.reshape(-1, orig_size, orig_size, embedding_size).permute(0, 3, 1, 2)
|
843 |
+
pos_tokens = torch.nn.functional.interpolate(
|
844 |
+
pos_tokens.cpu(), size=(new_size, new_size), mode='bicubic', align_corners=False).cuda()
|
845 |
+
# BT, C, H, W -> BT, H, W, C -> B, T, H, W, C
|
846 |
+
pos_tokens = pos_tokens.permute(0, 2, 3, 1).reshape(-1, new_t_size, new_size, new_size, embedding_size)
|
847 |
+
pos_tokens = pos_tokens.flatten(1, 3) # B, L, C
|
848 |
+
new_pos_embed = torch.cat((extra_tokens, pos_tokens), dim=1)
|
849 |
+
|
850 |
+
if use_vitar_fuzzing:
|
851 |
+
...
|
852 |
+
|
853 |
+
return new_pos_embed
|
854 |
+
|
855 |
+
# @torch.cuda.amp.autocast(enabled=False)
|
856 |
+
def forward(self, x, mask=None, use_image=False):
|
857 |
+
x = self.patch_embed(x.type(self.dtype))
|
858 |
+
# print(f"x.shape: {x.shape} x.dtype: {x.dtype}, model.dtype: {self.dtype}")
|
859 |
+
B, T, L, C = x.shape # T: temporal; L: spatial
|
860 |
+
x = x.view([B, T * L, C])
|
861 |
+
|
862 |
+
# append cls token
|
863 |
+
cls_tokens = self.cls_token.expand(B, -1, -1)
|
864 |
+
x = torch.cat((cls_tokens, x), dim=1)
|
865 |
+
|
866 |
+
# add pos_embed
|
867 |
+
if self.sep_pos_embed:
|
868 |
+
raise NotImplementedError
|
869 |
+
else:
|
870 |
+
if use_image:
|
871 |
+
if self.sep_image_video_pos_embed:
|
872 |
+
pos_embed = self.img_pos_embed
|
873 |
+
else:
|
874 |
+
# (1, num_img_patches + 1, embed_dim)
|
875 |
+
# print('origin pos_embed.shape:', self.pos_embed.shape)
|
876 |
+
cls_pos_embed = self.pos_embed[:, 0:1, :]
|
877 |
+
# print('cls_pos_embed.shape:', cls_pos_embed.shape)
|
878 |
+
|
879 |
+
img_pos_embed = self.pos_embed[:, 1:, :].view(1, self.num_frames, self.patch_embed.num_patches // self.num_frames, self.embed_dim).mean(dim=1)
|
880 |
+
# print('img_pos_embed.shape:', img_pos_embed.shape)
|
881 |
+
|
882 |
+
pos_embed = torch.cat([cls_pos_embed, img_pos_embed], dim=1)
|
883 |
+
# print('final img_pos_embed.shape:', pos_embed.shape)
|
884 |
+
else:
|
885 |
+
pos_embed = self.pos_embed
|
886 |
+
|
887 |
+
if pos_embed[0].shape != x[0].shape:
|
888 |
+
# print(f'pos embed shape {pos_embed.shape} does not match x[0].shape {x[0].shape}')
|
889 |
+
pos_embed = self.expand_pos_embed(pos_embed, T, L) # can accelerate here
|
890 |
+
assert pos_embed[0].shape == x[0].shape, f'pos embed shape: {pos_embed.shape} not match x[0].shape {x[0].shape}'
|
891 |
+
# print("pos_embed.shape:", pos_embed.shape)
|
892 |
+
x = x + pos_embed
|
893 |
+
|
894 |
+
# mask tokens, ~mask means visible
|
895 |
+
if mask is not None:
|
896 |
+
x = x[~mask].reshape(B, -1, C)
|
897 |
+
else:
|
898 |
+
x = x.reshape(B, -1, C)
|
899 |
+
|
900 |
+
residual = None
|
901 |
+
|
902 |
+
for idx, blk in enumerate(self.blocks):
|
903 |
+
if isinstance(x, tuple) and len(x) == 2:
|
904 |
+
x, residual = x
|
905 |
+
x = blk(x, residual=residual)
|
906 |
+
|
907 |
+
if isinstance(x, tuple) and len(x) == 2:
|
908 |
+
x, residual = x
|
909 |
+
if residual is not None:
|
910 |
+
x = x + residual
|
911 |
+
|
912 |
+
x_vis = x
|
913 |
+
if self.x_vis_only:
|
914 |
+
return x_vis
|
915 |
+
else:
|
916 |
+
x_pool_vis = self.clip_projector(x_vis)
|
917 |
+
return x_vis, x_pool_vis, None, None
|
918 |
+
|
919 |
+
|
920 |
+
def pretrain_internvideo2_giant_patch14_224_clean(config):
|
921 |
+
model = PretrainVisionTransformer_clean(
|
922 |
+
in_chans=3, img_size=224, patch_size=14,
|
923 |
+
embed_dim=1408, depth=40, num_heads=16, mlp_ratio=48/11,
|
924 |
+
attn_pool_num_heads=16, qkv_bias=False,
|
925 |
+
drop_path_rate=0.25,
|
926 |
+
init_values=0.00001,
|
927 |
+
qk_normalization=True,
|
928 |
+
use_flash_attn=config.vision_encoder.get('use_flash_attn', False),
|
929 |
+
use_fused_rmsnorm=config.vision_encoder.get('use_fused_rmsnorm', False),
|
930 |
+
use_fused_mlp=config.vision_encoder.get('use_fused_mlp', False),
|
931 |
+
fused_mlp_heuristic=1,
|
932 |
+
layerscale_no_force_fp32=True,
|
933 |
+
num_frames=config.vision_encoder.num_frames,
|
934 |
+
tubelet_size=config.vision_encoder.tubelet_size,
|
935 |
+
sep_pos_embed=False,
|
936 |
+
sep_image_video_pos_embed=config.vision_encoder.sep_image_video_pos_embed,
|
937 |
+
use_checkpoint=config.vision_encoder.use_checkpoint,
|
938 |
+
checkpoint_num=config.vision_encoder.checkpoint_num,
|
939 |
+
x_vis_return_idx=config.vision_encoder.x_vis_return_idx,
|
940 |
+
x_vis_only=config.vision_encoder.x_vis_only,
|
941 |
+
)
|
942 |
+
|
943 |
+
if config.vision_encoder.pretrained is not None:
|
944 |
+
logger.info(f"Loading pretrained weights from {config.vision_encoder.pretrained}")
|
945 |
+
state_dict = torch.load(config.vision_encoder.pretrained, map_location='cpu')
|
946 |
+
interpolate_pos_embed_internvideo2(state_dict, model, orig_t_size=4) # NOTE 8f for stage1
|
947 |
+
message = model.load_state_dict(state_dict, strict=False)
|
948 |
+
logger.info(message)
|
949 |
+
else:
|
950 |
+
logger.info("No pretrained weights!!!")
|
951 |
+
return model
|
952 |
+
|
953 |
+
|
954 |
+
|
955 |
+
def pretrain_internvideo2_6b_patch14_224_clean(config):
|
956 |
+
model = PretrainVisionTransformer_clean(
|
957 |
+
in_chans=3, img_size=224, patch_size=14,
|
958 |
+
embed_dim=3200, depth=48, num_heads=25, mlp_ratio=4,
|
959 |
+
clip_embed_dim=config.vision_encoder.clip_embed_dim,
|
960 |
+
attn_pool_num_heads=16, qkv_bias=False,
|
961 |
+
drop_path_rate=0.3,
|
962 |
+
init_values=0.00001,
|
963 |
+
qk_normalization=True,
|
964 |
+
use_flash_attn=config.vision_encoder.get('use_flash_attn', True),
|
965 |
+
use_fused_rmsnorm=config.vision_encoder.get('use_fused_rmsnorm', True),
|
966 |
+
use_fused_mlp=config.vision_encoder.get('use_fused_mlp', True),
|
967 |
+
fused_mlp_heuristic=1,
|
968 |
+
layerscale_no_force_fp32=True,
|
969 |
+
num_frames=config.vision_encoder.num_frames,
|
970 |
+
tubelet_size=config.vision_encoder.tubelet_size,
|
971 |
+
sep_pos_embed=False,
|
972 |
+
sep_image_video_pos_embed=config.vision_encoder.sep_image_video_pos_embed,
|
973 |
+
use_checkpoint=config.vision_encoder.use_checkpoint,
|
974 |
+
checkpoint_num=config.vision_encoder.checkpoint_num,
|
975 |
+
x_vis_return_idx=config.vision_encoder.x_vis_return_idx,
|
976 |
+
x_vis_only=config.vision_encoder.x_vis_only
|
977 |
+
)
|
978 |
+
|
979 |
+
if config.vision_encoder.pretrained is not None:
|
980 |
+
logger.info(f"Loading pretrained weights from {config.vision_encoder.pretrained}")
|
981 |
+
state_dict = torch.load(config.vision_encoder.pretrained, map_location='cpu')
|
982 |
+
interpolate_pos_embed_internvideo2(state_dict, model, orig_t_size=8) # NOTE 8f for stage1
|
983 |
+
msg = model.load_state_dict(state_dict, strict=False)
|
984 |
+
logger.info(msg)
|
985 |
+
else:
|
986 |
+
logger.info("No pretrained weights!!!")
|
987 |
+
return model
|
modeling_qformer.py
ADDED
@@ -0,0 +1,1263 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""
|
2 |
+
* Copyright (c) 2023, salesforce.com, inc.
|
3 |
+
* All rights reserved.
|
4 |
+
* SPDX-License-Identifier: BSD-3-Clause
|
5 |
+
* For full license text, see LICENSE.txt file in the repo root or https://opensource.org/licenses/BSD-3-Clause
|
6 |
+
* By Junnan Li
|
7 |
+
* Based on huggingface code base
|
8 |
+
* https://github.com/huggingface/transformers/blob/v4.15.0/src/transformers/models/bert
|
9 |
+
"""
|
10 |
+
import logging
|
11 |
+
import math
|
12 |
+
import os
|
13 |
+
import warnings
|
14 |
+
from dataclasses import dataclass
|
15 |
+
from typing import Optional, Tuple, Dict, Any
|
16 |
+
|
17 |
+
import torch
|
18 |
+
from torch import Tensor, device, dtype, nn
|
19 |
+
import torch.utils.checkpoint
|
20 |
+
from torch import nn
|
21 |
+
from torch.nn import CrossEntropyLoss
|
22 |
+
import torch.nn.functional as F
|
23 |
+
|
24 |
+
from timm.models.layers import drop_path
|
25 |
+
from transformers.activations import ACT2FN
|
26 |
+
from transformers.file_utils import (
|
27 |
+
ModelOutput,
|
28 |
+
)
|
29 |
+
from transformers.modeling_outputs import (
|
30 |
+
BaseModelOutputWithPastAndCrossAttentions,
|
31 |
+
BaseModelOutputWithPoolingAndCrossAttentions,
|
32 |
+
CausalLMOutputWithCrossAttentions,
|
33 |
+
MaskedLMOutput,
|
34 |
+
MultipleChoiceModelOutput,
|
35 |
+
NextSentencePredictorOutput,
|
36 |
+
QuestionAnsweringModelOutput,
|
37 |
+
SequenceClassifierOutput,
|
38 |
+
TokenClassifierOutput,
|
39 |
+
)
|
40 |
+
from transformers.modeling_utils import (
|
41 |
+
PreTrainedModel,
|
42 |
+
apply_chunking_to_forward,
|
43 |
+
find_pruneable_heads_and_indices,
|
44 |
+
prune_linear_layer,
|
45 |
+
)
|
46 |
+
from transformers.models.bert.configuration_bert import BertConfig
|
47 |
+
|
48 |
+
import logging
|
49 |
+
logger = logging.getLogger(__name__)
|
50 |
+
|
51 |
+
|
52 |
+
class BertEmbeddings(nn.Module):
|
53 |
+
"""Construct the embeddings from word and position embeddings."""
|
54 |
+
|
55 |
+
def __init__(self, config):
|
56 |
+
super().__init__()
|
57 |
+
self.word_embeddings = nn.Embedding(
|
58 |
+
config.vocab_size, config.hidden_size, padding_idx=config.pad_token_id
|
59 |
+
)
|
60 |
+
self.position_embeddings = nn.Embedding(
|
61 |
+
config.max_position_embeddings, config.hidden_size
|
62 |
+
)
|
63 |
+
|
64 |
+
# self.LayerNorm is not snake-cased to stick with TensorFlow model variable name and be able to load
|
65 |
+
# any TensorFlow checkpoint file
|
66 |
+
self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
|
67 |
+
self.dropout = nn.Dropout(config.hidden_dropout_prob)
|
68 |
+
|
69 |
+
# position_ids (1, len position emb) is contiguous in memory and exported when serialized
|
70 |
+
self.register_buffer(
|
71 |
+
"position_ids", torch.arange(config.max_position_embeddings).expand((1, -1))
|
72 |
+
)
|
73 |
+
self.position_embedding_type = getattr(
|
74 |
+
config, "position_embedding_type", "absolute"
|
75 |
+
)
|
76 |
+
|
77 |
+
self.config = config
|
78 |
+
|
79 |
+
def forward(
|
80 |
+
self,
|
81 |
+
input_ids=None,
|
82 |
+
position_ids=None,
|
83 |
+
query_embeds=None,
|
84 |
+
past_key_values_length=0,
|
85 |
+
):
|
86 |
+
if input_ids is not None:
|
87 |
+
seq_length = input_ids.size()[1]
|
88 |
+
else:
|
89 |
+
seq_length = 0
|
90 |
+
|
91 |
+
if position_ids is None:
|
92 |
+
position_ids = self.position_ids[
|
93 |
+
:, past_key_values_length : seq_length + past_key_values_length
|
94 |
+
].clone()
|
95 |
+
|
96 |
+
if input_ids is not None:
|
97 |
+
embeddings = self.word_embeddings(input_ids)
|
98 |
+
if self.position_embedding_type == "absolute":
|
99 |
+
position_embeddings = self.position_embeddings(position_ids)
|
100 |
+
embeddings = embeddings + position_embeddings
|
101 |
+
|
102 |
+
if query_embeds is not None:
|
103 |
+
embeddings = torch.cat((query_embeds, embeddings), dim=1)
|
104 |
+
else:
|
105 |
+
embeddings = query_embeds
|
106 |
+
|
107 |
+
embeddings = self.LayerNorm(embeddings)
|
108 |
+
embeddings = self.dropout(embeddings)
|
109 |
+
return embeddings
|
110 |
+
|
111 |
+
|
112 |
+
class BertSelfAttention(nn.Module):
|
113 |
+
def __init__(self, config, is_cross_attention):
|
114 |
+
super().__init__()
|
115 |
+
self.config = config
|
116 |
+
if config.hidden_size % config.num_attention_heads != 0 and not hasattr(
|
117 |
+
config, "embedding_size"
|
118 |
+
):
|
119 |
+
raise ValueError(
|
120 |
+
"The hidden size (%d) is not a multiple of the number of attention "
|
121 |
+
"heads (%d)" % (config.hidden_size, config.num_attention_heads)
|
122 |
+
)
|
123 |
+
|
124 |
+
self.num_attention_heads = config.num_attention_heads
|
125 |
+
self.attention_head_size = int(config.hidden_size / config.num_attention_heads)
|
126 |
+
self.all_head_size = self.num_attention_heads * self.attention_head_size
|
127 |
+
|
128 |
+
self.query = nn.Linear(config.hidden_size, self.all_head_size)
|
129 |
+
if is_cross_attention:
|
130 |
+
self.key = nn.Linear(config.encoder_width, self.all_head_size)
|
131 |
+
self.value = nn.Linear(config.encoder_width, self.all_head_size)
|
132 |
+
else:
|
133 |
+
self.key = nn.Linear(config.hidden_size, self.all_head_size)
|
134 |
+
self.value = nn.Linear(config.hidden_size, self.all_head_size)
|
135 |
+
|
136 |
+
self.dropout = nn.Dropout(config.attention_probs_dropout_prob)
|
137 |
+
self.position_embedding_type = getattr(
|
138 |
+
config, "position_embedding_type", "absolute"
|
139 |
+
)
|
140 |
+
if (
|
141 |
+
self.position_embedding_type == "relative_key"
|
142 |
+
or self.position_embedding_type == "relative_key_query"
|
143 |
+
):
|
144 |
+
self.max_position_embeddings = config.max_position_embeddings
|
145 |
+
self.distance_embedding = nn.Embedding(
|
146 |
+
2 * config.max_position_embeddings - 1, self.attention_head_size
|
147 |
+
)
|
148 |
+
self.save_attention = False
|
149 |
+
|
150 |
+
def save_attn_gradients(self, attn_gradients):
|
151 |
+
self.attn_gradients = attn_gradients
|
152 |
+
|
153 |
+
def get_attn_gradients(self):
|
154 |
+
return self.attn_gradients
|
155 |
+
|
156 |
+
def save_attention_map(self, attention_map):
|
157 |
+
self.attention_map = attention_map
|
158 |
+
|
159 |
+
def get_attention_map(self):
|
160 |
+
return self.attention_map
|
161 |
+
|
162 |
+
def transpose_for_scores(self, x):
|
163 |
+
new_x_shape = x.size()[:-1] + (
|
164 |
+
self.num_attention_heads,
|
165 |
+
self.attention_head_size,
|
166 |
+
)
|
167 |
+
x = x.view(*new_x_shape)
|
168 |
+
return x.permute(0, 2, 1, 3)
|
169 |
+
|
170 |
+
def forward(
|
171 |
+
self,
|
172 |
+
hidden_states,
|
173 |
+
attention_mask=None,
|
174 |
+
head_mask=None,
|
175 |
+
encoder_hidden_states=None,
|
176 |
+
encoder_attention_mask=None,
|
177 |
+
past_key_value=None,
|
178 |
+
output_attentions=False,
|
179 |
+
):
|
180 |
+
|
181 |
+
# If this is instantiated as a cross-attention module, the keys
|
182 |
+
# and values come from an encoder; the attention mask needs to be
|
183 |
+
# such that the encoder's padding tokens are not attended to.
|
184 |
+
is_cross_attention = encoder_hidden_states is not None
|
185 |
+
|
186 |
+
if is_cross_attention:
|
187 |
+
key_layer = self.transpose_for_scores(self.key(encoder_hidden_states))
|
188 |
+
value_layer = self.transpose_for_scores(self.value(encoder_hidden_states))
|
189 |
+
attention_mask = encoder_attention_mask
|
190 |
+
elif past_key_value is not None:
|
191 |
+
key_layer = self.transpose_for_scores(self.key(hidden_states))
|
192 |
+
value_layer = self.transpose_for_scores(self.value(hidden_states))
|
193 |
+
key_layer = torch.cat([past_key_value[0], key_layer], dim=2)
|
194 |
+
value_layer = torch.cat([past_key_value[1], value_layer], dim=2)
|
195 |
+
else:
|
196 |
+
key_layer = self.transpose_for_scores(self.key(hidden_states))
|
197 |
+
value_layer = self.transpose_for_scores(self.value(hidden_states))
|
198 |
+
|
199 |
+
mixed_query_layer = self.query(hidden_states)
|
200 |
+
|
201 |
+
query_layer = self.transpose_for_scores(mixed_query_layer)
|
202 |
+
|
203 |
+
past_key_value = (key_layer, value_layer)
|
204 |
+
|
205 |
+
# Take the dot product between "query" and "key" to get the raw attention scores.
|
206 |
+
attention_scores = torch.matmul(query_layer, key_layer.transpose(-1, -2))
|
207 |
+
|
208 |
+
if (
|
209 |
+
self.position_embedding_type == "relative_key"
|
210 |
+
or self.position_embedding_type == "relative_key_query"
|
211 |
+
):
|
212 |
+
seq_length = hidden_states.size()[1]
|
213 |
+
position_ids_l = torch.arange(
|
214 |
+
seq_length, dtype=torch.long, device=hidden_states.device
|
215 |
+
).view(-1, 1)
|
216 |
+
position_ids_r = torch.arange(
|
217 |
+
seq_length, dtype=torch.long, device=hidden_states.device
|
218 |
+
).view(1, -1)
|
219 |
+
distance = position_ids_l - position_ids_r
|
220 |
+
positional_embedding = self.distance_embedding(
|
221 |
+
distance + self.max_position_embeddings - 1
|
222 |
+
)
|
223 |
+
positional_embedding = positional_embedding.to(
|
224 |
+
dtype=query_layer.dtype
|
225 |
+
) # fp16 compatibility
|
226 |
+
|
227 |
+
if self.position_embedding_type == "relative_key":
|
228 |
+
relative_position_scores = torch.einsum(
|
229 |
+
"bhld,lrd->bhlr", query_layer, positional_embedding
|
230 |
+
)
|
231 |
+
attention_scores = attention_scores + relative_position_scores
|
232 |
+
elif self.position_embedding_type == "relative_key_query":
|
233 |
+
relative_position_scores_query = torch.einsum(
|
234 |
+
"bhld,lrd->bhlr", query_layer, positional_embedding
|
235 |
+
)
|
236 |
+
relative_position_scores_key = torch.einsum(
|
237 |
+
"bhrd,lrd->bhlr", key_layer, positional_embedding
|
238 |
+
)
|
239 |
+
attention_scores = (
|
240 |
+
attention_scores
|
241 |
+
+ relative_position_scores_query
|
242 |
+
+ relative_position_scores_key
|
243 |
+
)
|
244 |
+
|
245 |
+
attention_scores = attention_scores / math.sqrt(self.attention_head_size)
|
246 |
+
if attention_mask is not None:
|
247 |
+
# Apply the attention mask is (precomputed for all layers in BertModel forward() function)
|
248 |
+
attention_scores = attention_scores + attention_mask
|
249 |
+
|
250 |
+
# Normalize the attention scores to probabilities.
|
251 |
+
attention_probs = nn.Softmax(dim=-1)(attention_scores)
|
252 |
+
|
253 |
+
if is_cross_attention and self.save_attention:
|
254 |
+
self.save_attention_map(attention_probs)
|
255 |
+
attention_probs.register_hook(self.save_attn_gradients)
|
256 |
+
|
257 |
+
# This is actually dropping out entire tokens to attend to, which might
|
258 |
+
# seem a bit unusual, but is taken from the original Transformer paper.
|
259 |
+
attention_probs_dropped = self.dropout(attention_probs)
|
260 |
+
|
261 |
+
# Mask heads if we want to
|
262 |
+
if head_mask is not None:
|
263 |
+
attention_probs_dropped = attention_probs_dropped * head_mask
|
264 |
+
|
265 |
+
context_layer = torch.matmul(attention_probs_dropped, value_layer)
|
266 |
+
|
267 |
+
context_layer = context_layer.permute(0, 2, 1, 3).contiguous()
|
268 |
+
new_context_layer_shape = context_layer.size()[:-2] + (self.all_head_size,)
|
269 |
+
context_layer = context_layer.view(*new_context_layer_shape)
|
270 |
+
|
271 |
+
outputs = (
|
272 |
+
(context_layer, attention_probs) if output_attentions else (context_layer,)
|
273 |
+
)
|
274 |
+
|
275 |
+
outputs = outputs + (past_key_value,)
|
276 |
+
return outputs
|
277 |
+
|
278 |
+
|
279 |
+
class DropPath(nn.Module):
|
280 |
+
"""Drop paths (Stochastic Depth) per sample (when applied in main path of residual blocks).
|
281 |
+
"""
|
282 |
+
def __init__(self, drop_prob=None):
|
283 |
+
super(DropPath, self).__init__()
|
284 |
+
self.drop_prob = drop_prob
|
285 |
+
|
286 |
+
def forward(self, x):
|
287 |
+
return drop_path(x, self.drop_prob, self.training)
|
288 |
+
|
289 |
+
def extra_repr(self) -> str:
|
290 |
+
return 'p={}'.format(self.drop_prob)
|
291 |
+
|
292 |
+
|
293 |
+
class BertSelfOutput(nn.Module):
|
294 |
+
def __init__(self, config, drop_path=0.):
|
295 |
+
super().__init__()
|
296 |
+
self.drop_path = DropPath(drop_path) if drop_path > 0. else nn.Identity()
|
297 |
+
self.dense = nn.Linear(config.hidden_size, config.hidden_size)
|
298 |
+
self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
|
299 |
+
self.dropout = nn.Dropout(config.hidden_dropout_prob)
|
300 |
+
|
301 |
+
def forward(self, hidden_states, input_tensor):
|
302 |
+
hidden_states = self.dense(hidden_states)
|
303 |
+
hidden_states = self.dropout(hidden_states)
|
304 |
+
hidden_states = self.drop_path(hidden_states)
|
305 |
+
hidden_states = self.LayerNorm(hidden_states + input_tensor)
|
306 |
+
return hidden_states
|
307 |
+
|
308 |
+
|
309 |
+
class BertAttention(nn.Module):
|
310 |
+
def __init__(self, config, is_cross_attention=False, drop_path=0.,):
|
311 |
+
super().__init__()
|
312 |
+
self.self = BertSelfAttention(config, is_cross_attention)
|
313 |
+
self.output = BertSelfOutput(config, drop_path=drop_path)
|
314 |
+
self.pruned_heads = set()
|
315 |
+
|
316 |
+
def prune_heads(self, heads):
|
317 |
+
if len(heads) == 0:
|
318 |
+
return
|
319 |
+
heads, index = find_pruneable_heads_and_indices(
|
320 |
+
heads,
|
321 |
+
self.self.num_attention_heads,
|
322 |
+
self.self.attention_head_size,
|
323 |
+
self.pruned_heads,
|
324 |
+
)
|
325 |
+
|
326 |
+
# Prune linear layers
|
327 |
+
self.self.query = prune_linear_layer(self.self.query, index)
|
328 |
+
self.self.key = prune_linear_layer(self.self.key, index)
|
329 |
+
self.self.value = prune_linear_layer(self.self.value, index)
|
330 |
+
self.output.dense = prune_linear_layer(self.output.dense, index, dim=1)
|
331 |
+
|
332 |
+
# Update hyper params and store pruned heads
|
333 |
+
self.self.num_attention_heads = self.self.num_attention_heads - len(heads)
|
334 |
+
self.self.all_head_size = (
|
335 |
+
self.self.attention_head_size * self.self.num_attention_heads
|
336 |
+
)
|
337 |
+
self.pruned_heads = self.pruned_heads.union(heads)
|
338 |
+
|
339 |
+
def forward(
|
340 |
+
self,
|
341 |
+
hidden_states,
|
342 |
+
attention_mask=None,
|
343 |
+
head_mask=None,
|
344 |
+
encoder_hidden_states=None,
|
345 |
+
encoder_attention_mask=None,
|
346 |
+
past_key_value=None,
|
347 |
+
output_attentions=False,
|
348 |
+
):
|
349 |
+
self_outputs = self.self(
|
350 |
+
hidden_states,
|
351 |
+
attention_mask,
|
352 |
+
head_mask,
|
353 |
+
encoder_hidden_states,
|
354 |
+
encoder_attention_mask,
|
355 |
+
past_key_value,
|
356 |
+
output_attentions,
|
357 |
+
)
|
358 |
+
attention_output = self.output(self_outputs[0], hidden_states)
|
359 |
+
|
360 |
+
outputs = (attention_output,) + self_outputs[
|
361 |
+
1:
|
362 |
+
] # add attentions if we output them
|
363 |
+
return outputs
|
364 |
+
|
365 |
+
|
366 |
+
class BertIntermediate(nn.Module):
|
367 |
+
def __init__(self, config):
|
368 |
+
super().__init__()
|
369 |
+
self.dense = nn.Linear(config.hidden_size, config.intermediate_size)
|
370 |
+
if isinstance(config.hidden_act, str):
|
371 |
+
self.intermediate_act_fn = ACT2FN[config.hidden_act]
|
372 |
+
else:
|
373 |
+
self.intermediate_act_fn = config.hidden_act
|
374 |
+
|
375 |
+
def forward(self, hidden_states):
|
376 |
+
hidden_states = self.dense(hidden_states)
|
377 |
+
hidden_states = self.intermediate_act_fn(hidden_states)
|
378 |
+
return hidden_states
|
379 |
+
|
380 |
+
|
381 |
+
class BertOutput(nn.Module):
|
382 |
+
def __init__(self, config, drop_path=0.):
|
383 |
+
super().__init__()
|
384 |
+
self.drop_path = DropPath(drop_path) if drop_path > 0. else nn.Identity()
|
385 |
+
self.dense = nn.Linear(config.intermediate_size, config.hidden_size)
|
386 |
+
self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
|
387 |
+
self.dropout = nn.Dropout(config.hidden_dropout_prob)
|
388 |
+
|
389 |
+
def forward(self, hidden_states, input_tensor):
|
390 |
+
hidden_states = self.dense(hidden_states)
|
391 |
+
hidden_states = self.dropout(hidden_states)
|
392 |
+
hidden_states = self.drop_path(hidden_states)
|
393 |
+
hidden_states = self.LayerNorm(hidden_states + input_tensor)
|
394 |
+
return hidden_states
|
395 |
+
|
396 |
+
|
397 |
+
class BertLayer(nn.Module):
|
398 |
+
def __init__(self, config, layer_num):
|
399 |
+
super().__init__()
|
400 |
+
self.config = config
|
401 |
+
self.chunk_size_feed_forward = config.chunk_size_feed_forward
|
402 |
+
self.seq_len_dim = 1
|
403 |
+
drop_path = config.drop_path_list[layer_num]
|
404 |
+
self.attention = BertAttention(config, drop_path=drop_path)
|
405 |
+
self.layer_num = layer_num
|
406 |
+
if (
|
407 |
+
self.config.add_cross_attention
|
408 |
+
and layer_num % self.config.cross_attention_freq == 0
|
409 |
+
):
|
410 |
+
self.crossattention = BertAttention(
|
411 |
+
config, is_cross_attention=self.config.add_cross_attention,
|
412 |
+
drop_path=drop_path
|
413 |
+
)
|
414 |
+
self.has_cross_attention = True
|
415 |
+
else:
|
416 |
+
self.has_cross_attention = False
|
417 |
+
self.intermediate = BertIntermediate(config)
|
418 |
+
self.output = BertOutput(config, drop_path=drop_path)
|
419 |
+
|
420 |
+
self.intermediate_query = BertIntermediate(config)
|
421 |
+
self.output_query = BertOutput(config, drop_path=drop_path)
|
422 |
+
|
423 |
+
def forward(
|
424 |
+
self,
|
425 |
+
hidden_states,
|
426 |
+
attention_mask=None,
|
427 |
+
head_mask=None,
|
428 |
+
encoder_hidden_states=None,
|
429 |
+
encoder_attention_mask=None,
|
430 |
+
past_key_value=None,
|
431 |
+
output_attentions=False,
|
432 |
+
query_length=0,
|
433 |
+
):
|
434 |
+
# decoder uni-directional self-attention cached key/values tuple is at positions 1,2
|
435 |
+
self_attn_past_key_value = (
|
436 |
+
past_key_value[:2] if past_key_value is not None else None
|
437 |
+
)
|
438 |
+
self_attention_outputs = self.attention(
|
439 |
+
hidden_states,
|
440 |
+
attention_mask,
|
441 |
+
head_mask,
|
442 |
+
output_attentions=output_attentions,
|
443 |
+
past_key_value=self_attn_past_key_value,
|
444 |
+
)
|
445 |
+
attention_output = self_attention_outputs[0]
|
446 |
+
outputs = self_attention_outputs[1:-1]
|
447 |
+
|
448 |
+
present_key_value = self_attention_outputs[-1]
|
449 |
+
|
450 |
+
if query_length > 0:
|
451 |
+
query_attention_output = attention_output[:, :query_length, :]
|
452 |
+
|
453 |
+
if self.has_cross_attention:
|
454 |
+
assert (
|
455 |
+
encoder_hidden_states is not None
|
456 |
+
), "encoder_hidden_states must be given for cross-attention layers"
|
457 |
+
cross_attention_outputs = self.crossattention(
|
458 |
+
query_attention_output,
|
459 |
+
attention_mask,
|
460 |
+
head_mask,
|
461 |
+
encoder_hidden_states,
|
462 |
+
encoder_attention_mask,
|
463 |
+
output_attentions=output_attentions,
|
464 |
+
)
|
465 |
+
query_attention_output = cross_attention_outputs[0]
|
466 |
+
outputs = (
|
467 |
+
outputs + cross_attention_outputs[1:-1]
|
468 |
+
) # add cross attentions if we output attention weights
|
469 |
+
|
470 |
+
layer_output = apply_chunking_to_forward(
|
471 |
+
self.feed_forward_chunk_query,
|
472 |
+
self.chunk_size_feed_forward,
|
473 |
+
self.seq_len_dim,
|
474 |
+
query_attention_output,
|
475 |
+
)
|
476 |
+
if attention_output.shape[1] > query_length:
|
477 |
+
layer_output_text = apply_chunking_to_forward(
|
478 |
+
self.feed_forward_chunk,
|
479 |
+
self.chunk_size_feed_forward,
|
480 |
+
self.seq_len_dim,
|
481 |
+
attention_output[:, query_length:, :],
|
482 |
+
)
|
483 |
+
layer_output = torch.cat([layer_output, layer_output_text], dim=1)
|
484 |
+
else:
|
485 |
+
layer_output = apply_chunking_to_forward(
|
486 |
+
self.feed_forward_chunk,
|
487 |
+
self.chunk_size_feed_forward,
|
488 |
+
self.seq_len_dim,
|
489 |
+
attention_output,
|
490 |
+
)
|
491 |
+
outputs = (layer_output,) + outputs
|
492 |
+
|
493 |
+
outputs = outputs + (present_key_value,)
|
494 |
+
|
495 |
+
return outputs
|
496 |
+
|
497 |
+
def feed_forward_chunk(self, attention_output):
|
498 |
+
intermediate_output = self.intermediate(attention_output)
|
499 |
+
layer_output = self.output(intermediate_output, attention_output)
|
500 |
+
return layer_output
|
501 |
+
|
502 |
+
def feed_forward_chunk_query(self, attention_output):
|
503 |
+
intermediate_output = self.intermediate_query(attention_output)
|
504 |
+
layer_output = self.output_query(intermediate_output, attention_output)
|
505 |
+
return layer_output
|
506 |
+
|
507 |
+
|
508 |
+
class BertEncoder(nn.Module):
|
509 |
+
def __init__(self, config):
|
510 |
+
super().__init__()
|
511 |
+
self.config = config
|
512 |
+
self.layer = nn.ModuleList(
|
513 |
+
[BertLayer(config, i) for i in range(config.num_hidden_layers)]
|
514 |
+
)
|
515 |
+
|
516 |
+
def forward(
|
517 |
+
self,
|
518 |
+
hidden_states,
|
519 |
+
attention_mask=None,
|
520 |
+
head_mask=None,
|
521 |
+
encoder_hidden_states=None,
|
522 |
+
encoder_attention_mask=None,
|
523 |
+
past_key_values=None,
|
524 |
+
use_cache=None,
|
525 |
+
output_attentions=False,
|
526 |
+
output_hidden_states=False,
|
527 |
+
return_dict=True,
|
528 |
+
query_length=0,
|
529 |
+
):
|
530 |
+
all_hidden_states = () if output_hidden_states else None
|
531 |
+
all_self_attentions = () if output_attentions else None
|
532 |
+
all_cross_attentions = (
|
533 |
+
() if output_attentions and self.config.add_cross_attention else None
|
534 |
+
)
|
535 |
+
|
536 |
+
next_decoder_cache = () if use_cache else None
|
537 |
+
|
538 |
+
for i in range(self.config.num_hidden_layers):
|
539 |
+
layer_module = self.layer[i]
|
540 |
+
if output_hidden_states:
|
541 |
+
all_hidden_states = all_hidden_states + (hidden_states,)
|
542 |
+
|
543 |
+
layer_head_mask = head_mask[i] if head_mask is not None else None
|
544 |
+
past_key_value = past_key_values[i] if past_key_values is not None else None
|
545 |
+
|
546 |
+
if getattr(self.config, "gradient_checkpointing", False) and self.training:
|
547 |
+
|
548 |
+
if use_cache:
|
549 |
+
logger.warn(
|
550 |
+
"`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`..."
|
551 |
+
)
|
552 |
+
use_cache = False
|
553 |
+
|
554 |
+
def create_custom_forward(module):
|
555 |
+
def custom_forward(*inputs):
|
556 |
+
return module(
|
557 |
+
*inputs, past_key_value, output_attentions, query_length
|
558 |
+
)
|
559 |
+
|
560 |
+
return custom_forward
|
561 |
+
|
562 |
+
layer_outputs = torch.utils.checkpoint.checkpoint(
|
563 |
+
create_custom_forward(layer_module),
|
564 |
+
hidden_states,
|
565 |
+
attention_mask,
|
566 |
+
layer_head_mask,
|
567 |
+
encoder_hidden_states,
|
568 |
+
encoder_attention_mask,
|
569 |
+
)
|
570 |
+
else:
|
571 |
+
layer_outputs = layer_module(
|
572 |
+
hidden_states,
|
573 |
+
attention_mask,
|
574 |
+
layer_head_mask,
|
575 |
+
encoder_hidden_states,
|
576 |
+
encoder_attention_mask,
|
577 |
+
past_key_value,
|
578 |
+
output_attentions,
|
579 |
+
query_length,
|
580 |
+
)
|
581 |
+
|
582 |
+
hidden_states = layer_outputs[0]
|
583 |
+
if use_cache:
|
584 |
+
next_decoder_cache += (layer_outputs[-1],)
|
585 |
+
if output_attentions:
|
586 |
+
all_self_attentions = all_self_attentions + (layer_outputs[1],)
|
587 |
+
all_cross_attentions = all_cross_attentions + (layer_outputs[2],)
|
588 |
+
|
589 |
+
if output_hidden_states:
|
590 |
+
all_hidden_states = all_hidden_states + (hidden_states,)
|
591 |
+
|
592 |
+
if not return_dict:
|
593 |
+
return tuple(
|
594 |
+
v
|
595 |
+
for v in [
|
596 |
+
hidden_states,
|
597 |
+
next_decoder_cache,
|
598 |
+
all_hidden_states,
|
599 |
+
all_self_attentions,
|
600 |
+
all_cross_attentions,
|
601 |
+
]
|
602 |
+
if v is not None
|
603 |
+
)
|
604 |
+
return BaseModelOutputWithPastAndCrossAttentions(
|
605 |
+
last_hidden_state=hidden_states,
|
606 |
+
past_key_values=next_decoder_cache,
|
607 |
+
hidden_states=all_hidden_states,
|
608 |
+
attentions=all_self_attentions,
|
609 |
+
cross_attentions=all_cross_attentions,
|
610 |
+
)
|
611 |
+
|
612 |
+
|
613 |
+
class BertPooler(nn.Module):
|
614 |
+
def __init__(self, config):
|
615 |
+
super().__init__()
|
616 |
+
self.dense = nn.Linear(config.hidden_size, config.hidden_size)
|
617 |
+
self.activation = nn.Tanh()
|
618 |
+
|
619 |
+
def forward(self, hidden_states):
|
620 |
+
# We "pool" the model by simply taking the hidden state corresponding
|
621 |
+
# to the first token.
|
622 |
+
first_token_tensor = hidden_states[:, 0]
|
623 |
+
pooled_output = self.dense(first_token_tensor)
|
624 |
+
pooled_output = self.activation(pooled_output)
|
625 |
+
return pooled_output
|
626 |
+
|
627 |
+
|
628 |
+
class BertPredictionHeadTransform(nn.Module):
|
629 |
+
def __init__(self, config):
|
630 |
+
super().__init__()
|
631 |
+
self.dense = nn.Linear(config.hidden_size, config.hidden_size)
|
632 |
+
if isinstance(config.hidden_act, str):
|
633 |
+
self.transform_act_fn = ACT2FN[config.hidden_act]
|
634 |
+
else:
|
635 |
+
self.transform_act_fn = config.hidden_act
|
636 |
+
self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
|
637 |
+
|
638 |
+
def forward(self, hidden_states):
|
639 |
+
hidden_states = self.dense(hidden_states)
|
640 |
+
hidden_states = self.transform_act_fn(hidden_states)
|
641 |
+
hidden_states = self.LayerNorm(hidden_states)
|
642 |
+
return hidden_states
|
643 |
+
|
644 |
+
|
645 |
+
class BertLMPredictionHead(nn.Module):
|
646 |
+
def __init__(self, config):
|
647 |
+
super().__init__()
|
648 |
+
self.transform = BertPredictionHeadTransform(config)
|
649 |
+
|
650 |
+
# The output weights are the same as the input embeddings, but there is
|
651 |
+
# an output-only bias for each token.
|
652 |
+
self.decoder = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
|
653 |
+
|
654 |
+
self.bias = nn.Parameter(torch.zeros(config.vocab_size))
|
655 |
+
|
656 |
+
# Need a link between the two variables so that the bias is correctly resized with `resize_token_embeddings`
|
657 |
+
self.decoder.bias = self.bias
|
658 |
+
|
659 |
+
def forward(self, hidden_states):
|
660 |
+
hidden_states = self.transform(hidden_states)
|
661 |
+
hidden_states = self.decoder(hidden_states)
|
662 |
+
return hidden_states
|
663 |
+
|
664 |
+
|
665 |
+
class BertOnlyMLMHead(nn.Module):
|
666 |
+
def __init__(self, config):
|
667 |
+
super().__init__()
|
668 |
+
self.predictions = BertLMPredictionHead(config)
|
669 |
+
|
670 |
+
def forward(self, sequence_output):
|
671 |
+
prediction_scores = self.predictions(sequence_output)
|
672 |
+
return prediction_scores
|
673 |
+
|
674 |
+
|
675 |
+
class BertPreTrainedModel(PreTrainedModel):
|
676 |
+
"""
|
677 |
+
An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained
|
678 |
+
models.
|
679 |
+
"""
|
680 |
+
|
681 |
+
config_class = BertConfig
|
682 |
+
base_model_prefix = "bert"
|
683 |
+
_keys_to_ignore_on_load_missing = [r"position_ids"]
|
684 |
+
|
685 |
+
def _init_weights(self, module):
|
686 |
+
"""Initialize the weights"""
|
687 |
+
if isinstance(module, (nn.Linear, nn.Embedding)):
|
688 |
+
# Slightly different from the TF version which uses truncated_normal for initialization
|
689 |
+
# cf https://github.com/pytorch/pytorch/pull/5617
|
690 |
+
module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
|
691 |
+
elif isinstance(module, nn.LayerNorm):
|
692 |
+
module.bias.data.zero_()
|
693 |
+
module.weight.data.fill_(1.0)
|
694 |
+
if isinstance(module, nn.Linear) and module.bias is not None:
|
695 |
+
module.bias.data.zero_()
|
696 |
+
|
697 |
+
|
698 |
+
class BertModel(BertPreTrainedModel):
|
699 |
+
"""
|
700 |
+
The model can behave as an encoder (with only self-attention) as well as a decoder, in which case a layer of
|
701 |
+
cross-attention is added between the self-attention layers, following the architecture described in `Attention is
|
702 |
+
all you need <https://arxiv.org/abs/1706.03762>`__ by Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit,
|
703 |
+
Llion Jones, Aidan N. Gomez, Lukasz Kaiser and Illia Polosukhin.
|
704 |
+
argument and :obj:`add_cross_attention` set to :obj:`True`; an :obj:`encoder_hidden_states` is then expected as an
|
705 |
+
input to the forward pass.
|
706 |
+
"""
|
707 |
+
|
708 |
+
def __init__(self, config, add_pooling_layer=False):
|
709 |
+
super().__init__(config)
|
710 |
+
self.config = config
|
711 |
+
|
712 |
+
self.embeddings = BertEmbeddings(config)
|
713 |
+
|
714 |
+
self.encoder = BertEncoder(config)
|
715 |
+
|
716 |
+
self.pooler = BertPooler(config) if add_pooling_layer else None
|
717 |
+
|
718 |
+
self.init_weights()
|
719 |
+
|
720 |
+
def get_input_embeddings(self):
|
721 |
+
return self.embeddings.word_embeddings
|
722 |
+
|
723 |
+
def set_input_embeddings(self, value):
|
724 |
+
self.embeddings.word_embeddings = value
|
725 |
+
|
726 |
+
def _prune_heads(self, heads_to_prune):
|
727 |
+
"""
|
728 |
+
Prunes heads of the model. heads_to_prune: dict of {layer_num: list of heads to prune in this layer} See base
|
729 |
+
class PreTrainedModel
|
730 |
+
"""
|
731 |
+
for layer, heads in heads_to_prune.items():
|
732 |
+
self.encoder.layer[layer].attention.prune_heads(heads)
|
733 |
+
|
734 |
+
def get_extended_attention_mask(
|
735 |
+
self,
|
736 |
+
attention_mask: Tensor,
|
737 |
+
input_shape: Tuple[int],
|
738 |
+
device: device,
|
739 |
+
is_decoder: bool,
|
740 |
+
has_query: bool = False,
|
741 |
+
) -> Tensor:
|
742 |
+
"""
|
743 |
+
Makes broadcastable attention and causal masks so that future and masked tokens are ignored.
|
744 |
+
|
745 |
+
Arguments:
|
746 |
+
attention_mask (:obj:`torch.Tensor`):
|
747 |
+
Mask with ones indicating tokens to attend to, zeros for tokens to ignore.
|
748 |
+
input_shape (:obj:`Tuple[int]`):
|
749 |
+
The shape of the input to the model.
|
750 |
+
device: (:obj:`torch.device`):
|
751 |
+
The device of the input to the model.
|
752 |
+
|
753 |
+
Returns:
|
754 |
+
:obj:`torch.Tensor` The extended attention mask, with a the same dtype as :obj:`attention_mask.dtype`.
|
755 |
+
"""
|
756 |
+
# We can provide a self-attention mask of dimensions [batch_size, from_seq_length, to_seq_length]
|
757 |
+
# ourselves in which case we just need to make it broadcastable to all heads.
|
758 |
+
if attention_mask.dim() == 3:
|
759 |
+
extended_attention_mask = attention_mask[:, None, :, :]
|
760 |
+
elif attention_mask.dim() == 2:
|
761 |
+
# Provided a padding mask of dimensions [batch_size, seq_length]
|
762 |
+
# - if the model is a decoder, apply a causal mask in addition to the padding mask
|
763 |
+
# - if the model is an encoder, make the mask broadcastable to [batch_size, num_heads, seq_length, seq_length]
|
764 |
+
if is_decoder:
|
765 |
+
batch_size, seq_length = input_shape
|
766 |
+
|
767 |
+
seq_ids = torch.arange(seq_length, device=device)
|
768 |
+
causal_mask = (
|
769 |
+
seq_ids[None, None, :].repeat(batch_size, seq_length, 1)
|
770 |
+
<= seq_ids[None, :, None]
|
771 |
+
)
|
772 |
+
|
773 |
+
# add a prefix ones mask to the causal mask
|
774 |
+
# causal and attention masks must have same type with pytorch version < 1.3
|
775 |
+
causal_mask = causal_mask.to(attention_mask.dtype)
|
776 |
+
|
777 |
+
if causal_mask.shape[1] < attention_mask.shape[1]:
|
778 |
+
prefix_seq_len = attention_mask.shape[1] - causal_mask.shape[1]
|
779 |
+
if has_query: # UniLM style attention mask
|
780 |
+
causal_mask = torch.cat(
|
781 |
+
[
|
782 |
+
torch.zeros(
|
783 |
+
(batch_size, prefix_seq_len, seq_length),
|
784 |
+
device=device,
|
785 |
+
dtype=causal_mask.dtype,
|
786 |
+
),
|
787 |
+
causal_mask,
|
788 |
+
],
|
789 |
+
axis=1,
|
790 |
+
)
|
791 |
+
causal_mask = torch.cat(
|
792 |
+
[
|
793 |
+
torch.ones(
|
794 |
+
(batch_size, causal_mask.shape[1], prefix_seq_len),
|
795 |
+
device=device,
|
796 |
+
dtype=causal_mask.dtype,
|
797 |
+
),
|
798 |
+
causal_mask,
|
799 |
+
],
|
800 |
+
axis=-1,
|
801 |
+
)
|
802 |
+
extended_attention_mask = (
|
803 |
+
causal_mask[:, None, :, :] * attention_mask[:, None, None, :]
|
804 |
+
)
|
805 |
+
else:
|
806 |
+
extended_attention_mask = attention_mask[:, None, None, :]
|
807 |
+
else:
|
808 |
+
raise ValueError(
|
809 |
+
"Wrong shape for input_ids (shape {}) or attention_mask (shape {})".format(
|
810 |
+
input_shape, attention_mask.shape
|
811 |
+
)
|
812 |
+
)
|
813 |
+
|
814 |
+
# Since attention_mask is 1.0 for positions we want to attend and 0.0 for
|
815 |
+
# masked positions, this operation will create a tensor which is 0.0 for
|
816 |
+
# positions we want to attend and -10000.0 for masked positions.
|
817 |
+
# Since we are adding it to the raw scores before the softmax, this is
|
818 |
+
# effectively the same as removing these entirely.
|
819 |
+
extended_attention_mask = extended_attention_mask.to(
|
820 |
+
dtype=self.dtype
|
821 |
+
) # fp16 compatibility
|
822 |
+
extended_attention_mask = (1.0 - extended_attention_mask) * -10000.0
|
823 |
+
return extended_attention_mask
|
824 |
+
|
825 |
+
def forward(
|
826 |
+
self,
|
827 |
+
input_ids=None,
|
828 |
+
attention_mask=None,
|
829 |
+
position_ids=None,
|
830 |
+
head_mask=None,
|
831 |
+
query_embeds=None,
|
832 |
+
encoder_hidden_states=None,
|
833 |
+
encoder_attention_mask=None,
|
834 |
+
past_key_values=None,
|
835 |
+
use_cache=None,
|
836 |
+
output_attentions=None,
|
837 |
+
output_hidden_states=None,
|
838 |
+
return_dict=None,
|
839 |
+
is_decoder=False,
|
840 |
+
):
|
841 |
+
r"""
|
842 |
+
encoder_hidden_states (:obj:`torch.FloatTensor` of shape :obj:`(batch_size, sequence_length, hidden_size)`, `optional`):
|
843 |
+
Sequence of hidden-states at the output of the last layer of the encoder. Used in the cross-attention if
|
844 |
+
the model is configured as a decoder.
|
845 |
+
encoder_attention_mask (:obj:`torch.FloatTensor` of shape :obj:`(batch_size, sequence_length)`, `optional`):
|
846 |
+
Mask to avoid performing attention on the padding token indices of the encoder input. This mask is used in
|
847 |
+
the cross-attention if the model is configured as a decoder. Mask values selected in ``[0, 1]``:
|
848 |
+
- 1 for tokens that are **not masked**,
|
849 |
+
- 0 for tokens that are **masked**.
|
850 |
+
past_key_values (:obj:`tuple(tuple(torch.FloatTensor))` of length :obj:`config.n_layers` with each tuple having 4 tensors of shape :obj:`(batch_size, num_heads, sequence_length - 1, embed_size_per_head)`):
|
851 |
+
Contains precomputed key and value hidden states of the attention blocks. Can be used to speed up decoding.
|
852 |
+
If :obj:`past_key_values` are used, the user can optionally input only the last :obj:`decoder_input_ids`
|
853 |
+
(those that don't have their past key value states given to this model) of shape :obj:`(batch_size, 1)`
|
854 |
+
instead of all :obj:`decoder_input_ids` of shape :obj:`(batch_size, sequence_length)`.
|
855 |
+
use_cache (:obj:`bool`, `optional`):
|
856 |
+
If set to :obj:`True`, :obj:`past_key_values` key value states are returned and can be used to speed up
|
857 |
+
decoding (see :obj:`past_key_values`).
|
858 |
+
"""
|
859 |
+
output_attentions = (
|
860 |
+
output_attentions
|
861 |
+
if output_attentions is not None
|
862 |
+
else self.config.output_attentions
|
863 |
+
)
|
864 |
+
output_hidden_states = (
|
865 |
+
output_hidden_states
|
866 |
+
if output_hidden_states is not None
|
867 |
+
else self.config.output_hidden_states
|
868 |
+
)
|
869 |
+
return_dict = (
|
870 |
+
return_dict if return_dict is not None else self.config.use_return_dict
|
871 |
+
)
|
872 |
+
|
873 |
+
# use_cache = use_cache if use_cache is not None else self.config.use_cache
|
874 |
+
|
875 |
+
if input_ids is None:
|
876 |
+
assert (
|
877 |
+
query_embeds is not None
|
878 |
+
), "You have to specify query_embeds when input_ids is None"
|
879 |
+
|
880 |
+
# past_key_values_length
|
881 |
+
past_key_values_length = (
|
882 |
+
past_key_values[0][0].shape[2] - self.config.query_length
|
883 |
+
if past_key_values is not None
|
884 |
+
else 0
|
885 |
+
)
|
886 |
+
|
887 |
+
query_length = query_embeds.shape[1] if query_embeds is not None else 0
|
888 |
+
|
889 |
+
embedding_output = self.embeddings(
|
890 |
+
input_ids=input_ids,
|
891 |
+
position_ids=position_ids,
|
892 |
+
query_embeds=query_embeds,
|
893 |
+
past_key_values_length=past_key_values_length,
|
894 |
+
)
|
895 |
+
|
896 |
+
input_shape = embedding_output.size()[:-1]
|
897 |
+
batch_size, seq_length = input_shape
|
898 |
+
device = embedding_output.device
|
899 |
+
|
900 |
+
if attention_mask is None:
|
901 |
+
attention_mask = torch.ones(
|
902 |
+
((batch_size, seq_length + past_key_values_length)), device=device
|
903 |
+
)
|
904 |
+
|
905 |
+
# We can provide a self-attention mask of dimensions [batch_size, from_seq_length, to_seq_length]
|
906 |
+
# ourselves in which case we just need to make it broadcastable to all heads.
|
907 |
+
if is_decoder:
|
908 |
+
extended_attention_mask = self.get_extended_attention_mask(
|
909 |
+
attention_mask,
|
910 |
+
input_ids.shape,
|
911 |
+
device,
|
912 |
+
is_decoder,
|
913 |
+
has_query=(query_embeds is not None),
|
914 |
+
)
|
915 |
+
else:
|
916 |
+
extended_attention_mask = self.get_extended_attention_mask(
|
917 |
+
attention_mask, input_shape, device, is_decoder
|
918 |
+
)
|
919 |
+
|
920 |
+
# If a 2D or 3D attention mask is provided for the cross-attention
|
921 |
+
# we need to make broadcastable to [batch_size, num_heads, seq_length, seq_length]
|
922 |
+
if encoder_hidden_states is not None:
|
923 |
+
if type(encoder_hidden_states) == list:
|
924 |
+
encoder_batch_size, encoder_sequence_length, _ = encoder_hidden_states[
|
925 |
+
0
|
926 |
+
].size()
|
927 |
+
else:
|
928 |
+
(
|
929 |
+
encoder_batch_size,
|
930 |
+
encoder_sequence_length,
|
931 |
+
_,
|
932 |
+
) = encoder_hidden_states.size()
|
933 |
+
encoder_hidden_shape = (encoder_batch_size, encoder_sequence_length)
|
934 |
+
|
935 |
+
if type(encoder_attention_mask) == list:
|
936 |
+
encoder_extended_attention_mask = [
|
937 |
+
self.invert_attention_mask(mask) for mask in encoder_attention_mask
|
938 |
+
]
|
939 |
+
elif encoder_attention_mask is None:
|
940 |
+
encoder_attention_mask = torch.ones(encoder_hidden_shape, device=device)
|
941 |
+
encoder_extended_attention_mask = self.invert_attention_mask(
|
942 |
+
encoder_attention_mask
|
943 |
+
)
|
944 |
+
else:
|
945 |
+
encoder_extended_attention_mask = self.invert_attention_mask(
|
946 |
+
encoder_attention_mask
|
947 |
+
)
|
948 |
+
else:
|
949 |
+
encoder_extended_attention_mask = None
|
950 |
+
|
951 |
+
# Prepare head mask if needed
|
952 |
+
# 1.0 in head_mask indicate we keep the head
|
953 |
+
# attention_probs has shape bsz x n_heads x N x N
|
954 |
+
# input head_mask has shape [num_heads] or [num_hidden_layers x num_heads]
|
955 |
+
# and head_mask is converted to shape [num_hidden_layers x batch x num_heads x seq_length x seq_length]
|
956 |
+
head_mask = self.get_head_mask(head_mask, self.config.num_hidden_layers)
|
957 |
+
|
958 |
+
encoder_outputs = self.encoder(
|
959 |
+
embedding_output,
|
960 |
+
attention_mask=extended_attention_mask,
|
961 |
+
head_mask=head_mask,
|
962 |
+
encoder_hidden_states=encoder_hidden_states,
|
963 |
+
encoder_attention_mask=encoder_extended_attention_mask,
|
964 |
+
past_key_values=past_key_values,
|
965 |
+
use_cache=use_cache,
|
966 |
+
output_attentions=output_attentions,
|
967 |
+
output_hidden_states=output_hidden_states,
|
968 |
+
return_dict=return_dict,
|
969 |
+
query_length=query_length,
|
970 |
+
)
|
971 |
+
sequence_output = encoder_outputs[0]
|
972 |
+
pooled_output = (
|
973 |
+
self.pooler(sequence_output) if self.pooler is not None else None
|
974 |
+
)
|
975 |
+
|
976 |
+
if not return_dict:
|
977 |
+
return (sequence_output, pooled_output) + encoder_outputs[1:]
|
978 |
+
|
979 |
+
return BaseModelOutputWithPoolingAndCrossAttentions(
|
980 |
+
last_hidden_state=sequence_output,
|
981 |
+
pooler_output=pooled_output,
|
982 |
+
past_key_values=encoder_outputs.past_key_values,
|
983 |
+
hidden_states=encoder_outputs.hidden_states,
|
984 |
+
attentions=encoder_outputs.attentions,
|
985 |
+
cross_attentions=encoder_outputs.cross_attentions,
|
986 |
+
)
|
987 |
+
|
988 |
+
|
989 |
+
class BertLMHeadModel(BertPreTrainedModel):
|
990 |
+
|
991 |
+
_keys_to_ignore_on_load_unexpected = [r"pooler"]
|
992 |
+
_keys_to_ignore_on_load_missing = [r"position_ids", r"predictions.decoder.bias"]
|
993 |
+
|
994 |
+
def __init__(self, config):
|
995 |
+
super().__init__(config)
|
996 |
+
|
997 |
+
self.bert = BertModel(config, add_pooling_layer=False)
|
998 |
+
self.cls = BertOnlyMLMHead(config)
|
999 |
+
|
1000 |
+
self.init_weights()
|
1001 |
+
|
1002 |
+
def get_output_embeddings(self):
|
1003 |
+
return self.cls.predictions.decoder
|
1004 |
+
|
1005 |
+
def set_output_embeddings(self, new_embeddings):
|
1006 |
+
self.cls.predictions.decoder = new_embeddings
|
1007 |
+
|
1008 |
+
def forward(
|
1009 |
+
self,
|
1010 |
+
input_ids=None,
|
1011 |
+
attention_mask=None,
|
1012 |
+
position_ids=None,
|
1013 |
+
head_mask=None,
|
1014 |
+
query_embeds=None,
|
1015 |
+
encoder_hidden_states=None,
|
1016 |
+
encoder_attention_mask=None,
|
1017 |
+
labels=None,
|
1018 |
+
past_key_values=None,
|
1019 |
+
use_cache=True,
|
1020 |
+
output_attentions=None,
|
1021 |
+
output_hidden_states=None,
|
1022 |
+
return_dict=None,
|
1023 |
+
return_logits=False,
|
1024 |
+
is_decoder=True,
|
1025 |
+
reduction="mean",
|
1026 |
+
):
|
1027 |
+
r"""
|
1028 |
+
encoder_hidden_states (:obj:`torch.FloatTensor` of shape :obj:`(batch_size, sequence_length, hidden_size)`, `optional`):
|
1029 |
+
Sequence of hidden-states at the output of the last layer of the encoder. Used in the cross-attention if
|
1030 |
+
the model is configured as a decoder.
|
1031 |
+
encoder_attention_mask (:obj:`torch.FloatTensor` of shape :obj:`(batch_size, sequence_length)`, `optional`):
|
1032 |
+
Mask to avoid performing attention on the padding token indices of the encoder input. This mask is used in
|
1033 |
+
the cross-attention if the model is configured as a decoder. Mask values selected in ``[0, 1]``:
|
1034 |
+
- 1 for tokens that are **not masked**,
|
1035 |
+
- 0 for tokens that are **masked**.
|
1036 |
+
labels (:obj:`torch.LongTensor` of shape :obj:`(batch_size, sequence_length)`, `optional`):
|
1037 |
+
Labels for computing the left-to-right language modeling loss (next word prediction). Indices should be in
|
1038 |
+
``[-100, 0, ..., config.vocab_size]`` (see ``input_ids`` docstring) Tokens with indices set to ``-100`` are
|
1039 |
+
ignored (masked), the loss is only computed for the tokens with labels n ``[0, ..., config.vocab_size]``
|
1040 |
+
past_key_values (:obj:`tuple(tuple(torch.FloatTensor))` of length :obj:`config.n_layers` with each tuple having 4 tensors of shape :obj:`(batch_size, num_heads, sequence_length - 1, embed_size_per_head)`):
|
1041 |
+
Contains precomputed key and value hidden states of the attention blocks. Can be used to speed up decoding.
|
1042 |
+
If :obj:`past_key_values` are used, the user can optionally input only the last :obj:`decoder_input_ids`
|
1043 |
+
(those that don't have their past key value states given to this model) of shape :obj:`(batch_size, 1)`
|
1044 |
+
instead of all :obj:`decoder_input_ids` of shape :obj:`(batch_size, sequence_length)`.
|
1045 |
+
use_cache (:obj:`bool`, `optional`):
|
1046 |
+
If set to :obj:`True`, :obj:`past_key_values` key value states are returned and can be used to speed up
|
1047 |
+
decoding (see :obj:`past_key_values`).
|
1048 |
+
Returns:
|
1049 |
+
Example::
|
1050 |
+
>>> from transformers import BertTokenizer, BertLMHeadModel, BertConfig
|
1051 |
+
>>> import torch
|
1052 |
+
>>> tokenizer = BertTokenizer.from_pretrained('bert-base-cased')
|
1053 |
+
>>> config = BertConfig.from_pretrained("bert-base-cased")
|
1054 |
+
>>> model = BertLMHeadModel.from_pretrained('bert-base-cased', config=config)
|
1055 |
+
>>> inputs = tokenizer("Hello, my dog is cute", return_tensors="pt")
|
1056 |
+
>>> outputs = model(**inputs)
|
1057 |
+
>>> prediction_logits = outputs.logits
|
1058 |
+
"""
|
1059 |
+
return_dict = (
|
1060 |
+
return_dict if return_dict is not None else self.config.use_return_dict
|
1061 |
+
)
|
1062 |
+
if labels is not None:
|
1063 |
+
use_cache = False
|
1064 |
+
if past_key_values is not None:
|
1065 |
+
query_embeds = None
|
1066 |
+
|
1067 |
+
outputs = self.bert(
|
1068 |
+
input_ids,
|
1069 |
+
attention_mask=attention_mask,
|
1070 |
+
position_ids=position_ids,
|
1071 |
+
head_mask=head_mask,
|
1072 |
+
query_embeds=query_embeds,
|
1073 |
+
encoder_hidden_states=encoder_hidden_states,
|
1074 |
+
encoder_attention_mask=encoder_attention_mask,
|
1075 |
+
past_key_values=past_key_values,
|
1076 |
+
use_cache=use_cache,
|
1077 |
+
output_attentions=output_attentions,
|
1078 |
+
output_hidden_states=output_hidden_states,
|
1079 |
+
return_dict=return_dict,
|
1080 |
+
is_decoder=is_decoder,
|
1081 |
+
)
|
1082 |
+
|
1083 |
+
sequence_output = outputs[0]
|
1084 |
+
if query_embeds is not None:
|
1085 |
+
sequence_output = outputs[0][:, query_embeds.shape[1] :, :]
|
1086 |
+
|
1087 |
+
prediction_scores = self.cls(sequence_output)
|
1088 |
+
|
1089 |
+
if return_logits:
|
1090 |
+
return prediction_scores[:, :-1, :].contiguous()
|
1091 |
+
|
1092 |
+
lm_loss = None
|
1093 |
+
if labels is not None:
|
1094 |
+
# we are doing next-token prediction; shift prediction scores and input ids by one
|
1095 |
+
shifted_prediction_scores = prediction_scores[:, :-1, :].contiguous()
|
1096 |
+
labels = labels[:, 1:].contiguous()
|
1097 |
+
loss_fct = CrossEntropyLoss(reduction=reduction, label_smoothing=0.1)
|
1098 |
+
lm_loss = loss_fct(
|
1099 |
+
shifted_prediction_scores.view(-1, self.config.vocab_size),
|
1100 |
+
labels.view(-1),
|
1101 |
+
)
|
1102 |
+
if reduction == "none":
|
1103 |
+
lm_loss = lm_loss.view(prediction_scores.size(0), -1).sum(1)
|
1104 |
+
|
1105 |
+
if not return_dict:
|
1106 |
+
output = (prediction_scores,) + outputs[2:]
|
1107 |
+
return ((lm_loss,) + output) if lm_loss is not None else output
|
1108 |
+
|
1109 |
+
return CausalLMOutputWithCrossAttentions(
|
1110 |
+
loss=lm_loss,
|
1111 |
+
logits=prediction_scores,
|
1112 |
+
past_key_values=outputs.past_key_values,
|
1113 |
+
hidden_states=outputs.hidden_states,
|
1114 |
+
attentions=outputs.attentions,
|
1115 |
+
cross_attentions=outputs.cross_attentions,
|
1116 |
+
)
|
1117 |
+
|
1118 |
+
def prepare_inputs_for_generation(
|
1119 |
+
self, input_ids, query_embeds, past=None, attention_mask=None, **model_kwargs
|
1120 |
+
):
|
1121 |
+
# if model is used as a decoder in encoder-decoder model, the decoder attention mask is created on the fly
|
1122 |
+
if attention_mask is None:
|
1123 |
+
attention_mask = input_ids.new_ones(input_ids.shape)
|
1124 |
+
query_mask = input_ids.new_ones(query_embeds.shape[:-1])
|
1125 |
+
attention_mask = torch.cat([query_mask, attention_mask], dim=-1)
|
1126 |
+
|
1127 |
+
# cut decoder_input_ids if past is used
|
1128 |
+
if past is not None:
|
1129 |
+
input_ids = input_ids[:, -1:]
|
1130 |
+
|
1131 |
+
return {
|
1132 |
+
"input_ids": input_ids,
|
1133 |
+
"query_embeds": query_embeds,
|
1134 |
+
"attention_mask": attention_mask,
|
1135 |
+
"past_key_values": past,
|
1136 |
+
"encoder_hidden_states": model_kwargs.get("encoder_hidden_states", None),
|
1137 |
+
"encoder_attention_mask": model_kwargs.get("encoder_attention_mask", None),
|
1138 |
+
"is_decoder": True,
|
1139 |
+
}
|
1140 |
+
|
1141 |
+
def _reorder_cache(self, past, beam_idx):
|
1142 |
+
reordered_past = ()
|
1143 |
+
for layer_past in past:
|
1144 |
+
reordered_past += (
|
1145 |
+
tuple(
|
1146 |
+
past_state.index_select(0, beam_idx) for past_state in layer_past
|
1147 |
+
),
|
1148 |
+
)
|
1149 |
+
return reordered_past
|
1150 |
+
|
1151 |
+
|
1152 |
+
class BertForMaskedLM(BertPreTrainedModel):
|
1153 |
+
|
1154 |
+
_keys_to_ignore_on_load_unexpected = [r"pooler"]
|
1155 |
+
_keys_to_ignore_on_load_missing = [r"position_ids", r"predictions.decoder.bias"]
|
1156 |
+
|
1157 |
+
def __init__(self, config):
|
1158 |
+
super().__init__(config)
|
1159 |
+
|
1160 |
+
self.bert = BertModel(config, add_pooling_layer=False)
|
1161 |
+
self.cls = BertOnlyMLMHead(config)
|
1162 |
+
|
1163 |
+
self.init_weights()
|
1164 |
+
|
1165 |
+
def get_output_embeddings(self):
|
1166 |
+
return self.cls.predictions.decoder
|
1167 |
+
|
1168 |
+
def set_output_embeddings(self, new_embeddings):
|
1169 |
+
self.cls.predictions.decoder = new_embeddings
|
1170 |
+
|
1171 |
+
def forward(
|
1172 |
+
self,
|
1173 |
+
input_ids=None,
|
1174 |
+
attention_mask=None,
|
1175 |
+
position_ids=None,
|
1176 |
+
head_mask=None,
|
1177 |
+
query_embeds=None,
|
1178 |
+
encoder_hidden_states=None,
|
1179 |
+
encoder_attention_mask=None,
|
1180 |
+
labels=None,
|
1181 |
+
output_attentions=None,
|
1182 |
+
output_hidden_states=None,
|
1183 |
+
return_dict=None,
|
1184 |
+
return_logits=False,
|
1185 |
+
is_decoder=False,
|
1186 |
+
):
|
1187 |
+
r"""
|
1188 |
+
labels (:obj:`torch.LongTensor` of shape :obj:`(batch_size, sequence_length)`, `optional`):
|
1189 |
+
Labels for computing the masked language modeling loss. Indices should be in ``[-100, 0, ...,
|
1190 |
+
config.vocab_size]`` (see ``input_ids`` docstring) Tokens with indices set to ``-100`` are ignored
|
1191 |
+
(masked), the loss is only computed for the tokens with labels in ``[0, ..., config.vocab_size]``
|
1192 |
+
"""
|
1193 |
+
|
1194 |
+
return_dict = (
|
1195 |
+
return_dict if return_dict is not None else self.config.use_return_dict
|
1196 |
+
)
|
1197 |
+
|
1198 |
+
outputs = self.bert(
|
1199 |
+
input_ids,
|
1200 |
+
attention_mask=attention_mask,
|
1201 |
+
position_ids=position_ids,
|
1202 |
+
head_mask=head_mask,
|
1203 |
+
query_embeds=query_embeds,
|
1204 |
+
encoder_hidden_states=encoder_hidden_states,
|
1205 |
+
encoder_attention_mask=encoder_attention_mask,
|
1206 |
+
output_attentions=output_attentions,
|
1207 |
+
output_hidden_states=output_hidden_states,
|
1208 |
+
return_dict=return_dict,
|
1209 |
+
is_decoder=is_decoder,
|
1210 |
+
)
|
1211 |
+
|
1212 |
+
if query_embeds is not None:
|
1213 |
+
sequence_output = outputs[0][:, query_embeds.shape[1] :, :]
|
1214 |
+
prediction_scores = self.cls(sequence_output)
|
1215 |
+
|
1216 |
+
if return_logits:
|
1217 |
+
return prediction_scores
|
1218 |
+
|
1219 |
+
masked_lm_loss = None
|
1220 |
+
if labels is not None:
|
1221 |
+
loss_fct = CrossEntropyLoss() # -100 index = padding token
|
1222 |
+
masked_lm_loss = loss_fct(
|
1223 |
+
prediction_scores.view(-1, self.config.vocab_size), labels.view(-1)
|
1224 |
+
)
|
1225 |
+
|
1226 |
+
if not return_dict:
|
1227 |
+
output = (prediction_scores,) + outputs[2:]
|
1228 |
+
return (
|
1229 |
+
((masked_lm_loss,) + output) if masked_lm_loss is not None else output
|
1230 |
+
)
|
1231 |
+
|
1232 |
+
return MaskedLMOutput(
|
1233 |
+
loss=masked_lm_loss,
|
1234 |
+
logits=prediction_scores,
|
1235 |
+
hidden_states=outputs.hidden_states,
|
1236 |
+
attentions=outputs.attentions,
|
1237 |
+
)
|
1238 |
+
|
1239 |
+
|
1240 |
+
def build_qformer(num_query_token, vision_width,
|
1241 |
+
qformer_hidden_dropout_prob=0.1,
|
1242 |
+
qformer_attention_probs_dropout_prob=0.1,
|
1243 |
+
qformer_drop_path_rate=0.,
|
1244 |
+
bert_type="bert-base-uncased"
|
1245 |
+
):
|
1246 |
+
encoder_config = BertConfig.from_pretrained(bert_type)
|
1247 |
+
encoder_config.encoder_width = vision_width
|
1248 |
+
# insert cross-attention layer every other block
|
1249 |
+
encoder_config.add_cross_attention = True
|
1250 |
+
encoder_config.cross_attention_freq = 2
|
1251 |
+
encoder_config.query_length = num_query_token
|
1252 |
+
encoder_config.hidden_dropout_prob = qformer_hidden_dropout_prob
|
1253 |
+
encoder_config.attention_probs_dropout_prob = qformer_attention_probs_dropout_prob
|
1254 |
+
encoder_config.drop_path_list = [x.item() for x in torch.linspace(0, qformer_drop_path_rate, encoder_config.num_hidden_layers)]
|
1255 |
+
logger.info(f"Drop_path:{encoder_config.drop_path_list}")
|
1256 |
+
logger.info(encoder_config)
|
1257 |
+
Qformer = BertLMHeadModel(encoder_config)
|
1258 |
+
query_tokens = nn.Parameter(
|
1259 |
+
torch.zeros(1, num_query_token, encoder_config.hidden_size)
|
1260 |
+
)
|
1261 |
+
query_tokens.data.normal_(mean=0.0, std=encoder_config.initializer_range)
|
1262 |
+
return Qformer, query_tokens
|
1263 |
+
|
modeling_videochat2.py
ADDED
@@ -0,0 +1,319 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import io
|
2 |
+
import logging
|
3 |
+
import torch
|
4 |
+
import torch.utils.checkpoint
|
5 |
+
from torch import nn
|
6 |
+
from torch.nn import MSELoss
|
7 |
+
from transformers.modeling_outputs import (
|
8 |
+
CausalLMOutputWithPast,
|
9 |
+
)
|
10 |
+
from typing import List, Optional, Tuple, Union
|
11 |
+
from torch.cuda.amp import autocast as autocast
|
12 |
+
from .modeling_base import BaseMLLM
|
13 |
+
from .modeling_internvideo2_vit import pretrain_internvideo2_giant_patch14_224_clean, interpolate_pos_embed_internvideo2_new
|
14 |
+
from .modeling_qformer import build_qformer
|
15 |
+
|
16 |
+
logger = logging.getLogger(__name__)
|
17 |
+
|
18 |
+
IMG_TOKEN = "[<IMG_PLH>]"
|
19 |
+
VID_TOKEN = "[<VID_PLH>]"
|
20 |
+
|
21 |
+
DEFAULT_PAD_TOKEN = "[PAD]"
|
22 |
+
DEFAULT_BOS_TOKEN = '<s>'
|
23 |
+
DEFAULT_EOS_TOKEN = '</s>'
|
24 |
+
DEFAULT_UNK_TOKEN = "<unk>"
|
25 |
+
|
26 |
+
DEFAULT_IMAGE_TOKEN = "[IMAGETOKEN]"
|
27 |
+
DEFAULT_VIDEO_TOKEN = "[VIDEOTOKEN]"
|
28 |
+
|
29 |
+
DEFAULT_IMG_PLACEHOLDER = "[<IMG_PLH>]"
|
30 |
+
DEFAULT_VID_PLACEHOLDER = "[<VID_PLH>]"
|
31 |
+
|
32 |
+
class InternVideo2_VideoChat2(BaseMLLM):
|
33 |
+
|
34 |
+
def __init__(
|
35 |
+
self,
|
36 |
+
config
|
37 |
+
):
|
38 |
+
super().__init__(config=config)
|
39 |
+
|
40 |
+
def forward(
|
41 |
+
self,
|
42 |
+
input_ids: torch.LongTensor = None,
|
43 |
+
attention_mask: Optional[torch.Tensor] = None,
|
44 |
+
labels: Optional[torch.LongTensor] = None,
|
45 |
+
image: Optional[torch.Tensor] = None,
|
46 |
+
video: Optional[torch.Tensor] = None,
|
47 |
+
instruction = None,
|
48 |
+
video_idx = None,
|
49 |
+
image_idx = None,
|
50 |
+
):
|
51 |
+
if self.use_vision_regression_loss:
|
52 |
+
text_embeds, visual, visual_idx = self.pad_text_embeds(input_ids=input_ids, image=image,video=video, return_visual=True, video_idx=video_idx, image_idx=image_idx, instruction = instruction)
|
53 |
+
else:
|
54 |
+
text_embeds = self.pad_text_embeds(input_ids=input_ids, image=image, video=video, return_visual=False, video_idx=video_idx, image_idx=image_idx, instruction = instruction)
|
55 |
+
|
56 |
+
outputs = self.lm(
|
57 |
+
inputs_embeds=text_embeds,
|
58 |
+
attention_mask=attention_mask,
|
59 |
+
labels=labels,
|
60 |
+
output_hidden_states=True,
|
61 |
+
return_dict=True,
|
62 |
+
)
|
63 |
+
|
64 |
+
return outputs
|
65 |
+
|
66 |
+
def pad_text_embeds(
|
67 |
+
self,
|
68 |
+
input_ids: torch.LongTensor = None,
|
69 |
+
image: Optional[torch.Tensor] = None,
|
70 |
+
video: Optional[torch.Tensor] = None,
|
71 |
+
image_idx = None,
|
72 |
+
video_idx = None,
|
73 |
+
return_visual: bool = False,
|
74 |
+
instruction = None,
|
75 |
+
):
|
76 |
+
# text_embeds
|
77 |
+
text_embeds = self.lm.get_input_embeddings()(input_ids.long()).detach()
|
78 |
+
|
79 |
+
visual = None
|
80 |
+
visual_idx = None
|
81 |
+
|
82 |
+
if image is not None:
|
83 |
+
B, T, C, H, W = image.shape
|
84 |
+
image = image.permute(0, 2, 1, 3, 4)
|
85 |
+
prompt_image_embeds = self.encode_vision(image, instruction=instruction)
|
86 |
+
visual = prompt_image_embeds
|
87 |
+
prompt_image_embeds = self.project_up(prompt_image_embeds)
|
88 |
+
prompt_image_embeds = prompt_image_embeds.view(-1, prompt_image_embeds.shape[-1])
|
89 |
+
visual_idx = image_idx
|
90 |
+
text_embeds[image_idx == 1] = text_embeds[image_idx == 1] * 0 + prompt_image_embeds.to(text_embeds.device)
|
91 |
+
elif video is not None:
|
92 |
+
if len(video.shape) == 5:
|
93 |
+
B, T, C, H, W = video.shape
|
94 |
+
N = 1
|
95 |
+
else:
|
96 |
+
B, N, T, C, H, W = video.shape
|
97 |
+
video = video.reshape(B*N, T, C, H, W).permute(0, 2, 1, 3, 4)
|
98 |
+
prompt_video_embeds = self.encode_vision(video, instruction=instruction)
|
99 |
+
visual = prompt_video_embeds
|
100 |
+
prompt_video_embeds = self.project_up(prompt_video_embeds)
|
101 |
+
prompt_video_embeds = prompt_video_embeds.view(-1, prompt_video_embeds.shape[-1])
|
102 |
+
visual_idx = video_idx
|
103 |
+
text_embeds[video_idx == 1] = text_embeds[video_idx == 1] * 0 + prompt_video_embeds.to(text_embeds.device).to(text_embeds.dtype)
|
104 |
+
else:
|
105 |
+
logger.warn(f"don't get visual input, input_ids: {input_ids}")
|
106 |
+
|
107 |
+
if return_visual:
|
108 |
+
return text_embeds, visual, visual_idx
|
109 |
+
|
110 |
+
return text_embeds
|
111 |
+
|
112 |
+
|
113 |
+
def encode_vision(
|
114 |
+
self,
|
115 |
+
image,
|
116 |
+
instruction
|
117 |
+
):
|
118 |
+
device = image.device
|
119 |
+
B = image.shape[0]
|
120 |
+
T = image.shape[2]
|
121 |
+
use_image = True if T == 1 else False
|
122 |
+
image_embeds = self.vision_encoder(image, use_image=use_image)
|
123 |
+
C = image_embeds.shape[-1]
|
124 |
+
image_embeds = image_embeds.reshape(B, -1, C)
|
125 |
+
image_embeds = self.vision_layernorm(image_embeds).to(device) # [B, T*L, C]
|
126 |
+
|
127 |
+
image_atts = torch.ones(image_embeds.size()[:-1], dtype=torch.long).to(device)
|
128 |
+
if self.extra_num_query_token > 0:
|
129 |
+
query_tokens = torch.cat([self.query_tokens, self.extra_query_tokens], dim=1)
|
130 |
+
query_tokens = query_tokens.expand(image_embeds.shape[0], -1, -1)
|
131 |
+
if instruction is not None:
|
132 |
+
text_Qformer = self.qformer_tokenizer(
|
133 |
+
instruction,
|
134 |
+
padding='longest',
|
135 |
+
truncation=True,
|
136 |
+
max_length=512,
|
137 |
+
return_tensors="pt",
|
138 |
+
).to(image_embeds.device)
|
139 |
+
query_atts = torch.ones(query_tokens.size()[:-1], dtype=torch.long).to(image_embeds.device)
|
140 |
+
Qformer_atts = torch.cat([query_atts, text_Qformer.attention_mask], dim=1)
|
141 |
+
query_output = self.qformer.bert(
|
142 |
+
text_Qformer.input_ids,
|
143 |
+
attention_mask=Qformer_atts,
|
144 |
+
query_embeds=query_tokens,
|
145 |
+
encoder_hidden_states=image_embeds,
|
146 |
+
encoder_attention_mask=image_atts,
|
147 |
+
return_dict=True,
|
148 |
+
)
|
149 |
+
else:
|
150 |
+
query_output = self.qformer.bert(
|
151 |
+
query_embeds=query_tokens,
|
152 |
+
encoder_hidden_states=image_embeds,
|
153 |
+
encoder_attention_mask=image_atts,
|
154 |
+
return_dict=True,
|
155 |
+
)
|
156 |
+
|
157 |
+
return query_output.last_hidden_state[:, :query_tokens.size(1), :]
|
158 |
+
|
159 |
+
|
160 |
+
def generate_caption(
|
161 |
+
self,
|
162 |
+
input_ids,
|
163 |
+
attention_mask,
|
164 |
+
image_idx = None,
|
165 |
+
video_idx = None,
|
166 |
+
image: Optional[torch.Tensor] = None,
|
167 |
+
video: Optional[torch.Tensor] = None,
|
168 |
+
num_beams=1,
|
169 |
+
max_new_tokens=200,
|
170 |
+
do_sample=True,
|
171 |
+
top_p=0.9,
|
172 |
+
top_k=None,
|
173 |
+
temperature=1.0,
|
174 |
+
length_penalty=1,
|
175 |
+
repetition_penalty=1.0,
|
176 |
+
instruction=None
|
177 |
+
):
|
178 |
+
text_embeds = self.pad_text_embeds(input_ids=input_ids, image=image, video=video, image_idx=image_idx, video_idx=video_idx,instruction=instruction)
|
179 |
+
outputs = self.lm.generate(
|
180 |
+
inputs_embeds=text_embeds,
|
181 |
+
attention_mask=attention_mask,
|
182 |
+
num_beams=num_beams,
|
183 |
+
max_new_tokens=max_new_tokens,
|
184 |
+
do_sample=do_sample,
|
185 |
+
min_length=1,
|
186 |
+
top_p=top_p,
|
187 |
+
top_k=top_k,
|
188 |
+
temperature=temperature,
|
189 |
+
length_penalty=length_penalty,
|
190 |
+
repetition_penalty=repetition_penalty,
|
191 |
+
)
|
192 |
+
|
193 |
+
return outputs
|
194 |
+
|
195 |
+
def build_input_ids(
|
196 |
+
self,
|
197 |
+
tokenizer,
|
198 |
+
conversation,
|
199 |
+
max_length,
|
200 |
+
add_special_tokens,
|
201 |
+
truncation,
|
202 |
+
image = None,
|
203 |
+
video = None,
|
204 |
+
padding = "longest",
|
205 |
+
return_tensors = "pt",
|
206 |
+
image_placeholder: str = DEFAULT_IMG_PLACEHOLDER,
|
207 |
+
video_placeholder: str = DEFAULT_VID_PLACEHOLDER,
|
208 |
+
):
|
209 |
+
input_ids = []
|
210 |
+
indexs = []
|
211 |
+
attention_mask = []
|
212 |
+
start, total_len = 0, 0
|
213 |
+
while True:
|
214 |
+
index1 = conversation.find(image_placeholder, start)
|
215 |
+
index2 = conversation.find(video_placeholder, start)
|
216 |
+
if index1 == -1 and index2 == -1:
|
217 |
+
index = -1
|
218 |
+
elif index1 == -1:
|
219 |
+
index = index2
|
220 |
+
elif index2 == -1:
|
221 |
+
index = index1
|
222 |
+
else:
|
223 |
+
index = min(index1, index2)
|
224 |
+
assert index != -1
|
225 |
+
if index == -1:
|
226 |
+
inputs = tokenizer(conversation[start:], max_length=max_length-total_len, truncation=truncation, padding=padding, return_tensors=return_tensors)
|
227 |
+
else:
|
228 |
+
inputs = tokenizer(conversation[start:index], max_length=max_length, truncation=truncation, padding='longest', return_tensors=return_tensors)
|
229 |
+
|
230 |
+
input_ids += inputs.input_ids
|
231 |
+
attention_mask += inputs.attention_mask
|
232 |
+
total_len += inputs.input_ids[0].shape[0]
|
233 |
+
indexs += torch.zeros_like(inputs.input_ids)
|
234 |
+
|
235 |
+
if index != -1:
|
236 |
+
input_ids += [torch.zeros(96).long()]
|
237 |
+
attention_mask += [torch.ones(96).long()]
|
238 |
+
indexs += [torch.ones(96)]
|
239 |
+
|
240 |
+
if index == -1:
|
241 |
+
return {
|
242 |
+
'input_ids': torch.cat(input_ids),
|
243 |
+
'attention_mask': torch.cat(attention_mask),
|
244 |
+
'index': torch.cat(indexs).to(torch.bool),
|
245 |
+
}
|
246 |
+
start = index + len(DEFAULT_IMG_PLACEHOLDER)
|
247 |
+
|
248 |
+
def chat(
|
249 |
+
self,
|
250 |
+
tokenizer,
|
251 |
+
msg,
|
252 |
+
user_prompt,
|
253 |
+
media_type,
|
254 |
+
media_tensor,
|
255 |
+
instruction=None,
|
256 |
+
chat_history =[],
|
257 |
+
return_history =False,
|
258 |
+
generation_config={}
|
259 |
+
):
|
260 |
+
ilen = media_tensor.shape[1]
|
261 |
+
|
262 |
+
conversation = ""
|
263 |
+
if instruction:
|
264 |
+
cur_instruction = "<|im_start|>system\n" + instruction+ "<|im_end|>\n"
|
265 |
+
conversation += cur_instruction
|
266 |
+
conversation += (
|
267 |
+
"<|im_start|>user\n"
|
268 |
+
)
|
269 |
+
|
270 |
+
if media_type == 'image':
|
271 |
+
conversation +=( "<img>" + IMG_TOKEN + "</img>")*ilen
|
272 |
+
else:
|
273 |
+
conversation += ("<vid>" + VID_TOKEN + "</vid>")*ilen
|
274 |
+
|
275 |
+
|
276 |
+
conversation += (
|
277 |
+
msg.rstrip() + "<|im_end|>\n"
|
278 |
+
)
|
279 |
+
|
280 |
+
for q,a in chat_history:
|
281 |
+
conversation += ("<|im_start|>user\n" + q + "<|im_end|>\n")
|
282 |
+
conversation += ("<|im_start|>assistant\n" + a + "<|im_end|>\n" + '</s>')
|
283 |
+
|
284 |
+
conversation += ("<|im_start|>user\n" + user_prompt + "<|im_end|>\n")
|
285 |
+
conversation += ("")
|
286 |
+
|
287 |
+
|
288 |
+
total_len = 0
|
289 |
+
indexs = []
|
290 |
+
tokenized = self.build_input_ids(
|
291 |
+
tokenizer,
|
292 |
+
conversation,
|
293 |
+
max_length=248,
|
294 |
+
add_special_tokens=True,
|
295 |
+
truncation=False,
|
296 |
+
padding=False,
|
297 |
+
return_tensors='pt'
|
298 |
+
)
|
299 |
+
if media_type == 'image':
|
300 |
+
generation_output = self.generate_caption(
|
301 |
+
tokenized['input_ids'].unsqueeze(0).to(self.device),
|
302 |
+
tokenized['attention_mask'].unsqueeze(0).to(self.device),
|
303 |
+
image_idx = tokenized['index'].unsqueeze(0),
|
304 |
+
image = media_tensor,
|
305 |
+
instruction=[instruction]* ilen if instruction else None,
|
306 |
+
**generation_config)
|
307 |
+
else:
|
308 |
+
generation_output = self.generate_caption(
|
309 |
+
tokenized['input_ids'].unsqueeze(0).to(self.device),
|
310 |
+
tokenized['attention_mask'].unsqueeze(0).to(self.device),
|
311 |
+
video_idx = tokenized['index'].unsqueeze(0),
|
312 |
+
video = media_tensor,
|
313 |
+
instruction=[instruction]* ilen if instruction else None,
|
314 |
+
**generation_config)
|
315 |
+
response = tokenizer.batch_decode(generation_output, skip_special_tokens=True)[0]
|
316 |
+
if return_history:
|
317 |
+
chat_history.append((user_prompt,response))
|
318 |
+
return response, chat_history
|
319 |
+
return response
|
special_tokens_map.json
ADDED
@@ -0,0 +1,32 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"additional_special_tokens": [
|
3 |
+
"<|im_start|>",
|
4 |
+
"<|im_end|>",
|
5 |
+
"<|action_start|>",
|
6 |
+
"<|action_end|>",
|
7 |
+
"<|interpreter|>",
|
8 |
+
"<|plugin|>"
|
9 |
+
],
|
10 |
+
"bos_token": {
|
11 |
+
"content": "<s>",
|
12 |
+
"lstrip": false,
|
13 |
+
"normalized": false,
|
14 |
+
"rstrip": false,
|
15 |
+
"single_word": false
|
16 |
+
},
|
17 |
+
"eos_token": {
|
18 |
+
"content": "</s>",
|
19 |
+
"lstrip": false,
|
20 |
+
"normalized": false,
|
21 |
+
"rstrip": false,
|
22 |
+
"single_word": false
|
23 |
+
},
|
24 |
+
"pad_token": "<unk>",
|
25 |
+
"unk_token": {
|
26 |
+
"content": "<unk>",
|
27 |
+
"lstrip": false,
|
28 |
+
"normalized": false,
|
29 |
+
"rstrip": false,
|
30 |
+
"single_word": false
|
31 |
+
}
|
32 |
+
}
|
tokenization_internlm2.py
ADDED
@@ -0,0 +1,236 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Copyright (c) The InternLM team and The HuggingFace Inc. team. All rights reserved.
|
3 |
+
#
|
4 |
+
# This code is based on transformers/src/transformers/models/llama/tokenization_llama.py
|
5 |
+
#
|
6 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
7 |
+
# you may not use this file except in compliance with the License.
|
8 |
+
# You may obtain a copy of the License at
|
9 |
+
#
|
10 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
11 |
+
#
|
12 |
+
# Unless required by applicable law or agreed to in writing, software
|
13 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
14 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
15 |
+
# See the License for the specific language governing permissions and
|
16 |
+
# limitations under the License.
|
17 |
+
|
18 |
+
"""Tokenization classes for InternLM."""
|
19 |
+
import os
|
20 |
+
from shutil import copyfile
|
21 |
+
from typing import Any, Dict, List, Optional, Tuple
|
22 |
+
|
23 |
+
import sentencepiece as spm
|
24 |
+
from transformers.tokenization_utils import PreTrainedTokenizer
|
25 |
+
from transformers.utils import logging
|
26 |
+
|
27 |
+
logger = logging.get_logger(__name__)
|
28 |
+
|
29 |
+
VOCAB_FILES_NAMES = {"vocab_file": "./tokenizer.model"}
|
30 |
+
|
31 |
+
PRETRAINED_VOCAB_FILES_MAP = {}
|
32 |
+
|
33 |
+
|
34 |
+
# Modified from transformers.model.llama.tokenization_llama.LlamaTokenizer
|
35 |
+
class InternLM2Tokenizer(PreTrainedTokenizer):
|
36 |
+
"""
|
37 |
+
Construct a InternLM2 tokenizer. Based on byte-level Byte-Pair-Encoding.
|
38 |
+
|
39 |
+
Args:
|
40 |
+
vocab_file (`str`):
|
41 |
+
Path to the vocabulary file.
|
42 |
+
"""
|
43 |
+
|
44 |
+
vocab_files_names = VOCAB_FILES_NAMES
|
45 |
+
pretrained_vocab_files_map = PRETRAINED_VOCAB_FILES_MAP
|
46 |
+
model_input_names = ["input_ids", "attention_mask"]
|
47 |
+
_auto_class = "AutoTokenizer"
|
48 |
+
|
49 |
+
def __init__(
|
50 |
+
self,
|
51 |
+
vocab_file,
|
52 |
+
unk_token="<unk>",
|
53 |
+
bos_token="<s>",
|
54 |
+
eos_token="</s>",
|
55 |
+
pad_token="</s>",
|
56 |
+
sp_model_kwargs: Optional[Dict[str, Any]] = None,
|
57 |
+
add_bos_token=True,
|
58 |
+
add_eos_token=False,
|
59 |
+
decode_with_prefix_space=False,
|
60 |
+
clean_up_tokenization_spaces=False,
|
61 |
+
**kwargs,
|
62 |
+
):
|
63 |
+
self.sp_model_kwargs = {} if sp_model_kwargs is None else sp_model_kwargs
|
64 |
+
self.vocab_file = vocab_file
|
65 |
+
self.add_bos_token = add_bos_token
|
66 |
+
self.add_eos_token = add_eos_token
|
67 |
+
self.decode_with_prefix_space = decode_with_prefix_space
|
68 |
+
self.sp_model = spm.SentencePieceProcessor(**self.sp_model_kwargs)
|
69 |
+
self.sp_model.Load(vocab_file)
|
70 |
+
self._no_prefix_space_tokens = None
|
71 |
+
super().__init__(
|
72 |
+
bos_token=bos_token,
|
73 |
+
eos_token=eos_token,
|
74 |
+
unk_token=unk_token,
|
75 |
+
pad_token=pad_token,
|
76 |
+
clean_up_tokenization_spaces=clean_up_tokenization_spaces,
|
77 |
+
**kwargs,
|
78 |
+
)
|
79 |
+
|
80 |
+
@property
|
81 |
+
def no_prefix_space_tokens(self):
|
82 |
+
if self._no_prefix_space_tokens is None:
|
83 |
+
vocab = self.convert_ids_to_tokens(list(range(self.vocab_size)))
|
84 |
+
self._no_prefix_space_tokens = {i for i, tok in enumerate(vocab) if not tok.startswith("▁")}
|
85 |
+
return self._no_prefix_space_tokens
|
86 |
+
|
87 |
+
@property
|
88 |
+
def vocab_size(self):
|
89 |
+
"""Returns vocab size"""
|
90 |
+
return self.sp_model.get_piece_size()
|
91 |
+
|
92 |
+
@property
|
93 |
+
def bos_token_id(self) -> Optional[int]:
|
94 |
+
return self.sp_model.bos_id()
|
95 |
+
|
96 |
+
@property
|
97 |
+
def eos_token_id(self) -> Optional[int]:
|
98 |
+
return self.sp_model.eos_id()
|
99 |
+
|
100 |
+
def get_vocab(self):
|
101 |
+
"""Returns vocab as a dict"""
|
102 |
+
vocab = {self.convert_ids_to_tokens(i): i for i in range(self.vocab_size)}
|
103 |
+
vocab.update(self.added_tokens_encoder)
|
104 |
+
return vocab
|
105 |
+
|
106 |
+
def _tokenize(self, text):
|
107 |
+
"""Returns a tokenized string."""
|
108 |
+
return self.sp_model.encode(text, out_type=str)
|
109 |
+
|
110 |
+
def _convert_token_to_id(self, token):
|
111 |
+
"""Converts a token (str) in an id using the vocab."""
|
112 |
+
return self.sp_model.piece_to_id(token)
|
113 |
+
|
114 |
+
def _convert_id_to_token(self, index):
|
115 |
+
"""Converts an index (integer) in a token (str) using the vocab."""
|
116 |
+
token = self.sp_model.IdToPiece(index)
|
117 |
+
return token
|
118 |
+
|
119 |
+
def _maybe_add_prefix_space(self, tokens, decoded):
|
120 |
+
if tokens and tokens[0] not in self.no_prefix_space_tokens:
|
121 |
+
return " " + decoded
|
122 |
+
else:
|
123 |
+
return decoded
|
124 |
+
|
125 |
+
def convert_tokens_to_string(self, tokens):
|
126 |
+
"""Converts a sequence of tokens (string) in a single string."""
|
127 |
+
current_sub_tokens = []
|
128 |
+
out_string = ""
|
129 |
+
prev_is_special = False
|
130 |
+
for token in tokens:
|
131 |
+
# make sure that special tokens are not decoded using sentencepiece model
|
132 |
+
if token in self.all_special_tokens:
|
133 |
+
if not prev_is_special:
|
134 |
+
out_string += " "
|
135 |
+
out_string += self.sp_model.decode(current_sub_tokens) + token
|
136 |
+
prev_is_special = True
|
137 |
+
current_sub_tokens = []
|
138 |
+
else:
|
139 |
+
current_sub_tokens.append(token)
|
140 |
+
prev_is_special = False
|
141 |
+
out_string += self.sp_model.decode(current_sub_tokens)
|
142 |
+
out_string = self.clean_up_tokenization(out_string)
|
143 |
+
out_string = self._maybe_add_prefix_space(tokens=tokens, decoded=out_string)
|
144 |
+
return out_string[1:]
|
145 |
+
|
146 |
+
def save_vocabulary(self, save_directory, filename_prefix: Optional[str] = None) -> Tuple[str]:
|
147 |
+
"""
|
148 |
+
Save the vocabulary and special tokens file to a directory.
|
149 |
+
|
150 |
+
Args:
|
151 |
+
save_directory (`str`):
|
152 |
+
The directory in which to save the vocabulary.
|
153 |
+
|
154 |
+
Returns:
|
155 |
+
`Tuple(str)`: Paths to the files saved.
|
156 |
+
"""
|
157 |
+
if not os.path.isdir(save_directory):
|
158 |
+
logger.error(f"Vocabulary path ({save_directory}) should be a directory")
|
159 |
+
return
|
160 |
+
out_vocab_file = os.path.join(
|
161 |
+
save_directory, (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"]
|
162 |
+
)
|
163 |
+
|
164 |
+
if os.path.abspath(self.vocab_file) != os.path.abspath(out_vocab_file) and os.path.isfile(self.vocab_file):
|
165 |
+
copyfile(self.vocab_file, out_vocab_file)
|
166 |
+
elif not os.path.isfile(self.vocab_file):
|
167 |
+
with open(out_vocab_file, "wb") as fi:
|
168 |
+
content_spiece_model = self.sp_model.serialized_model_proto()
|
169 |
+
fi.write(content_spiece_model)
|
170 |
+
|
171 |
+
return (out_vocab_file,)
|
172 |
+
|
173 |
+
def build_inputs_with_special_tokens(self, token_ids_0, token_ids_1=None):
|
174 |
+
if self.add_bos_token:
|
175 |
+
bos_token_ids = [self.bos_token_id]
|
176 |
+
else:
|
177 |
+
bos_token_ids = []
|
178 |
+
|
179 |
+
output = bos_token_ids + token_ids_0
|
180 |
+
|
181 |
+
if token_ids_1 is not None:
|
182 |
+
output = output + token_ids_1
|
183 |
+
|
184 |
+
if self.add_eos_token:
|
185 |
+
output = output + [self.eos_token_id]
|
186 |
+
|
187 |
+
return output
|
188 |
+
|
189 |
+
def get_special_tokens_mask(
|
190 |
+
self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None, already_has_special_tokens: bool = False
|
191 |
+
) -> List[int]:
|
192 |
+
"""
|
193 |
+
Retrieve sequence ids from a token list that has no special tokens added. This method is called when adding
|
194 |
+
special tokens using the tokenizer `prepare_for_model` method.
|
195 |
+
|
196 |
+
Args:
|
197 |
+
token_ids_0 (`List[int]`):
|
198 |
+
List of IDs.
|
199 |
+
token_ids_1 (`List[int]`, *optional*):
|
200 |
+
Optional second list of IDs for sequence pairs.
|
201 |
+
already_has_special_tokens (`bool`, *optional*, defaults to `False`):
|
202 |
+
Whether or not the token list is already formatted with special tokens for the model.
|
203 |
+
|
204 |
+
Returns:
|
205 |
+
`List[int]`: A list of integers in the range [0, 1]: 1 for a special token, 0 for a sequence token.
|
206 |
+
"""
|
207 |
+
if already_has_special_tokens:
|
208 |
+
return super().get_special_tokens_mask(
|
209 |
+
token_ids_0=token_ids_0, token_ids_1=token_ids_1, already_has_special_tokens=True
|
210 |
+
)
|
211 |
+
|
212 |
+
if token_ids_1 is None:
|
213 |
+
return [1] + ([0] * len(token_ids_0)) + [1]
|
214 |
+
return [1] + ([0] * len(token_ids_0)) + [1, 1] + ([0] * len(token_ids_1)) + [1]
|
215 |
+
|
216 |
+
def create_token_type_ids_from_sequences(
|
217 |
+
self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None
|
218 |
+
) -> List[int]:
|
219 |
+
"""
|
220 |
+
Create a mask from the two sequences passed to be used in a sequence-pair classification task. T5 does not make
|
221 |
+
use of token type ids, therefore a list of zeros is returned.
|
222 |
+
|
223 |
+
Args:
|
224 |
+
token_ids_0 (`List[int]`):
|
225 |
+
List of IDs.
|
226 |
+
token_ids_1 (`List[int]`, *optional*):
|
227 |
+
Optional second list of IDs for sequence pairs.
|
228 |
+
|
229 |
+
Returns:
|
230 |
+
`List[int]`: List of zeros.
|
231 |
+
"""
|
232 |
+
eos = [self.eos_token_id]
|
233 |
+
|
234 |
+
if token_ids_1 is None:
|
235 |
+
return len(token_ids_0 + eos) * [0]
|
236 |
+
return len(token_ids_0 + eos + token_ids_1 + eos) * [0]
|
tokenizer.model
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:f868398fc4e05ee1e8aeba95ddf18ddcc45b8bce55d5093bead5bbf80429b48b
|
3 |
+
size 1477754
|
tokenizer_config.json
ADDED
@@ -0,0 +1,106 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"add_bos_token": true,
|
3 |
+
"add_eos_token": false,
|
4 |
+
"add_prefix_space": true,
|
5 |
+
"added_tokens_decoder": {
|
6 |
+
"0": {
|
7 |
+
"content": "<unk>",
|
8 |
+
"lstrip": false,
|
9 |
+
"normalized": false,
|
10 |
+
"rstrip": false,
|
11 |
+
"single_word": false,
|
12 |
+
"special": true
|
13 |
+
},
|
14 |
+
"1": {
|
15 |
+
"content": "<s>",
|
16 |
+
"lstrip": false,
|
17 |
+
"normalized": false,
|
18 |
+
"rstrip": false,
|
19 |
+
"single_word": false,
|
20 |
+
"special": true
|
21 |
+
},
|
22 |
+
"2": {
|
23 |
+
"content": "</s>",
|
24 |
+
"lstrip": false,
|
25 |
+
"normalized": false,
|
26 |
+
"rstrip": false,
|
27 |
+
"single_word": false,
|
28 |
+
"special": true
|
29 |
+
},
|
30 |
+
"92538": {
|
31 |
+
"content": "<|plugin|>",
|
32 |
+
"lstrip": false,
|
33 |
+
"normalized": false,
|
34 |
+
"rstrip": false,
|
35 |
+
"single_word": false,
|
36 |
+
"special": true
|
37 |
+
},
|
38 |
+
"92539": {
|
39 |
+
"content": "<|interpreter|>",
|
40 |
+
"lstrip": false,
|
41 |
+
"normalized": false,
|
42 |
+
"rstrip": false,
|
43 |
+
"single_word": false,
|
44 |
+
"special": true
|
45 |
+
},
|
46 |
+
"92540": {
|
47 |
+
"content": "<|action_end|>",
|
48 |
+
"lstrip": false,
|
49 |
+
"normalized": false,
|
50 |
+
"rstrip": false,
|
51 |
+
"single_word": false,
|
52 |
+
"special": true
|
53 |
+
},
|
54 |
+
"92541": {
|
55 |
+
"content": "<|action_start|>",
|
56 |
+
"lstrip": false,
|
57 |
+
"normalized": false,
|
58 |
+
"rstrip": false,
|
59 |
+
"single_word": false,
|
60 |
+
"special": true
|
61 |
+
},
|
62 |
+
"92542": {
|
63 |
+
"content": "<|im_end|>",
|
64 |
+
"lstrip": false,
|
65 |
+
"normalized": false,
|
66 |
+
"rstrip": false,
|
67 |
+
"single_word": false,
|
68 |
+
"special": true
|
69 |
+
},
|
70 |
+
"92543": {
|
71 |
+
"content": "<|im_start|>",
|
72 |
+
"lstrip": false,
|
73 |
+
"normalized": false,
|
74 |
+
"rstrip": false,
|
75 |
+
"single_word": false,
|
76 |
+
"special": true
|
77 |
+
}
|
78 |
+
},
|
79 |
+
"additional_special_tokens": [
|
80 |
+
"<|im_start|>",
|
81 |
+
"<|im_end|>",
|
82 |
+
"<|action_start|>",
|
83 |
+
"<|action_end|>",
|
84 |
+
"<|interpreter|>",
|
85 |
+
"<|plugin|>"
|
86 |
+
],
|
87 |
+
"auto_map": {
|
88 |
+
"AutoTokenizer": [
|
89 |
+
"tokenization_internlm2.InternLM2Tokenizer",
|
90 |
+
"tokenization_internlm2_fast.InternLM2TokenizerFast"
|
91 |
+
]
|
92 |
+
},
|
93 |
+
"bos_token": "<s>",
|
94 |
+
"chat_template": "{{ bos_token }}{% for message in messages %}{{'<|im_start|>' + message['role'] + '\n' + message['content'] + '<|im_end|>' + '\n'}}{% endfor %}{% if add_generation_prompt %}{{ '<|im_start|>assistant\n' }}{% endif %}",
|
95 |
+
"clean_up_tokenization_spaces": false,
|
96 |
+
"decode_with_prefix_space": false,
|
97 |
+
"eos_token": "</s>",
|
98 |
+
"legacy": true,
|
99 |
+
"model_max_length": 1000000000000000019884624838656,
|
100 |
+
"pad_token": "<unk>",
|
101 |
+
"sp_model_kwargs": {},
|
102 |
+
"spaces_between_special_tokens": false,
|
103 |
+
"tokenizer_class": "MultimodalLlamaTokenizer",
|
104 |
+
"unk_token": "<unk>",
|
105 |
+
"use_default_system_prompt": false
|
106 |
+
}
|
training_args.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:af95123a1bb48882dd552f70c395a2707f7b21b3028ab6be825d220a95c198b9
|
3 |
+
size 6456
|