File size: 6,507 Bytes
03a425d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
{
 "cells": [
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "a436c0a1-3410-4a7f-a186-9246075ac815",
   "metadata": {},
   "outputs": [],
   "source": [
    "from transformers import AutoModel\n",
    "model=AutoModel.from_pretrained(\"OpenGVLab/ViCLIP-B-16-hf\",trust_remote_code=True)\n",
    "tokenizer = model.tokenizer\n",
    "model_tokenizer={\"viclip\":model,\"tokenizer\":tokenizer}\n",
    "print(\"done\")"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 3,
   "id": "a425a5da-ceaf-4b89-9845-c8ba576902d8",
   "metadata": {},
   "outputs": [],
   "source": [
    "# video data\n",
    "import numpy as np\n",
    "import os\n",
    "import cv2\n",
    "import torch\n",
    "def _frame_from_video(video):\n",
    "    while video.isOpened():\n",
    "        success, frame = video.read()\n",
    "        if success:\n",
    "            yield frame\n",
    "        else:\n",
    "            break\n",
    "video = cv2.VideoCapture('example1.mp4')\n",
    "frames = [x for x in _frame_from_video(video)]"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 5,
   "id": "aac775ce",
   "metadata": {},
   "outputs": [],
   "source": [
    "# function\n",
    "\n",
    "def get_text_feat_dict(texts, clip, tokenizer, text_feat_d={}):\n",
    "    for t in texts:\n",
    "        feat = clip.get_text_features(t, tokenizer, text_feat_d)\n",
    "        text_feat_d[t] = feat\n",
    "    return text_feat_d\n",
    "\n",
    "def get_vid_feat(frames, clip):\n",
    "    return clip.get_vid_features(frames)\n",
    "\n",
    "v_mean = np.array([0.485, 0.456, 0.406]).reshape(1,1,3)\n",
    "v_std = np.array([0.229, 0.224, 0.225]).reshape(1,1,3)\n",
    "def normalize(data):\n",
    "    return (data/255.0-v_mean)/v_std\n",
    "\n",
    "def frames2tensor(vid_list, fnum=8, target_size=(224, 224), device=torch.device('cuda')):\n",
    "    assert(len(vid_list) >= fnum)\n",
    "    step = len(vid_list) // fnum\n",
    "    vid_list = vid_list[::step][:fnum]\n",
    "    vid_list = [cv2.resize(x[:,:,::-1], target_size) for x in vid_list]\n",
    "    vid_tube = [np.expand_dims(normalize(x), axis=(0, 1)) for x in vid_list]\n",
    "    vid_tube = np.concatenate(vid_tube, axis=1)\n",
    "    vid_tube = np.transpose(vid_tube, (0, 1, 4, 2, 3))\n",
    "    vid_tube = torch.from_numpy(vid_tube).to(device, non_blocking=True).float()\n",
    "    return vid_tube\n",
    "def retrieve_text(frames, \n",
    "                  texts, \n",
    "                  models={'viclip':None, \n",
    "                          'tokenizer':None},\n",
    "                  topk=5, \n",
    "                  device=torch.device('cuda')):\n",
    "    # clip, tokenizer = get_clip(name, model_cfg['size'], model_cfg['pretrained'], model_cfg['reload'])\n",
    "    assert(type(models)==dict and models['viclip'] is not None and models['tokenizer'] is not None)\n",
    "    clip, tokenizer = models['viclip'], models['tokenizer']\n",
    "    clip = clip.to(device)\n",
    "    frames_tensor = frames2tensor(frames, device=device)\n",
    "    vid_feat = get_vid_feat(frames_tensor, clip)\n",
    "\n",
    "    text_feat_d = {}\n",
    "    text_feat_d = get_text_feat_dict(texts, clip, tokenizer, text_feat_d)\n",
    "    text_feats = [text_feat_d[t] for t in texts]\n",
    "    text_feats_tensor = torch.cat(text_feats, 0)\n",
    "    \n",
    "    probs, idxs = clip.get_predict_label(vid_feat, text_feats_tensor, top=topk)\n",
    "\n",
    "    ret_texts = [texts[i] for i in idxs.numpy()[0].tolist()]\n",
    "    return ret_texts, probs.numpy()[0]"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "a2969ba6-19d0-4893-b071-b82fa046c312",
   "metadata": {},
   "outputs": [],
   "source": [
    "# retrieval\n",
    "text_candidates = [\"A playful dog and its owner wrestle in the snowy yard, chasing each other with joyous abandon.\",\n",
    "                   \"A man in a gray coat walks through the snowy landscape, pulling a sleigh loaded with toys.\",\n",
    "                   \"A person dressed in a blue jacket shovels the snow-covered pavement outside their house.\",\n",
    "                   \"A pet dog excitedly runs through the snowy yard, chasing a toy thrown by its owner.\",\n",
    "                   \"A person stands on the snowy floor, pushing a sled loaded with blankets, preparing for a fun-filled ride.\",\n",
    "                   \"A man in a gray hat and coat walks through the snowy yard, carefully navigating around the trees.\",\n",
    "                   \"A playful dog slides down a snowy hill, wagging its tail with delight.\",\n",
    "                   \"A person in a blue jacket walks their pet on a leash, enjoying a peaceful winter walk among the trees.\",\n",
    "                   \"A man in a gray sweater plays fetch with his dog in the snowy yard, throwing a toy and watching it run.\",\n",
    "                   \"A person bundled up in a blanket walks through the snowy landscape, enjoying the serene winter scenery.\"]\n",
    "texts, probs = retrieve_text(frames, text_candidates, models=model_tokenizer, topk=5)\n",
    "\n",
    "for t, p in zip(texts, probs):\n",
    "    print(f'text: {t} ~ prob: {p:.4f}')\n",
    "    \n",
    "\n",
    "# text: A playful dog and its owner wrestle in the snowy yard, chasing each other with joyous abandon. ~ prob: 0.8192\n",
    "# text: A man in a gray sweater plays fetch with his dog in the snowy yard, throwing a toy and watching it run. ~ prob: 0.1084\n",
    "# text: A pet dog excitedly runs through the snowy yard, chasing a toy thrown by its owner. ~ prob: 0.0676\n",
    "# text: A playful dog slides down a snowy hill, wagging its tail with delight. ~ prob: 0.0047\n",
    "# text: A person dressed in a blue jacket shovels the snow-covered pavement outside their house. ~ prob: 0.0002"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "84922de7-b41c-41c1-87a0-b28e52da9b5d",
   "metadata": {},
   "outputs": [],
   "source": []
  }
 ],
 "metadata": {
  "kernelspec": {
   "display_name": "Python 3 (ipykernel)",
   "language": "python",
   "name": "python3"
  },
  "language_info": {
   "codemirror_mode": {
    "name": "ipython",
    "version": 3
   },
   "file_extension": ".py",
   "mimetype": "text/x-python",
   "name": "python",
   "nbconvert_exporter": "python",
   "pygments_lexer": "ipython3",
   "version": "3.10.4"
  }
 },
 "nbformat": 4,
 "nbformat_minor": 5
}