Safetensors
Romanian
llama
Eval Results
mihaimasala commited on
Commit
f147ed8
1 Parent(s): a0a4c1a

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +755 -3
README.md CHANGED
@@ -1,3 +1,755 @@
1
- ---
2
- license: cc-by-nc-4.0
3
- ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: cc-by-nc-4.0
3
+ language:
4
+ - ro
5
+ base_model:
6
+ - meta-llama/Meta-Llama-3-8B-Instruct
7
+ datasets:
8
+ - OpenLLM-Ro/ro_sft_alpaca
9
+ - OpenLLM-Ro/ro_sft_alpaca_gpt4
10
+ - OpenLLM-Ro/ro_sft_dolly
11
+ - OpenLLM-Ro/ro_sft_selfinstruct_gpt4
12
+ - OpenLLM-Ro/ro_sft_norobots
13
+ - OpenLLM-Ro/ro_sft_orca
14
+ - OpenLLM-Ro/ro_sft_camel
15
+ - OpenLLM-Ro/ro_sft_oasst
16
+ - OpenLLM-Ro/ro_sft_ultrachat
17
+ model-index:
18
+ - name: OpenLLM-Ro/RoLlama3-8b-Instruct-2024-10-09
19
+ results:
20
+ - task:
21
+ type: text-generation
22
+ dataset:
23
+ name: RoMT-Bench
24
+ type: RoMT-Bench
25
+ metrics:
26
+ - name: Score
27
+ type: Score
28
+ value: 5.38
29
+ - task:
30
+ type: text-generation
31
+ dataset:
32
+ name: RoCulturaBench
33
+ type: RoCulturaBench
34
+ metrics:
35
+ - name: Score
36
+ type: Score
37
+ value: 3.81
38
+ - task:
39
+ type: text-generation
40
+ dataset:
41
+ name: Romanian_Academic_Benchmarks
42
+ type: Romanian_Academic_Benchmarks
43
+ metrics:
44
+ - name: Average accuracy
45
+ type: accuracy
46
+ value: 52.21
47
+ - task:
48
+ type: text-generation
49
+ dataset:
50
+ name: OpenLLM-Ro/ro_arc_challenge
51
+ type: OpenLLM-Ro/ro_arc_challenge
52
+ metrics:
53
+ - name: Average accuracy
54
+ type: accuracy
55
+ value: 47.94
56
+ - task:
57
+ type: text-generation
58
+ dataset:
59
+ name: OpenLLM-Ro/ro_mmlu
60
+ type: OpenLLM-Ro/ro_mmlu
61
+ metrics:
62
+ - name: Average accuracy
63
+ type: accuracy
64
+ value: 53.50
65
+ - task:
66
+ type: text-generation
67
+ dataset:
68
+ name: OpenLLM-Ro/ro_winogrande
69
+ type: OpenLLM-Ro/ro_winogrande
70
+ metrics:
71
+ - name: Average accuracy
72
+ type: accuracy
73
+ value: 66.06
74
+ - task:
75
+ type: text-generation
76
+ dataset:
77
+ name: OpenLLM-Ro/ro_hellaswag
78
+ type: OpenLLM-Ro/ro_hellaswag
79
+ metrics:
80
+ - name: Average accuracy
81
+ type: accuracy
82
+ value: 59.72
83
+ - task:
84
+ type: text-generation
85
+ dataset:
86
+ name: OpenLLM-Ro/ro_gsm8k
87
+ type: OpenLLM-Ro/ro_gsm8k
88
+ metrics:
89
+ - name: Average accuracy
90
+ type: accuracy
91
+ value: 40.16
92
+ - task:
93
+ type: text-generation
94
+ dataset:
95
+ name: OpenLLM-Ro/ro_truthfulqa
96
+ type: OpenLLM-Ro/ro_truthfulqa
97
+ metrics:
98
+ - name: Average accuracy
99
+ type: accuracy
100
+ value: 45.90
101
+ - task:
102
+ type: text-generation
103
+ dataset:
104
+ name: LaRoSeDa_binary
105
+ type: LaRoSeDa_binary
106
+ metrics:
107
+ - name: Average macro-f1
108
+ type: macro-f1
109
+ value: 95.58
110
+ - task:
111
+ type: text-generation
112
+ dataset:
113
+ name: LaRoSeDa_multiclass
114
+ type: LaRoSeDa_multiclass
115
+ metrics:
116
+ - name: Average macro-f1
117
+ type: macro-f1
118
+ value: 61.20
119
+ - task:
120
+ type: text-generation
121
+ dataset:
122
+ name: LaRoSeDa_binary_finetuned
123
+ type: LaRoSeDa_binary_finetuned
124
+ metrics:
125
+ - name: Average macro-f1
126
+ type: macro-f1
127
+ value: 96.46
128
+ - task:
129
+ type: text-generation
130
+ dataset:
131
+ name: LaRoSeDa_multiclass_finetuned
132
+ type: LaRoSeDa_multiclass_finetuned
133
+ metrics:
134
+ - name: Average macro-f1
135
+ type: macro-f1
136
+ value: 87.26
137
+ - task:
138
+ type: text-generation
139
+ dataset:
140
+ name: WMT_EN-RO
141
+ type: WMT_EN-RO
142
+ metrics:
143
+ - name: Average bleu
144
+ type: bleu
145
+ value: 22.92
146
+ - task:
147
+ type: text-generation
148
+ dataset:
149
+ name: WMT_RO-EN
150
+ type: WMT_RO-EN
151
+ metrics:
152
+ - name: Average bleu
153
+ type: bleu
154
+ value: 24.28
155
+ - task:
156
+ type: text-generation
157
+ dataset:
158
+ name: WMT_EN-RO_finetuned
159
+ type: WMT_EN-RO_finetuned
160
+ metrics:
161
+ - name: Average bleu
162
+ type: bleu
163
+ value: 27.31
164
+ - task:
165
+ type: text-generation
166
+ dataset:
167
+ name: WMT_RO-EN_finetuned
168
+ type: WMT_RO-EN_finetuned
169
+ metrics:
170
+ - name: Average bleu
171
+ type: bleu
172
+ value: 40.52
173
+ - task:
174
+ type: text-generation
175
+ dataset:
176
+ name: XQuAD
177
+ type: XQuAD
178
+ metrics:
179
+ - name: Average exact_match
180
+ type: exact_match
181
+ value: 18.89
182
+ - task:
183
+ type: text-generation
184
+ dataset:
185
+ name: XQuAD
186
+ type: XQuAD
187
+ metrics:
188
+ - name: Average f1
189
+ type: f1
190
+ value: 31.79
191
+ - task:
192
+ type: text-generation
193
+ dataset:
194
+ name: XQuAD_finetuned
195
+ type: XQuAD_finetuned
196
+ metrics:
197
+ - name: Average exact_match
198
+ type: exact_match
199
+ value: 50.84
200
+ - task:
201
+ type: text-generation
202
+ dataset:
203
+ name: XQuAD_finetuned
204
+ type: XQuAD_finetuned
205
+ metrics:
206
+ - name: Average f1
207
+ type: f1
208
+ value: 65.18
209
+ - task:
210
+ type: text-generation
211
+ dataset:
212
+ name: STS
213
+ type: STS
214
+ metrics:
215
+ - name: Average spearman
216
+ type: spearman
217
+ value: 77.60
218
+ - task:
219
+ type: text-generation
220
+ dataset:
221
+ name: STS
222
+ type: STS
223
+ metrics:
224
+ - name: Average pearson
225
+ type: pearson
226
+ value: 76.86
227
+ - task:
228
+ type: text-generation
229
+ dataset:
230
+ name: STS_finetuned
231
+ type: STS_finetuned
232
+ metrics:
233
+ - name: Average spearman
234
+ type: spearman
235
+ value: 86.70
236
+ - task:
237
+ type: text-generation
238
+ dataset:
239
+ name: STS_finetuned
240
+ type: STS_finetuned
241
+ metrics:
242
+ - name: Average pearson
243
+ type: pearson
244
+ value: 87.09
245
+ - task:
246
+ type: text-generation
247
+ dataset:
248
+ name: RoMT-Bench
249
+ type: RoMT-Bench
250
+ metrics:
251
+ - name: First turn
252
+ type: Score
253
+ value: 6.09
254
+ - name: Second turn
255
+ type: Score
256
+ value: 4.67
257
+ - task:
258
+ type: text-generation
259
+ dataset:
260
+ name: OpenLLM-Ro/ro_arc_challenge
261
+ type: OpenLLM-Ro/ro_arc_challenge
262
+ metrics:
263
+ - name: 0-shot
264
+ type: accuracy
265
+ value: 46.02
266
+ - name: 1-shot
267
+ type: accuracy
268
+ value: 47.39
269
+ - name: 3-shot
270
+ type: accuracy
271
+ value: 47.73
272
+ - name: 5-shot
273
+ type: accuracy
274
+ value: 48.24
275
+ - name: 10-shot
276
+ type: accuracy
277
+ value: 48.33
278
+ - name: 25-shot
279
+ type: accuracy
280
+ value: 49.96
281
+ - task:
282
+ type: text-generation
283
+ dataset:
284
+ name: OpenLLM-Ro/ro_mmlu
285
+ type: OpenLLM-Ro/ro_mmlu
286
+ metrics:
287
+ - name: 0-shot
288
+ type: accuracy
289
+ value: 51.19
290
+ - name: 1-shot
291
+ type: accuracy
292
+ value: 53.05
293
+ - name: 3-shot
294
+ type: accuracy
295
+ value: 54.83
296
+ - name: 5-shot
297
+ type: accuracy
298
+ value: 54.93
299
+ - task:
300
+ type: text-generation
301
+ dataset:
302
+ name: OpenLLM-Ro/ro_winogrande
303
+ type: OpenLLM-Ro/ro_winogrande
304
+ metrics:
305
+ - name: 0-shot
306
+ type: accuracy
307
+ value: 64.09
308
+ - name: 1-shot
309
+ type: accuracy
310
+ value: 66.22
311
+ - name: 3-shot
312
+ type: accuracy
313
+ value: 66.61
314
+ - name: 5-shot
315
+ type: accuracy
316
+ value: 67.32
317
+ - task:
318
+ type: text-generation
319
+ dataset:
320
+ name: OpenLLM-Ro/ro_hellaswag
321
+ type: OpenLLM-Ro/ro_hellaswag
322
+ metrics:
323
+ - name: 0-shot
324
+ type: accuracy
325
+ value: 59.34
326
+ - name: 1-shot
327
+ type: accuracy
328
+ value: 59.52
329
+ - name: 3-shot
330
+ type: accuracy
331
+ value: 59.61
332
+ - name: 5-shot
333
+ type: accuracy
334
+ value: 59.95
335
+ - name: 10-shot
336
+ type: accuracy
337
+ value: 60.19
338
+ - task:
339
+ type: text-generation
340
+ dataset:
341
+ name: OpenLLM-Ro/ro_gsm8k
342
+ type: OpenLLM-Ro/ro_gsm8k
343
+ metrics:
344
+ - name: 0-shot
345
+ type: accuracy
346
+ value: 31.31
347
+ - name: 1-shot
348
+ type: accuracy
349
+ value: 42.23
350
+ - name: 3-shot
351
+ type: accuracy
352
+ value: 46.93
353
+ - task:
354
+ type: text-generation
355
+ dataset:
356
+ name: LaRoSeDa_binary
357
+ type: LaRoSeDa_binary
358
+ metrics:
359
+ - name: 0-shot
360
+ type: macro-f1
361
+ value: 92.43
362
+ - name: 1-shot
363
+ type: macro-f1
364
+ value: 96.23
365
+ - name: 3-shot
366
+ type: macro-f1
367
+ value: 96.66
368
+ - name: 5-shot
369
+ type: macro-f1
370
+ value: 97.00
371
+ - task:
372
+ type: text-generation
373
+ dataset:
374
+ name: LaRoSeDa_multiclass
375
+ type: LaRoSeDa_multiclass
376
+ metrics:
377
+ - name: 0-shot
378
+ type: macro-f1
379
+ value: 61.47
380
+ - name: 1-shot
381
+ type: macro-f1
382
+ value: 63.77
383
+ - name: 3-shot
384
+ type: macro-f1
385
+ value: 57.12
386
+ - name: 5-shot
387
+ type: macro-f1
388
+ value: 62.43
389
+ - task:
390
+ type: text-generation
391
+ dataset:
392
+ name: WMT_EN-RO
393
+ type: WMT_EN-RO
394
+ metrics:
395
+ - name: 0-shot
396
+ type: bleu
397
+ value: 5.25
398
+ - name: 1-shot
399
+ type: bleu
400
+ value: 28.62
401
+ - name: 3-shot
402
+ type: bleu
403
+ value: 29.60
404
+ - name: 5-shot
405
+ type: bleu
406
+ value: 28.21
407
+ - task:
408
+ type: text-generation
409
+ dataset:
410
+ name: WMT_RO-EN
411
+ type: WMT_RO-EN
412
+ metrics:
413
+ - name: 0-shot
414
+ type: bleu
415
+ value: 1.95
416
+ - name: 1-shot
417
+ type: bleu
418
+ value: 24.00
419
+ - name: 3-shot
420
+ type: bleu
421
+ value: 34.87
422
+ - name: 5-shot
423
+ type: bleu
424
+ value: 36.31
425
+ - task:
426
+ type: text-generation
427
+ dataset:
428
+ name: XQuAD_EM
429
+ type: XQuAD_EM
430
+ metrics:
431
+ - name: 0-shot
432
+ type: exact_match
433
+ value: 16.97
434
+ - name: 1-shot
435
+ type: exact_match
436
+ value: 31.01
437
+ - name: 3-shot
438
+ type: exact_match
439
+ value: 13.95
440
+ - name: 5-shot
441
+ type: exact_match
442
+ value: 13.61
443
+ - task:
444
+ type: text-generation
445
+ dataset:
446
+ name: XQuAD_F1
447
+ type: XQuAD_F1
448
+ metrics:
449
+ - name: 0-shot
450
+ type: f1
451
+ value: 31.29
452
+ - name: 1-shot
453
+ type: f1
454
+ value: 42.77
455
+ - name: 3-shot
456
+ type: f1
457
+ value: 24.78
458
+ - name: 5-shot
459
+ type: f1
460
+ value: 28.30
461
+ - task:
462
+ type: text-generation
463
+ dataset:
464
+ name: STS
465
+ type: STS
466
+ metrics:
467
+ - name: 0-shot
468
+ type: spearman
469
+ value: 77.73
470
+ - name: 1-shot
471
+ type: spearman
472
+ value: 76.78
473
+ - name: 3-shot
474
+ type: spearman
475
+ value: 78.30
476
+ - task:
477
+ type: text-generation
478
+ dataset:
479
+ name: STS
480
+ type: STS
481
+ metrics:
482
+ - name: 0-shot
483
+ type: pearson
484
+ value: 77.25
485
+ - name: 1-shot
486
+ type: pearson
487
+ value: 75.83
488
+ - name: 3-shot
489
+ type: pearson
490
+ value: 77.49
491
+
492
+ ---
493
+
494
+ # Model Card for Model ID
495
+
496
+ *Built with Meta Llama 3*
497
+
498
+
499
+ <!-- Provide a quick summary of what the model is/does. -->
500
+
501
+ RoLlama3 is a family of pretrained and fine-tuned generative text models for Romanian. This is the repository for the **instruct 8B model**. Links to other models can be found at the bottom of this page.
502
+
503
+
504
+ ## Model Details
505
+
506
+ ### Model Description
507
+
508
+ <!-- Provide a longer summary of what this model is. -->
509
+ OpenLLM-Ro represents the first open-source effort to build a LLM specialized for Romanian. OpenLLM-Ro developed and publicly releases a collection of Romanian LLMs, both in the form of foundational model and instruct and chat variants.
510
+
511
+
512
+ - **Developed by:** OpenLLM-Ro
513
+ <!-- - **Funded by [optional]:** [More Information Needed] -->
514
+ <!-- - **Shared by [optional]:** [More Information Needed] -->
515
+ <!-- - **Model type:** [More Information Needed] -->
516
+ - **Language(s):** Romanian
517
+ - **License:** cc-by-nc-4.0
518
+ - **Finetuned from model:** [Meta-Llama-3-8B-Instruct](https://huggingface.co/meta-llama/Meta-Llama-3-8B-Instruct)
519
+ - **Trained using:** [RoAlpaca](https://huggingface.co/datasets/OpenLLM-Ro/ro_sft_alpaca), [RoAlpacaGPT4](https://huggingface.co/datasets/OpenLLM-Ro/ro_sft_alpaca_gpt4), [RoDolly](https://huggingface.co/datasets/OpenLLM-Ro/ro_sft_dolly), [RoSelfInstruct](https://huggingface.co/datasets/OpenLLM-Ro/ro_sft_selfinstruct_gpt4), [RoNoRobots](https://huggingface.co/datasets/OpenLLM-Ro/ro_sft_norobots), [RoOrca](https://huggingface.co/datasets/OpenLLM-Ro/ro_sft_orca), [RoCamel](https://huggingface.co/datasets/OpenLLM-Ro/ro_sft_camel), [RoOpenAssistant](https://huggingface.co/datasets/OpenLLM-Ro/ro_sft_oasst), [RoUltraChat](https://huggingface.co/datasets/OpenLLM-Ro/ro_sft_ultrachat)
520
+
521
+
522
+ ### Model Sources
523
+
524
+ <!-- Provide the basic links for the model. -->
525
+
526
+ - **Repository:** https://github.com/OpenLLM-Ro/LLaMA-Factory
527
+ - **Paper:** https://arxiv.org/abs/2406.18266
528
+
529
+ ## Intended Use
530
+
531
+ ### Intended Use Cases
532
+
533
+ RoLlama3 is intented for research use in Romanian. Base models can be adapted for a variety of natural language tasks while instruction and chat tuned models are intended for assistant-like chat.
534
+
535
+ ### Out-of-Scope Use
536
+
537
+ <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
538
+
539
+ Use in any manner that violates the license, any applicable laws or regluations, use in languages other than Romanian.
540
+
541
+
542
+
543
+ ## How to Get Started with the Model
544
+
545
+ Use the code below to get started with the model.
546
+
547
+ ```python
548
+ from transformers import AutoTokenizer, AutoModelForCausalLM
549
+
550
+ tokenizer = AutoTokenizer.from_pretrained("OpenLLM-Ro/RoLlama3-8b-Instruct-2024-10-09")
551
+ model = AutoModelForCausalLM.from_pretrained("OpenLLM-Ro/RoLlama3-8b-Instruct-2024-10-09")
552
+
553
+ instruction = "Ce jocuri de societate pot juca cu prietenii mei?"
554
+ chat = [
555
+ {"role": "system", "content": "Ești un asistent folositor, respectuos și onest. Încearcă să ajuți cât mai mult prin informațiile oferite, excluzând răspunsuri toxice, rasiste, sexiste, periculoase și ilegale."},
556
+ {"role": "user", "content": instruction},
557
+ ]
558
+ prompt = tokenizer.apply_chat_template(chat, tokenize=False, system_message="")
559
+
560
+ inputs = tokenizer.encode(prompt, add_special_tokens=False, return_tensors="pt")
561
+ outputs = model.generate(input_ids=inputs, max_new_tokens=128)
562
+ print(tokenizer.decode(outputs[0]))
563
+ ```
564
+
565
+ ## Academic Benchmarks
566
+
567
+ <table>
568
+ <tbody>
569
+ <tr>
570
+ <td><strong>Model</strong></td>
571
+ <td><strong><center>Average</center></strong></td>
572
+ <td><strong><center>ARC</center></strong></td>
573
+ <td><strong><center>MMLU</center></strong></td>
574
+ <td><strong><center>Winogrande</center></strong></td>
575
+ <td><strong><center>Hellaswag</center></strong></td>
576
+ <td><strong><center>GSM8k</center></strong></td>
577
+ <td><strong><center>TruthfulQA</center></strong></td>
578
+ </tr>
579
+ <tr>
580
+ <td>Llama-3-8B-Instruct</td><td><center>50.62</center></td><td><center>43.69</center></td><td><center>52.04</center></td><td><center>59.33</center></td><td><center>53.19</center></td><td><center><strong>43.87</strong></center></td><td><center><strong>51.59</strong></center></td>
581
+ </tr>
582
+ <tr>
583
+ <td>RoLlama3-8b-Instruct-2024-06-28</td><td><center>50.56</center></td><td><center>44.70</center></td><td><center>52.19</center></td><td><center><strong>67.23</strong></center></td><td><center>57.69</center></td><td><center>30.23</center></td><td><center>51.34</center></td>
584
+ </tr>
585
+ <tr>
586
+ <td><em>RoLlama3-8b-Instruct-2024-10-09</em></td><td><center><em><strong>52.21</strong></em></center></td><td><center><em><strong>47.94</strong></em></center></td><td><center><em><strong>53.50</strong></em></center></td><td><center><em>66.06</em></center></td><td><center><em><strong>59.72</strong></em></center></td><td><center><em>40.16</em></center></td><td><center><em>45.90</em></center></td>
587
+ </tr>
588
+ <tr>
589
+ <td>RoLlama3-8b-Instruct-DPO-2024-10-09</td><td><center>49.96</center></td><td><center>46.29</center></td><td><center>53.29</center></td><td><center>65.57</center></td><td><center>58.15</center></td><td><center>34.77</center></td><td><center>41.70</center></td>
590
+ </tr>
591
+ </tbody>
592
+ </table>
593
+
594
+
595
+ ## Downstream tasks
596
+
597
+ <table>
598
+ <tbody>
599
+ <tr>
600
+ <td></td>
601
+ <td colspan="4"><center><strong>LaRoSeDa</strong></center></td>
602
+ <td colspan="4"><center><strong>WMT</strong></center></td>
603
+ </tr>
604
+ <tr>
605
+ <td></td>
606
+ <td colspan="2"><center><strong>Few-shot</strong></center></td>
607
+ <td colspan="2"><center><strong>Finetuned</strong></center></td>
608
+ <td colspan="2"><center><strong>Few-shot</strong></center></td>
609
+ <td colspan="2"><center><strong>Finetuned</strong></center></td>
610
+ </tr>
611
+ <tr>
612
+ <td><strong>Model</strong></td>
613
+ <td><center><strong>Binary<br>(Macro F1)</strong></center></td>
614
+ <td><center><strong>Multiclass<br>(Macro F1)</strong></center></td>
615
+ <td><center><strong>Binary<br>(Macro F1)</strong></center></td>
616
+ <td><center><strong>Multiclass<br>(Macro F1)</strong></center></td>
617
+ <td><center><strong>EN-RO<br>(Bleu)</strong></center></td>
618
+ <td><center><strong>RO-EN<br>(Bleu)</strong></center></td>
619
+ <td><center><strong>EN-RO<br>(Bleu)</strong></center></td>
620
+ <td><center><strong>RO-EN<br>(Bleu)</strong></center>
621
+ </tr>
622
+ <tr>
623
+ <td>Llama-3-8B-Instruct</td><td><center>95.88</center></td><td><center>56.21</center></td><td><center><strong>98.53</strong></center></td><td><center>86.19</center></td><td><center>18.88</center></td><td><center><strong>30.98</strong></center></td><td><center><strong>28.02</strong></center></td><td><center>40.28</center></td>
624
+ </tr>
625
+ <tr>
626
+ <td>RoLlama3-8b-Instruct-2024-06-28</td><td><center><strong>97.52</strong></center></td><td><center><strong>67.41</strong></center></td><td><center>94.15</center></td><td><center>87.13</center></td><td><center><strong>24.01</strong></center></td><td><center>27.36</center></td><td><center>26.53</center></td><td><center>40.36</center></td>
627
+ </tr>
628
+ <tr>
629
+ <td><em>RoLlama3-8b-Instruct-2024-10-09</em></td><td><center><em>95.58</em></center></td><td><center><em>61.20</em></center></td><td><center><em>96.46</em></center></td><td><center><em><strong>87.26</strong></em></center></td><td><center><em>22.92</em></center></td><td><center><em>24.28</em></center></td><td><center><em>27.31</em></center></td><td><center><em><strong>40.52</strong></em></center></td>
630
+ </tr>
631
+ <tr>
632
+ <td>RoLlama3-8b-Instruct-DPO-2024-10-09</td><td><center>-</center></td><td><center>-</center></td><td><center>-</center></td><td><center>-</center></td><td><center>-</center></td><td><center>-</center></td><td><center>-</center></td><td><center>-</center></td>
633
+ </tr>
634
+ </tbody>
635
+ </table>
636
+
637
+
638
+ <table>
639
+ <tbody>
640
+ <tr>
641
+ <td></td>
642
+ <td colspan="4"><center><strong>XQuAD</strong></center></td>
643
+ <td colspan="4"><center><strong>STS</strong></center></td>
644
+ </tr>
645
+ <tr>
646
+ <td></td>
647
+ <td colspan="2"><center><strong>Few-shot</strong></center></td>
648
+ <td colspan="2"><center><strong>Finetuned</strong></center></td>
649
+ <td colspan="2"><center><strong>Few-shot</strong></center></td>
650
+ <td colspan="2"><center><strong>Finetuned</strong></center></td>
651
+ </tr>
652
+ <tr>
653
+ <td><strong>Model</strong></td>
654
+ <td><center><strong>(EM)</strong></center></td>
655
+ <td><center><strong>(F1)</strong></center></td>
656
+ <td><center><strong>(EM)</strong></center></td>
657
+ <td><center><strong>(F1)</strong></center></td>
658
+ <td><center><strong>(Spearman)</strong></center></td>
659
+ <td><center><strong>(Pearson)</strong></center></td>
660
+ <td><center><strong>(Spearman)</strong></center></td>
661
+ <td><center><strong>(Pearson)</strong></center></td>
662
+ </tr>
663
+ <tr>
664
+ <td>Llama-3-8B-Instruct</td><td><center><strong>39.47</strong></center></td><td><center>58.67</center></td><td><center><strong>67.65</strong></center></td><td><center><strong>82.77</strong></center></td><td><center>73.04</center></td><td><center>72.36</center></td><td><center>83.49</center></td><td><center>84.06</center></td>
665
+ </tr>
666
+ <tr>
667
+ <td>RoLlama3-8b-Instruct-2024-06-28</td><td><center>39.43</center></td><td><center><strong>59.50</strong></center></td><td><center>44.45</center></td><td><center>59.76</center></td><td><center>77.20</center></td><td><center><strong>77.87</strong></center></td><td><center>85.80</center></td><td><center>86.05</center></td>
668
+ </tr>
669
+ <tr>
670
+ <td><em>RoLlama3-8b-Instruct-2024-10-09</em></td><td><center><em>18.89</em></center></td><td><center><em>31.79</em></center></td><td><center><em>50.84</em></center></td><td><center><em>65.18</em></center></td><td><center><em><strong>77.60</strong></em></center></td><td><center><em>76.86</em></center></td><td><center><em><strong>86.70</strong></em></center></td><td><center><em><strong>87.09</strong></em></center></td>
671
+ </tr>
672
+ <tr>
673
+ <td>RoLlama3-8b-Instruct-DPO-2024-10-09</td><td><center>-</center></td><td><center>-</center></td><td><center>-</center></td><td><center>-</center></td><td><center>-</center></td><td><center>-</center></td><td><center>-</center></td><td><center>-</center></td>
674
+ </tr>
675
+ </tbody>
676
+ </table>
677
+
678
+ ## MT-Bench
679
+
680
+ <table>
681
+ <tbody>
682
+ <tr>
683
+ <td><strong>Model</strong></td>
684
+ <td><strong><center>Average</center></strong></td>
685
+ <td><strong><center>1st turn</center></strong></td>
686
+ <td><strong><center>2nd turn</center></strong></td>
687
+ <td><strong><center>Answers in Ro</center></strong></td>
688
+ </tr>
689
+ <tr>
690
+ <td>Llama-3-8B-Instruct</td><td><center><strong>5.96</strong></center></td><td><center>6.16</center></td><td><center><strong>5.76</strong></center></td><td><center>158/160</center></td>
691
+ </tr>
692
+ <tr>
693
+ <td>RoLlama3-8b-Instruct-2024-06-28</td><td><center>5.15</center></td><td><center>6.03</center></td><td><center>4.28</center></td><td><center><strong>160/160</strong></center></td>
694
+ </tr>
695
+ <tr>
696
+ <td><em>RoLlama3-8b-Instruct-2024-10-09</em></td><td><center><em>5.38</em></center></td><td><center><em>6.09</em></center></td><td><center><em>4.67</em></center></td><td><center><em><strong>160/160</strong></em></center></td>
697
+ </tr>
698
+ <tr>
699
+ <td>RoLlama3-8b-Instruct-DPO-2024-10-09</td><td><center>5.87</center></td><td><center><strong>6.22</strong></center></td><td><center>5.49</center></td><td><center><strong>160/160</strong></center></td>
700
+ </tr>
701
+ </tbody>
702
+ </table>
703
+
704
+
705
+ ## RoCulturaBench
706
+
707
+ <table>
708
+ <tbody>
709
+ <tr>
710
+ <td><strong>Model</strong></td>
711
+ <td><strong><center>Average</center></strong></td>
712
+ <td><strong><center>Answers in Ro</center></strong></td>
713
+ </tr>
714
+ <tr>
715
+ <td>Llama-3-8B-Instruct</td><td><center><strong>4.62</strong></center></td><td><center><strong>100/100</strong></center></td>
716
+ </tr>
717
+ <tr>
718
+ <td>RoLlama3-8b-Instruct-2024-06-28</td><td><center>3.71</center></td><td><center><strong>100/100</strong></center></td>
719
+ </tr>
720
+ <tr>
721
+ <td><em>RoLlama3-8b-Instruct-2024-10-09</em></td><td><center><em>3.81</em></center></td><td><center><em><strong>100/100</strong></em></center></td>
722
+ </tr>
723
+ <tr>
724
+ <td>RoLlama3-8b-Instruct-DPO-2024-10-09</td><td><center>4.40</center></td><td><center><strong>100/100</strong></center></td>
725
+ </tr>
726
+ </tbody>
727
+ </table>
728
+
729
+
730
+
731
+ ## RoLlama3 Model Family
732
+
733
+ | Model | Link |
734
+ |--------------------|:--------:|
735
+ |RoLlama3-8b-Instruct-2024-06-28| [link](https://huggingface.co/OpenLLM-Ro/RoLlama3-8b-Instruct-2024-06-28) |
736
+ |*RoLlama3-8b-Instruct-2024-10-09*| [link](https://huggingface.co/OpenLLM-Ro/RoLlama3-8b-Instruct-2024-10-09) |
737
+ |RoLlama3-8b-Instruct-DPO-2024-10-09| [link](https://huggingface.co/OpenLLM-Ro/RoLlama3-8b-Instruct-DPO-2024-10-09) |
738
+
739
+
740
+ ## Citation
741
+
742
+ ```
743
+ @misc{masala2024vorbecstiromanecsterecipetrain,
744
+ title={"Vorbe\c{s}ti Rom\^ane\c{s}te?" A Recipe to Train Powerful Romanian LLMs with English Instructions},
745
+ author={Mihai Masala and Denis C. Ilie-Ablachim and Alexandru Dima and Dragos Corlatescu and Miruna Zavelca and Ovio Olaru and Simina Terian-Dan and Andrei Terian-Dan and Marius Leordeanu and Horia Velicu and Marius Popescu and Mihai Dascalu and Traian Rebedea},
746
+ year={2024},
747
+ eprint={2406.18266},
748
+ archivePrefix={arXiv},
749
+ primaryClass={cs.CL},
750
+ url={https://arxiv.org/abs/2406.18266},
751
+ }
752
+ ```
753
+ <!-- **APA:**
754
+
755
+ [More Information Needed] -->