mihaimasala commited on
Commit
51c8319
1 Parent(s): 80a78b9

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +609 -19
README.md CHANGED
@@ -4,6 +4,489 @@ language:
4
  - ro
5
  base_model:
6
  - meta-llama/Meta-Llama-3-8B
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7
  ---
8
 
9
  # Model Card for Model ID
@@ -31,13 +514,14 @@ OpenLLM-Ro represents the first open-source effort to build a LLM specialized fo
31
  - **Language(s):** Romanian
32
  - **License:** cc-by-nc-4.0
33
  - **Finetuned from model:** [Meta-Llama-3-8B](https://huggingface.co/meta-llama/Meta-Llama-3-8B)
 
34
 
35
 
36
  ### Model Sources
37
 
38
  <!-- Provide the basic links for the model. -->
39
 
40
- - **Repository:** https://github.com/OpenLLM-Ro/llama-recipes
41
  - **Paper:** https://arxiv.org/abs/2406.18266
42
 
43
  ## Intended Use
@@ -76,32 +560,138 @@ outputs = model.generate(input_ids=inputs, max_new_tokens=128)
76
  print(tokenizer.decode(outputs[0]))
77
  ```
78
 
79
- ## Benchmarks
80
-
81
- | Model | Average | ARC | MMLU |Winogrande|HellaSwag | GSM8k |TruthfulQA|
82
- |--------------------|:--------:|:--------:|:--------:|:--------:|:--------:|:--------:|:--------:|
83
- | Llama-3-8B-Instruct| 50.15 | 43.73 | 49.02 | 59.35 | 53.16 | **44.12** | 51.52 |
84
- | *RoLlama3-8b-Instruct* | ***50.61*** | ***44.66*** | ***52.19*** | ***67.58*** | ***57.65*** | *30.20* | ***51.39*** |
85
-
86
-
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
87
 
88
 
89
  ## MT-Bench
90
 
91
- | Model | Average | 1st turn | 2nd turn | Answers in Ro |
92
- |--------------------|:--------:|:--------:|:--------:|:--------:|
93
- | Llama-3-8B-Instruct | **5.92** | **6.36** | **5.49** | 158 / 160
94
- | *RoLlama3-8b-Instruct*| *5.28* |*6.10*| *4.45* | ***160 / 160*** |
95
-
 
 
 
 
 
 
 
 
 
 
 
 
96
 
97
 
98
  ## RoCulturaBench
99
 
100
- | Model | Score | Answers in Ro|
101
- |--------------------|:--------:|:--------:|
102
- | Llama-3-8B-Instruct | **4.61** | **100 / 100** |
103
- | *RoLlama3-8b-Instruct*| *3.83*| ***100 / 100*** |
104
-
 
 
 
 
 
 
 
 
 
 
105
 
106
 
107
  ## RoLlama3 Model Family
 
4
  - ro
5
  base_model:
6
  - meta-llama/Meta-Llama-3-8B
7
+ datasets:
8
+ - OpenLLM-Ro/ro_sft_alpaca
9
+ - OpenLLM-Ro/ro_sft_alpaca_gpt4
10
+ - OpenLLM-Ro/ro_sft_dolly
11
+ - OpenLLM-Ro/ro_sft_selfinstruct_gpt4
12
+ - OpenLLM-Ro/ro_sft_norobots
13
+ - OpenLLM-Ro/ro_sft_orca
14
+ - OpenLLM-Ro/ro_sft_camel
15
+ model-index:
16
+ - name: OpenLLM-Ro/RoLlama3-8b-Instruct
17
+ results:
18
+ - task:
19
+ type: text-generation
20
+ dataset:
21
+ name: RoMT-Bench
22
+ type: RoMT-Bench
23
+ metrics:
24
+ - name: Score
25
+ type: Score
26
+ value: 5.15
27
+ - task:
28
+ type: text-generation
29
+ dataset:
30
+ name: RoCulturaBench
31
+ type: RoCulturaBench
32
+ metrics:
33
+ - name: Score
34
+ type: Score
35
+ value: 3.71
36
+ - task:
37
+ type: text-generation
38
+ dataset:
39
+ name: Romanian_Academic_Benchmarks
40
+ type: Romanian_Academic_Benchmarks
41
+ metrics:
42
+ - name: Average accuracy
43
+ type: accuracy
44
+ value: 50.56
45
+ - task:
46
+ type: text-generation
47
+ dataset:
48
+ name: OpenLLM-Ro/ro_arc_challenge
49
+ type: OpenLLM-Ro/ro_arc_challenge
50
+ metrics:
51
+ - name: Average accuracy
52
+ type: accuracy
53
+ value: 44.70
54
+ - task:
55
+ type: text-generation
56
+ dataset:
57
+ name: OpenLLM-Ro/ro_mmlu
58
+ type: OpenLLM-Ro/ro_mmlu
59
+ metrics:
60
+ - name: Average accuracy
61
+ type: accuracy
62
+ value: 52.19
63
+ - task:
64
+ type: text-generation
65
+ dataset:
66
+ name: OpenLLM-Ro/ro_winogrande
67
+ type: OpenLLM-Ro/ro_winogrande
68
+ metrics:
69
+ - name: Average accuracy
70
+ type: accuracy
71
+ value: 67.23
72
+ - task:
73
+ type: text-generation
74
+ dataset:
75
+ name: OpenLLM-Ro/ro_hellaswag
76
+ type: OpenLLM-Ro/ro_hellaswag
77
+ metrics:
78
+ - name: Average accuracy
79
+ type: accuracy
80
+ value: 57.69
81
+ - task:
82
+ type: text-generation
83
+ dataset:
84
+ name: OpenLLM-Ro/ro_gsm8k
85
+ type: OpenLLM-Ro/ro_gsm8k
86
+ metrics:
87
+ - name: Average accuracy
88
+ type: accuracy
89
+ value: 30.23
90
+ - task:
91
+ type: text-generation
92
+ dataset:
93
+ name: OpenLLM-Ro/ro_truthfulqa
94
+ type: OpenLLM-Ro/ro_truthfulqa
95
+ metrics:
96
+ - name: Average accuracy
97
+ type: accuracy
98
+ value: 51.34
99
+ - task:
100
+ type: text-generation
101
+ dataset:
102
+ name: LaRoSeDa_binary
103
+ type: LaRoSeDa_binary
104
+ metrics:
105
+ - name: Average macro-f1
106
+ type: macro-f1
107
+ value: 97.52
108
+ - task:
109
+ type: text-generation
110
+ dataset:
111
+ name: LaRoSeDa_multiclass
112
+ type: LaRoSeDa_multiclass
113
+ metrics:
114
+ - name: Average macro-f1
115
+ type: macro-f1
116
+ value: 67.41
117
+ - task:
118
+ type: text-generation
119
+ dataset:
120
+ name: LaRoSeDa_binary_finetuned
121
+ type: LaRoSeDa_binary_finetuned
122
+ metrics:
123
+ - name: Average macro-f1
124
+ type: macro-f1
125
+ value: 94.15
126
+ - task:
127
+ type: text-generation
128
+ dataset:
129
+ name: LaRoSeDa_multiclass_finetuned
130
+ type: LaRoSeDa_multiclass_finetuned
131
+ metrics:
132
+ - name: Average macro-f1
133
+ type: macro-f1
134
+ value: 87.13
135
+ - task:
136
+ type: text-generation
137
+ dataset:
138
+ name: WMT_EN-RO
139
+ type: WMT_EN-RO
140
+ metrics:
141
+ - name: Average bleu
142
+ type: bleu
143
+ value: 24.01
144
+ - task:
145
+ type: text-generation
146
+ dataset:
147
+ name: WMT_RO-EN
148
+ type: WMT_RO-EN
149
+ metrics:
150
+ - name: Average bleu
151
+ type: bleu
152
+ value: 27.36
153
+ - task:
154
+ type: text-generation
155
+ dataset:
156
+ name: WMT_EN-RO_finetuned
157
+ type: WMT_EN-RO_finetuned
158
+ metrics:
159
+ - name: Average bleu
160
+ type: bleu
161
+ value: 26.53
162
+ - task:
163
+ type: text-generation
164
+ dataset:
165
+ name: WMT_RO-EN_finetuned
166
+ type: WMT_RO-EN_finetuned
167
+ metrics:
168
+ - name: Average bleu
169
+ type: bleu
170
+ value: 40.36
171
+ - task:
172
+ type: text-generation
173
+ dataset:
174
+ name: XQuAD
175
+ type: XQuAD
176
+ metrics:
177
+ - name: Average exact_match
178
+ type: exact_match
179
+ value: 39.43
180
+ - task:
181
+ type: text-generation
182
+ dataset:
183
+ name: XQuAD
184
+ type: XQuAD
185
+ metrics:
186
+ - name: Average f1
187
+ type: f1
188
+ value: 59.50
189
+ - task:
190
+ type: text-generation
191
+ dataset:
192
+ name: XQuAD_finetuned
193
+ type: XQuAD_finetuned
194
+ metrics:
195
+ - name: Average exact_match
196
+ type: exact_match
197
+ value: 44.45
198
+ - task:
199
+ type: text-generation
200
+ dataset:
201
+ name: XQuAD_finetuned
202
+ type: XQuAD_finetuned
203
+ metrics:
204
+ - name: Average f1
205
+ type: f1
206
+ value: 59.76
207
+ - task:
208
+ type: text-generation
209
+ dataset:
210
+ name: STS
211
+ type: STS
212
+ metrics:
213
+ - name: Average spearman
214
+ type: spearman
215
+ value: 77.20
216
+ - task:
217
+ type: text-generation
218
+ dataset:
219
+ name: STS
220
+ type: STS
221
+ metrics:
222
+ - name: Average pearson
223
+ type: pearson
224
+ value: 77.87
225
+ - task:
226
+ type: text-generation
227
+ dataset:
228
+ name: STS_finetuned
229
+ type: STS_finetuned
230
+ metrics:
231
+ - name: Average spearman
232
+ type: spearman
233
+ value: 85.80
234
+ - task:
235
+ type: text-generation
236
+ dataset:
237
+ name: STS_finetuned
238
+ type: STS_finetuned
239
+ metrics:
240
+ - name: Average pearson
241
+ type: pearson
242
+ value: 86.05
243
+ - task:
244
+ type: text-generation
245
+ dataset:
246
+ name: RoMT-Bench
247
+ type: RoMT-Bench
248
+ metrics:
249
+ - name: First turn
250
+ type: Score
251
+ value: 6.03
252
+ - name: Second turn
253
+ type: Score
254
+ value: 4.28
255
+ - task:
256
+ type: text-generation
257
+ dataset:
258
+ name: OpenLLM-Ro/ro_arc_challenge
259
+ type: OpenLLM-Ro/ro_arc_challenge
260
+ metrics:
261
+ - name: 0-shot
262
+ type: accuracy
263
+ value: 41.90
264
+ - name: 1-shot
265
+ type: accuracy
266
+ value: 44.30
267
+ - name: 3-shot
268
+ type: accuracy
269
+ value: 44.56
270
+ - name: 5-shot
271
+ type: accuracy
272
+ value: 45.50
273
+ - name: 10-shot
274
+ type: accuracy
275
+ value: 46.10
276
+ - name: 25-shot
277
+ type: accuracy
278
+ value: 45.84
279
+ - task:
280
+ type: text-generation
281
+ dataset:
282
+ name: OpenLLM-Ro/ro_mmlu
283
+ type: OpenLLM-Ro/ro_mmlu
284
+ metrics:
285
+ - name: 0-shot
286
+ type: accuracy
287
+ value: 50.85
288
+ - name: 1-shot
289
+ type: accuracy
290
+ value: 51.24
291
+ - name: 3-shot
292
+ type: accuracy
293
+ value: 53.30
294
+ - name: 5-shot
295
+ type: accuracy
296
+ value: 53.39
297
+ - task:
298
+ type: text-generation
299
+ dataset:
300
+ name: OpenLLM-Ro/ro_winogrande
301
+ type: OpenLLM-Ro/ro_winogrande
302
+ metrics:
303
+ - name: 0-shot
304
+ type: accuracy
305
+ value: 65.19
306
+ - name: 1-shot
307
+ type: accuracy
308
+ value: 66.54
309
+ - name: 3-shot
310
+ type: accuracy
311
+ value: 67.88
312
+ - name: 5-shot
313
+ type: accuracy
314
+ value: 69.30
315
+ - task:
316
+ type: text-generation
317
+ dataset:
318
+ name: OpenLLM-Ro/ro_hellaswag
319
+ type: OpenLLM-Ro/ro_hellaswag
320
+ metrics:
321
+ - name: 0-shot
322
+ type: accuracy
323
+ value: 56.12
324
+ - name: 1-shot
325
+ type: accuracy
326
+ value: 57.37
327
+ - name: 3-shot
328
+ type: accuracy
329
+ value: 57.92
330
+ - name: 5-shot
331
+ type: accuracy
332
+ value: 58.18
333
+ - name: 10-shot
334
+ type: accuracy
335
+ value: 58.85
336
+ - task:
337
+ type: text-generation
338
+ dataset:
339
+ name: OpenLLM-Ro/ro_gsm8k
340
+ type: OpenLLM-Ro/ro_gsm8k
341
+ metrics:
342
+ - name: 0-shot
343
+ type: accuracy
344
+ value: 29.42
345
+ - name: 1-shot
346
+ type: accuracy
347
+ value: 30.02
348
+ - name: 3-shot
349
+ type: accuracy
350
+ value: 31.24
351
+ - task:
352
+ type: text-generation
353
+ dataset:
354
+ name: LaRoSeDa_binary
355
+ type: LaRoSeDa_binary
356
+ metrics:
357
+ - name: 0-shot
358
+ type: macro-f1
359
+ value: 97.43
360
+ - name: 1-shot
361
+ type: macro-f1
362
+ value: 96.60
363
+ - name: 3-shot
364
+ type: macro-f1
365
+ value: 97.90
366
+ - name: 5-shot
367
+ type: macro-f1
368
+ value: 98.13
369
+ - task:
370
+ type: text-generation
371
+ dataset:
372
+ name: LaRoSeDa_multiclass
373
+ type: LaRoSeDa_multiclass
374
+ metrics:
375
+ - name: 0-shot
376
+ type: macro-f1
377
+ value: 63.77
378
+ - name: 1-shot
379
+ type: macro-f1
380
+ value: 68.91
381
+ - name: 3-shot
382
+ type: macro-f1
383
+ value: 66.36
384
+ - name: 5-shot
385
+ type: macro-f1
386
+ value: 70.61
387
+ - task:
388
+ type: text-generation
389
+ dataset:
390
+ name: WMT_EN-RO
391
+ type: WMT_EN-RO
392
+ metrics:
393
+ - name: 0-shot
394
+ type: bleu
395
+ value: 6.92
396
+ - name: 1-shot
397
+ type: bleu
398
+ value: 29.33
399
+ - name: 3-shot
400
+ type: bleu
401
+ value: 29.79
402
+ - name: 5-shot
403
+ type: bleu
404
+ value: 30.02
405
+ - task:
406
+ type: text-generation
407
+ dataset:
408
+ name: WMT_RO-EN
409
+ type: WMT_RO-EN
410
+ metrics:
411
+ - name: 0-shot
412
+ type: bleu
413
+ value: 4.50
414
+ - name: 1-shot
415
+ type: bleu
416
+ value: 30.30
417
+ - name: 3-shot
418
+ type: bleu
419
+ value: 36.96
420
+ - name: 5-shot
421
+ type: bleu
422
+ value: 37.70
423
+ - task:
424
+ type: text-generation
425
+ dataset:
426
+ name: XQuAD_EM
427
+ type: XQuAD_EM
428
+ metrics:
429
+ - name: 0-shot
430
+ type: exact_match
431
+ value: 4.45
432
+ - name: 1-shot
433
+ type: exact_match
434
+ value: 48.24
435
+ - name: 3-shot
436
+ type: exact_match
437
+ value: 52.03
438
+ - name: 5-shot
439
+ type: exact_match
440
+ value: 53.03
441
+ - task:
442
+ type: text-generation
443
+ dataset:
444
+ name: XQuAD_F1
445
+ type: XQuAD_F1
446
+ metrics:
447
+ - name: 0-shot
448
+ type: f1
449
+ value: 26.08
450
+ - name: 1-shot
451
+ type: f1
452
+ value: 68.40
453
+ - name: 3-shot
454
+ type: f1
455
+ value: 71.92
456
+ - name: 5-shot
457
+ type: f1
458
+ value: 71.60
459
+ - task:
460
+ type: text-generation
461
+ dataset:
462
+ name: STS
463
+ type: STS
464
+ metrics:
465
+ - name: 0-shot
466
+ type: spearman
467
+ value: 77.76
468
+ - name: 1-shot
469
+ type: spearman
470
+ value: 76.72
471
+ - name: 3-shot
472
+ type: spearman
473
+ value: 77.12
474
+ - task:
475
+ type: text-generation
476
+ dataset:
477
+ name: STS
478
+ type: STS
479
+ metrics:
480
+ - name: 0-shot
481
+ type: pearson
482
+ value: 77.83
483
+ - name: 1-shot
484
+ type: pearson
485
+ value: 77.64
486
+ - name: 3-shot
487
+ type: pearson
488
+ value: 78.13
489
+
490
  ---
491
 
492
  # Model Card for Model ID
 
514
  - **Language(s):** Romanian
515
  - **License:** cc-by-nc-4.0
516
  - **Finetuned from model:** [Meta-Llama-3-8B](https://huggingface.co/meta-llama/Meta-Llama-3-8B)
517
+ - **Trained using:** [RoAlpaca](https://huggingface.co/datasets/OpenLLM-Ro/ro_sft_alpaca), [RoAlpacaGPT4](https://huggingface.co/datasets/OpenLLM-Ro/ro_sft_alpaca_gpt4), [RoDolly](https://huggingface.co/datasets/OpenLLM-Ro/ro_sft_dolly), [RoSelfInstruct](https://huggingface.co/datasets/OpenLLM-Ro/ro_sft_selfinstruct_gpt4), [RoNoRobots](https://huggingface.co/datasets/OpenLLM-Ro/ro_sft_norobots), [RoOrca](https://huggingface.co/datasets/OpenLLM-Ro/ro_sft_orca), [RoCamel](https://huggingface.co/datasets/OpenLLM-Ro/ro_sft_camel)
518
 
519
 
520
  ### Model Sources
521
 
522
  <!-- Provide the basic links for the model. -->
523
 
524
+ - **Repository:** https://github.com/OpenLLM-Ro/LLaMA-Factory
525
  - **Paper:** https://arxiv.org/abs/2406.18266
526
 
527
  ## Intended Use
 
560
  print(tokenizer.decode(outputs[0]))
561
  ```
562
 
563
+ ## Academic Benchmarks
564
+
565
+ <table>
566
+ <tbody>
567
+ <tr>
568
+ <td><strong>Model</strong></td>
569
+ <td><strong><center>Average</center></strong></td>
570
+ <td><strong><center>ARC</center></strong></td>
571
+ <td><strong><center>MMLU</center></strong></td>
572
+ <td><strong><center>Winogrande</center></strong></td>
573
+ <td><strong><center>Hellaswag</center></strong></td>
574
+ <td><strong><center>GSM8k</center></strong></td>
575
+ <td><strong><center>TruthfulQA</center></strong></td>
576
+ </tr>
577
+ <tr>
578
+ <td>Llama-3-8B-Instruct</td><td><center><strong>50.62</strong></center></td><td><center>43.69</center></td><td><center>52.04</center></td><td><center>59.33</center></td><td><center>53.19</center></td><td><center><strong>43.87</strong></center></td><td><center><strong>51.59</strong></center></td>
579
+ </tr>
580
+ <tr>
581
+ <td><em>RoLlama3-8b-Instruct</em></td><td><center><em>50.56</em></center></td><td><center><em><strong>44.70</strong></em></center></td><td><center><em><strong>52.20</strong></em></center></td><td><center><em><strong>67.23</strong></em></center></td><td><center><em><strong>57.69</strong></em></center></td><td><center><em>30.23</em></center></td><td><center><em>51.34</em></center></td>
582
+ </tr>
583
+ </tbody>
584
+ </table>
585
+
586
+ ## Downstream tasks
587
+
588
+ <table>
589
+ <tbody>
590
+ <tr>
591
+ <td></td>
592
+ <td colspan="4"><center><strong>LaRoSeDa</strong></center></td>
593
+ <td colspan="4"><center><strong>WMT</strong></center></td>
594
+ </tr>
595
+ <tr>
596
+ <td></td>
597
+ <td colspan="2"><center><strong>Few-shot</strong></center></td>
598
+ <td colspan="2"><center><strong>Finetuned</strong></center></td>
599
+ <td colspan="2"><center><strong>Few-shot</strong></center></td>
600
+ <td colspan="2"><center><strong>Finetuned</strong></center></td>
601
+ </tr>
602
+ <tr>
603
+ <td><strong>Model</strong></td>
604
+ <td><center><strong>Binary<br>(Macro F1)</strong></center></td>
605
+ <td><center><strong>Multiclass<br>(Macro F1)</strong></center></td>
606
+ <td><center><strong>Binary<br>(Macro F1)</strong></center></td>
607
+ <td><center><strong>Multiclass<br>(Macro F1)</strong></center></td>
608
+ <td><center><strong>EN-RO<br>(Bleu)</strong></center></td>
609
+ <td><center><strong>RO-EN<br>(Bleu)</strong></center></td>
610
+ <td><center><strong>EN-RO<br>(Bleu)</strong></center></td>
611
+ <td><center><strong>RO-EN<br>(Bleu)</strong></center>
612
+ </tr>
613
+ <tr>
614
+ <td>Llama-3-8B-Instruct</td><td><center>95.88</center></td><td><center>56.21</center></td><td><center><strong>98.53</strong></center></td><td><center>86.19</center></td><td><center>18.89</center></td><td><center><strong>30.98</strong></center></td><td><center><strong>28.02</strong></center></td><td><center>40.28</center></td>
615
+ </tr>
616
+ <tr>
617
+ <td><em>RoLlama3-8b-Instruct</em></td><td><center><em><strong>97.52</strong></em></center></td><td><center><em><strong>67.41</strong></em></center></td><td><center><em>94.15</em></center></td><td><center><em><strong>87.13</strong></em></center></td><td><center><em><strong>24.02</strong></em></center></td><td><center><em>27.37</em></center></td><td><center><em>26.53</em></center></td><td><center><em><strong>40.37</strong></em></center></td>
618
+ </tr>
619
+ </tbody>
620
+ </table>
621
+
622
+ <table>
623
+ <tbody>
624
+ <tr>
625
+ <td></td>
626
+ <td colspan="4"><center><strong>XQuAD</strong></center></td>
627
+ <td colspan="4"><center><strong>STS</strong></center></td>
628
+ </tr>
629
+ <tr>
630
+ <td></td>
631
+ <td colspan="2"><center><strong>Few-shot</strong></center></td>
632
+ <td colspan="2"><center><strong>Finetuned</strong></center></td>
633
+ <td colspan="2"><center><strong>Few-shot</strong></center></td>
634
+ <td colspan="2"><center><strong>Finetuned</strong></center></td>
635
+ </tr>
636
+ <tr>
637
+ <td><strong>Model</strong></td>
638
+ <td><center><strong>(EM)</strong></center></td>
639
+ <td><center><strong>(F1)</strong></center></td>
640
+ <td><center><strong>(EM)</strong></center></td>
641
+ <td><center><strong>(F1)</strong></center></td>
642
+ <td><center><strong>(Spearman)</strong></center></td>
643
+ <td><center><strong>(Pearson)</strong></center></td>
644
+ <td><center><strong>(Spearman)</strong></center></td>
645
+ <td><center><strong>(Pearson)</strong></center></td>
646
+ </tr>
647
+ <tr>
648
+ <td>Llama-3-8B-Instruct</td><td><center><strong>39.48</strong></center></td><td><center>58.67</center></td><td><center><strong>67.65</strong></center></td><td><center><strong>82.77</strong></center></td><td><center>73.04</center></td><td><center>72.36</center></td><td><center>83.49</center></td><td><center>84.06</center></td>
649
+ </tr>
650
+ <tr>
651
+ <td><em>RoLlama3-8b-Instruct</em></td><td><center><em>39.44</em></center></td><td><center><em><strong>59.50</strong></em></center></td><td><center><em>44.45</em></center></td><td><center><em>59.76</em></center></td><td><center><em><strong>77.20</strong></em></center></td><td><center><em><strong>77.87</strong></em></center></td><td><center><em><strong>85.80</strong></em></center></td><td><center><em><strong>86.05</strong></em></center></td>
652
+ </tr>
653
+ </tbody>
654
+ </table>
655
 
656
 
657
  ## MT-Bench
658
 
659
+ <table>
660
+ <tbody>
661
+ <tr>
662
+ <td><strong>Model</strong></td>
663
+ <td><strong><center>Average</center></strong></td>
664
+ <td><strong><center>1st turn</center></strong></td>
665
+ <td><strong><center>2nd turn</center></strong></td>
666
+ <td><strong><center>Answers in Ro</center></strong></td>
667
+ </tr>
668
+ <tr>
669
+ <td><em>Llama-3-8B-Instruct</em></td><td><center><em><strong>5.96</strong></em></center></td><td><center><em><strong>6.16</strong></em></center></td><td><center><em><strong>5.76</strong></em></center></td><td><center>158/160</center></td>
670
+ </tr>
671
+ <tr>
672
+ <td><em>RoLlama3-8b-Instruct</em></td><td><center><em>5.15</em></center></td><td><center><em>6.03</em></center></td><td><center><em>4.28</em></center></td><td><center><em><strong>160/160</strong></em></center></td>
673
+ </tr>
674
+ </tbody>
675
+ </table>
676
 
677
 
678
  ## RoCulturaBench
679
 
680
+ <table>
681
+ <tbody>
682
+ <tr>
683
+ <td><strong>Model</strong></td>
684
+ <td><strong><center>Average</center></strong></td>
685
+ <td><strong><center>Answers in Ro</center></strong></td>
686
+ </tr>
687
+ <tr>
688
+ <td><em>Llama-3-8B-Instruct</em></td><td><center><em><strong>4.62</strong></em></center></td><td><center><strong>100/100</strong></center></td>
689
+ </tr>
690
+ <tr>
691
+ <td><em>RoLlama3-8b-Instruct</em></td><td><center><em>3.71</em></center></td><td><center><em><strong>100/100</strong></em></center></td>
692
+ </tr>
693
+ </tbody>
694
+ </table>
695
 
696
 
697
  ## RoLlama3 Model Family