File size: 5,585 Bytes
8cada10
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
# --------------------------------------------------------
# InternImage
# Copyright (c) 2022 OpenGVLab
# Licensed under The MIT License [see LICENSE for details]
# --------------------------------------------------------

from __future__ import absolute_import
from __future__ import print_function
from __future__ import division

import warnings
from torch import nn
import torch.nn.functional as F
from torch.nn.init import xavier_uniform_, constant_
from .dcnv3_func import dcnv3_core_pytorch


class to_channels_first(nn.Module):

    def __init__(self):
        super().__init__()

    def forward(self, x):
        return x.permute(0, 3, 1, 2)


class to_channels_last(nn.Module):

    def __init__(self):
        super().__init__()

    def forward(self, x):
        return x.permute(0, 2, 3, 1)


def build_norm_layer(dim,
                     norm_layer,
                     in_format='channels_last',
                     out_format='channels_last',
                     eps=1e-6):
    layers = []
    if norm_layer == 'BN':
        if in_format == 'channels_last':
            layers.append(to_channels_first())
        layers.append(nn.BatchNorm2d(dim))
        if out_format == 'channels_last':
            layers.append(to_channels_last())
    elif norm_layer == 'LN':
        if in_format == 'channels_first':
            layers.append(to_channels_last())
        layers.append(nn.LayerNorm(dim, eps=eps))
        if out_format == 'channels_first':
            layers.append(to_channels_first())
    else:
        raise NotImplementedError(
            f'build_norm_layer does not support {norm_layer}')
    return nn.Sequential(*layers)


def build_act_layer(act_layer):
    if act_layer == 'ReLU':
        return nn.ReLU(inplace=True)
    elif act_layer == 'SiLU':
        return nn.SiLU(inplace=True)
    elif act_layer == 'GELU':
        return nn.GELU()

    raise NotImplementedError(f'build_act_layer does not support {act_layer}')


def _is_power_of_2(n):
    if (not isinstance(n, int)) or (n < 0):
        raise ValueError(
            "invalid input for _is_power_of_2: {} (type: {})".format(n, type(n)))

    return (n & (n-1) == 0) and n != 0


class DCNv3_pytorch(nn.Module):
    def __init__(
            self, channels=64, kernel_size=3, stride=1,
            pad=1, dilation=1, group=4, offset_scale=1.0,
            act_layer='GELU', norm_layer='LN'):
        """
        DCNv3 Module
        :param channels     
        :param kernel_size  
        :param stride      
        :param pad     
        :param dilation
        :param group
        :param offset_scale
        :param act_layer
        :param norm_layer
        """
        super().__init__()
        if channels % group != 0:
            raise ValueError(
                f'channels must be divisible by group, but got {channels} and {group}')
        _d_per_group = channels // group
        # you'd better set _d_per_group to a power of 2 which is more efficient in our CUDA implementation
        if not _is_power_of_2(_d_per_group):
            warnings.warn(
                "You'd better set channels in DCNv3 to make the dimension of each attention head a power of 2 "
                "which is more efficient in our CUDA implementation.")

        self.offset_scale = offset_scale
        self.channels = channels
        self.kernel_size = kernel_size
        self.stride = stride
        self.dilation = 1
        self.pad = pad
        self.group = group
        self.group_channels = channels // group
        self.offset_scale = offset_scale

        self.dw_conv = nn.Sequential(
            nn.Conv2d(
                channels,
                channels,
                kernel_size=kernel_size,
                stride=1,
                padding=(kernel_size-1)//2,
                groups=channels),
            build_norm_layer(
                channels,
                norm_layer,
                'channels_first',
                'channels_last'),
            build_act_layer(act_layer))
        self.offset = nn.Linear(
            channels,
            group * kernel_size * kernel_size * 2)
        self.mask = nn.Linear(
            channels,
            group * kernel_size * kernel_size)
        self.input_proj = nn.Linear(channels, channels)
        self.output_proj = nn.Linear(channels, channels)
        self._reset_parameters()

    def _reset_parameters(self):
        constant_(self.offset.weight.data, 0.)
        constant_(self.offset.bias.data, 0.)
        constant_(self.mask.weight.data, 0.)
        constant_(self.mask.bias.data, 0.)
        xavier_uniform_(self.input_proj.weight.data)
        constant_(self.input_proj.bias.data, 0.)
        xavier_uniform_(self.output_proj.weight.data)
        constant_(self.output_proj.bias.data, 0.)

    def forward(self, input):
        """
        :param query                       (N, H, W, C)
        :return output                     (N, H, W, C)
        """
        N, H, W, _ = input.shape

        x = self.input_proj(input)

        x1 = input.permute(0, 3, 1, 2)
        x1 = self.dw_conv(x1)
        offset = self.offset(x1)
        mask = self.mask(x1).reshape(N, H, W, self.group, -1)
        mask = F.softmax(mask, -1).reshape(N, H, W, -1)

        x = dcnv3_core_pytorch(
            x, offset, mask,
            self.kernel_size, self.kernel_size,
            self.stride, self.stride,
            self.pad, self.pad,
            self.dilation, self.dilation,
            self.group, self.group_channels,
            self.offset_scale)
        x = self.output_proj(x)

        return x