ZetangForward
commited on
Commit
•
1c42829
1
Parent(s):
64c2fba
update
Browse files- added_tokens.json +5 -0
- config.json +35 -0
- configuration_openba.py +66 -0
- modeling_openba.py +707 -0
- pytorch_model.bin +3 -0
- special_tokens_map.json +107 -0
- spiece.model +3 -0
- tokenization_openba.py +263 -0
- tokenizer_config.json +120 -0
added_tokens.json
ADDED
@@ -0,0 +1,5 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"<R>": 250200,
|
3 |
+
"<S>": 250201,
|
4 |
+
"<X>": 250202
|
5 |
+
}
|
config.json
ADDED
@@ -0,0 +1,35 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"add_ffn_bias": false,
|
3 |
+
"add_lm_head_bias": true,
|
4 |
+
"add_qkv_bias": true,
|
5 |
+
"architectures": [
|
6 |
+
"OpenBAForConditionalGeneration"
|
7 |
+
],
|
8 |
+
"attention_dropout": 0.0,
|
9 |
+
"auto_map": {
|
10 |
+
"AutoConfig": "configuration_openba.OpenBAConfig",
|
11 |
+
"AutoModel": "modeling_openba.OpenBAForConditionalGeneration",
|
12 |
+
"AutoModelForCausalLM": "modeling_openba.OpenBAForConditionalGeneration",
|
13 |
+
"AutoModelForSeq2SeqLM": "modeling_openba.OpenBAForConditionalGeneration"
|
14 |
+
},
|
15 |
+
"decoder_max_seq_length": 1040,
|
16 |
+
"decoder_start_token_id": 0,
|
17 |
+
"eos_token_id": 1,
|
18 |
+
"ffn_hidden_size": 6912,
|
19 |
+
"hidden_dropout": 0.0,
|
20 |
+
"hidden_size": 2560,
|
21 |
+
"initializer_factor": 1.0,
|
22 |
+
"is_encoder_decoder": true,
|
23 |
+
"kv_channels": 128,
|
24 |
+
"max_seq_length": 1040,
|
25 |
+
"model_type": "openba",
|
26 |
+
"num_decoder_layers": 24,
|
27 |
+
"num_heads": 20,
|
28 |
+
"num_layers": 8,
|
29 |
+
"pad_token_id": 0,
|
30 |
+
"tie_word_embeddings": false,
|
31 |
+
"tokenizer_class": "OpenBATokenizer",
|
32 |
+
"transformers_version": "4.32.0",
|
33 |
+
"use_cache": true,
|
34 |
+
"vocab_size": 250240
|
35 |
+
}
|
configuration_openba.py
ADDED
@@ -0,0 +1,66 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from transformers.utils import logging
|
2 |
+
from transformers.configuration_utils import PretrainedConfig
|
3 |
+
|
4 |
+
|
5 |
+
logger = logging.get_logger(__name__)
|
6 |
+
|
7 |
+
|
8 |
+
class OpenBAConfig(PretrainedConfig):
|
9 |
+
model_type = "openba"
|
10 |
+
keys_to_ignore_at_inference = ["past_key_values"]
|
11 |
+
attribute_map = {
|
12 |
+
"hidden_size": "hidden_size",
|
13 |
+
"num_attention_heads": "num_heads",
|
14 |
+
"num_hidden_layers": "num_layers"
|
15 |
+
}
|
16 |
+
|
17 |
+
def __init__(
|
18 |
+
self,
|
19 |
+
vocab_size=32128,
|
20 |
+
hidden_size=512,
|
21 |
+
kv_channels=64,
|
22 |
+
ffn_hidden_size=2048,
|
23 |
+
num_layers=12,
|
24 |
+
num_decoder_layers=None,
|
25 |
+
hidden_dropout=0.1,
|
26 |
+
attention_dropout=0.1,
|
27 |
+
num_heads=8,
|
28 |
+
is_encoder_decoder=True,
|
29 |
+
use_cache=True,
|
30 |
+
initializer_factor=1.0,
|
31 |
+
pad_token_id=0,
|
32 |
+
eos_token_id=1,
|
33 |
+
decoder_start_token_id=0,
|
34 |
+
add_qkv_bias=False,
|
35 |
+
add_ffn_bias=False,
|
36 |
+
add_lm_head_bias=False,
|
37 |
+
max_seq_length=1024,
|
38 |
+
decoder_max_seq_length=256,
|
39 |
+
**kwargs,
|
40 |
+
):
|
41 |
+
self.vocab_size = vocab_size
|
42 |
+
self.hidden_size = hidden_size
|
43 |
+
self.kv_channels = kv_channels
|
44 |
+
self.ffn_hidden_size = ffn_hidden_size
|
45 |
+
self.num_layers = num_layers
|
46 |
+
self.num_decoder_layers = (
|
47 |
+
num_decoder_layers if num_decoder_layers is not None else self.num_layers
|
48 |
+
) # default = symmetry
|
49 |
+
self.hidden_dropout = hidden_dropout
|
50 |
+
self.attention_dropout = attention_dropout
|
51 |
+
self.initializer_factor = initializer_factor
|
52 |
+
self.num_heads = num_heads
|
53 |
+
self.add_qkv_bias = add_qkv_bias
|
54 |
+
self.add_ffn_bias = add_ffn_bias
|
55 |
+
self.add_lm_head_bias = add_lm_head_bias
|
56 |
+
self.max_seq_length = max_seq_length
|
57 |
+
self.decoder_max_seq_length = decoder_max_seq_length
|
58 |
+
self.use_cache = use_cache
|
59 |
+
|
60 |
+
super().__init__(
|
61 |
+
pad_token_id=pad_token_id,
|
62 |
+
eos_token_id=eos_token_id,
|
63 |
+
decoder_start_token_id=decoder_start_token_id,
|
64 |
+
is_encoder_decoder=is_encoder_decoder,
|
65 |
+
**kwargs,
|
66 |
+
)
|
modeling_openba.py
ADDED
@@ -0,0 +1,707 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from typing import Optional, Tuple, Union
|
2 |
+
import copy
|
3 |
+
|
4 |
+
import torch
|
5 |
+
import torch.nn as nn
|
6 |
+
import torch.nn.functional as F
|
7 |
+
|
8 |
+
from transformers import PreTrainedModel
|
9 |
+
from transformers.modeling_outputs import (
|
10 |
+
BaseModelOutputWithPastAndCrossAttentions,
|
11 |
+
Seq2SeqLMOutput,
|
12 |
+
BaseModelOutput,
|
13 |
+
)
|
14 |
+
from transformers.utils import logging, is_torch_fx_proxy
|
15 |
+
|
16 |
+
from .configuration_openba import OpenBAConfig
|
17 |
+
|
18 |
+
|
19 |
+
logger = logging.get_logger(__name__)
|
20 |
+
|
21 |
+
# Copied from transformers.models.gptj.modeling_gptj.create_sinusoidal_positions
|
22 |
+
def create_sinusoidal_positions(num_pos: int, dim: int) -> torch.Tensor:
|
23 |
+
inv_freq = 1.0 / (10000 ** (torch.arange(0, dim, 2) / dim))
|
24 |
+
sinusoid_inp = torch.einsum("i , j -> i j", torch.arange(num_pos, dtype=torch.float), inv_freq).float()
|
25 |
+
return torch.cat((torch.sin(sinusoid_inp), torch.cos(sinusoid_inp)), dim=1)
|
26 |
+
|
27 |
+
|
28 |
+
def rotate_half(x) -> torch.Tensor:
|
29 |
+
x1, x2 = x[..., : x.shape[-1] // 2], x[..., x.shape[-1] // 2 :]
|
30 |
+
return torch.cat((-x2, x1), dim=-1)
|
31 |
+
|
32 |
+
|
33 |
+
def apply_rotary_pos_emb(tensor: torch.Tensor, sin: torch.Tensor, cos: torch.Tensor) -> torch.Tensor:
|
34 |
+
sin = torch.cat((sin, sin), dim=-1).to(tensor.device)[:, :, None, :]
|
35 |
+
cos = torch.cat((cos, cos), dim=-1).to(tensor.device)[:, :, None, :]
|
36 |
+
return (tensor * cos) + (rotate_half(tensor) * sin)
|
37 |
+
|
38 |
+
|
39 |
+
class SwiGLUMLP(nn.Module):
|
40 |
+
def __init__(self, config):
|
41 |
+
super().__init__()
|
42 |
+
|
43 |
+
multiple_of: int = 256 # make SwiGLU hidden layer size multiple of large power of 2
|
44 |
+
hidden_size = config.hidden_size
|
45 |
+
# ffn_hidden_size = int(2 * config.ffn_hidden_size / 3)
|
46 |
+
# ffn_hidden_size = multiple_of * ((ffn_hidden_size + multiple_of - 1) // multiple_of)
|
47 |
+
ffn_hidden_size=config.ffn_hidden_size
|
48 |
+
self.ffn_hidden_size = ffn_hidden_size
|
49 |
+
|
50 |
+
self.fc_in = nn.Linear(hidden_size, 2 * ffn_hidden_size, bias=config.add_ffn_bias)
|
51 |
+
self.fc_out = nn.Linear(ffn_hidden_size, hidden_size, bias=config.add_ffn_bias)
|
52 |
+
|
53 |
+
def swiglu(x):
|
54 |
+
x = torch.chunk(x, 2, dim=-1)
|
55 |
+
return F.silu(x[0]) * x[1]
|
56 |
+
self.act_func = swiglu
|
57 |
+
|
58 |
+
def forward(self, hidden_states: Optional[torch.FloatTensor]) -> torch.FloatTensor:
|
59 |
+
hidden_states = self.fc_in(hidden_states)
|
60 |
+
hidden_states = self.act_func(hidden_states)
|
61 |
+
hidden_states = self.fc_out(hidden_states)
|
62 |
+
return hidden_states
|
63 |
+
|
64 |
+
|
65 |
+
class OpenBAAttention(nn.Module):
|
66 |
+
def __init__(self, config, attn_type='self'):
|
67 |
+
super().__init__()
|
68 |
+
self.attn_type = attn_type
|
69 |
+
self.is_decoder = config.is_decoder
|
70 |
+
self.hidden_size = config.hidden_size
|
71 |
+
self.num_heads = config.num_heads
|
72 |
+
self.kv_channels = config.kv_channels
|
73 |
+
self.proj_size = self.kv_channels * self.num_heads
|
74 |
+
self.dropout = config.attention_dropout
|
75 |
+
self.scale_attn = torch.sqrt(torch.tensor(self.kv_channels, dtype=torch.float32))
|
76 |
+
|
77 |
+
if self.attn_type == 'self':
|
78 |
+
self.qkv = nn.Linear(self.hidden_size, 3 * self.proj_size, bias=config.add_qkv_bias)
|
79 |
+
else:
|
80 |
+
assert self.attn_type == 'cross'
|
81 |
+
self.q = nn.Linear(self.hidden_size, self.proj_size, bias=config.add_qkv_bias)
|
82 |
+
self.kv = nn.Linear(self.hidden_size, 2 * self.proj_size, bias=config.add_qkv_bias)
|
83 |
+
|
84 |
+
self.rotary_embedding = create_sinusoidal_positions(
|
85 |
+
num_pos=config.max_seq_length,
|
86 |
+
dim=self.kv_channels,
|
87 |
+
)
|
88 |
+
|
89 |
+
self.o = nn.Linear(self.proj_size, self.hidden_size, bias=config.add_qkv_bias)
|
90 |
+
|
91 |
+
def forward(
|
92 |
+
self,
|
93 |
+
hidden_states: Optional[torch.FloatTensor],
|
94 |
+
attention_mask: Optional[torch.FloatTensor] = None,
|
95 |
+
key_value_states: Optional[torch.FloatTensor] = None,
|
96 |
+
past_key_value: Optional[Tuple[torch.Tensor]] = None,
|
97 |
+
layer_head_mask: Optional[Tuple[torch.Tensor]] = None,
|
98 |
+
position_ids:Optional[torch.LongTensor] = None,
|
99 |
+
use_cache: Optional[bool] = False,
|
100 |
+
output_attentions: Optional[bool] = False,
|
101 |
+
):
|
102 |
+
# input is (batch_size, seq_length, hidden_size)
|
103 |
+
batch_size, seq_length = hidden_states.shape[:2]
|
104 |
+
if past_key_value is not None:
|
105 |
+
if len(past_key_value) != 2:
|
106 |
+
raise ValueError(
|
107 |
+
f"past_key_value should have 2 past states: keys and values. Got { len(past_key_value)} past states"
|
108 |
+
)
|
109 |
+
|
110 |
+
if self.rotary_embedding.device != position_ids.device:
|
111 |
+
self.rotary_embedding = self.rotary_embedding.to(position_ids.device)
|
112 |
+
|
113 |
+
if self.attn_type == 'self':
|
114 |
+
mixed_qkv_states = self.qkv(hidden_states)
|
115 |
+
new_tensor_shape = mixed_qkv_states.size()[:-1] + (self.num_heads, 3 * self.kv_channels)
|
116 |
+
mixed_qkv_states = mixed_qkv_states.view(*new_tensor_shape)
|
117 |
+
query_states, key_states, value_states = torch.chunk(mixed_qkv_states, 3, dim=-1)
|
118 |
+
# rotary position embedding
|
119 |
+
sincos = self.rotary_embedding[position_ids]
|
120 |
+
sin, cos = torch.chunk(sincos, 2, dim=-1)
|
121 |
+
query_states = apply_rotary_pos_emb(query_states, sin, cos)
|
122 |
+
key_states = apply_rotary_pos_emb(key_states, sin, cos)
|
123 |
+
# reshape to (batch_size, num_head, seq_length, kv_channels)
|
124 |
+
query_states = query_states.transpose(1, 2)
|
125 |
+
key_states = key_states.transpose(1, 2)
|
126 |
+
value_states = value_states.transpose(1, 2)
|
127 |
+
if past_key_value is not None:
|
128 |
+
past_key_states, past_value_states = past_key_value
|
129 |
+
key_states = torch.cat([past_key_states, key_states], dim=-2)
|
130 |
+
value_states = torch.cat([past_value_states, value_states], dim=-2)
|
131 |
+
else:
|
132 |
+
assert self.attn_type == 'cross'
|
133 |
+
query_states = self.q(hidden_states)
|
134 |
+
new_tensor_shape = query_states.size()[:-1] + (self.num_heads, self.kv_channels)
|
135 |
+
query_states = query_states.view(*new_tensor_shape)
|
136 |
+
# reshape to (batch_size, num_head, seq_length, kv_channels)
|
137 |
+
query_states = query_states.transpose(1, 2)
|
138 |
+
if past_key_value is None:
|
139 |
+
mixed_kv_states = self.kv(key_value_states)
|
140 |
+
new_tensor_shape = mixed_kv_states.size()[:-1] + (self.num_heads, 2 * self.kv_channels)
|
141 |
+
mixed_kv_states = mixed_kv_states.view(*new_tensor_shape)
|
142 |
+
key_states, value_states = torch.chunk(mixed_kv_states, 2, dim=-1)
|
143 |
+
# reshape to (batch_size, num_head, seq_length, kv_channels)
|
144 |
+
key_states = key_states.transpose(1, 2)
|
145 |
+
value_states = value_states.transpose(1, 2)
|
146 |
+
else:
|
147 |
+
key_states, value_states = past_key_value
|
148 |
+
|
149 |
+
# compute attention score
|
150 |
+
query_states = query_states.to(torch.float32)
|
151 |
+
key_states = key_states.to(torch.float32)
|
152 |
+
attn_scores = torch.matmul(query_states, key_states.transpose(-1, -2)) / self.scale_attn
|
153 |
+
attn_scores = attn_scores.masked_fill_(attention_mask, -10000.0)
|
154 |
+
attn_weights = F.softmax(attn_scores, dim=-1).type_as(attn_scores)
|
155 |
+
attn_weights = nn.functional.dropout(attn_weights, p=self.dropout, training=self.training)
|
156 |
+
attn_weights = attn_weights.to(value_states.dtype)
|
157 |
+
|
158 |
+
# Mask heads if we want to
|
159 |
+
if layer_head_mask is not None:
|
160 |
+
attn_weights = attn_weights * layer_head_mask
|
161 |
+
|
162 |
+
attn_output = torch.matmul(attn_weights, value_states)
|
163 |
+
attn_output = attn_output.transpose(1, 2).contiguous().view(batch_size, -1, self.proj_size)
|
164 |
+
attn_output = self.o(attn_output)
|
165 |
+
|
166 |
+
present_key_value_state = (key_states, value_states) if (self.is_decoder and use_cache) else None
|
167 |
+
outputs = (attn_output, present_key_value_state)
|
168 |
+
|
169 |
+
if output_attentions:
|
170 |
+
outputs += (attn_weights,)
|
171 |
+
|
172 |
+
return outputs
|
173 |
+
|
174 |
+
|
175 |
+
class OpenBABlock(nn.Module):
|
176 |
+
def __init__(self, config) -> None:
|
177 |
+
super().__init__()
|
178 |
+
self.is_decoder = config.is_decoder
|
179 |
+
self.dropout = config.hidden_dropout
|
180 |
+
self.input_layernorm = nn.LayerNorm(config.hidden_size)
|
181 |
+
self.self_attn = OpenBAAttention(config, attn_type='self')
|
182 |
+
self.post_attn_layernorm = nn.LayerNorm(config.hidden_size)
|
183 |
+
if self.is_decoder:
|
184 |
+
self.inter_attn = OpenBAAttention(config, attn_type='cross')
|
185 |
+
self.post_inter_attn_layernorm = nn.LayerNorm(config.hidden_size)
|
186 |
+
self.mlp = SwiGLUMLP(config)
|
187 |
+
|
188 |
+
def forward(
|
189 |
+
self,
|
190 |
+
hidden_states=None,
|
191 |
+
attention_mask=None,
|
192 |
+
position_ids=None,
|
193 |
+
encoder_hidden_states=None,
|
194 |
+
encoder_attention_mask=None,
|
195 |
+
layer_head_mask=None,
|
196 |
+
cross_attn_layer_head_mask=None,
|
197 |
+
past_key_value=None,
|
198 |
+
use_cache=False,
|
199 |
+
output_attentions=False,
|
200 |
+
):
|
201 |
+
if past_key_value is not None:
|
202 |
+
if not self.is_decoder:
|
203 |
+
raise ValueError("`past_key_values` is passed to the encoder. Please make sure this is intended.")
|
204 |
+
expected_num_past_key_values = 2 if encoder_hidden_states is None else 4
|
205 |
+
|
206 |
+
if len(past_key_value) != expected_num_past_key_values:
|
207 |
+
raise ValueError(
|
208 |
+
f"There should be {expected_num_past_key_values} past states. "
|
209 |
+
f"{'2 (past / key) for cross attention. ' if expected_num_past_key_values == 4 else ''}"
|
210 |
+
f"Got {len(past_key_value)} past key / value states"
|
211 |
+
)
|
212 |
+
|
213 |
+
self_attn_past_key_value = past_key_value[:2]
|
214 |
+
cross_attn_past_key_value = past_key_value[2:]
|
215 |
+
else:
|
216 |
+
self_attn_past_key_value, cross_attn_past_key_value = None, None
|
217 |
+
|
218 |
+
# Layer norm at the beginning of the transformer layer.
|
219 |
+
layernorm_output = self.input_layernorm(hidden_states)
|
220 |
+
# Self attention.
|
221 |
+
attn_outputs = self.self_attn(
|
222 |
+
layernorm_output,
|
223 |
+
attention_mask=attention_mask,
|
224 |
+
position_ids=position_ids,
|
225 |
+
layer_head_mask=layer_head_mask,
|
226 |
+
past_key_value=self_attn_past_key_value,
|
227 |
+
use_cache=use_cache,
|
228 |
+
output_attentions=output_attentions,
|
229 |
+
)
|
230 |
+
attn_output, present_key_value_state = attn_outputs[:2]
|
231 |
+
attn_weights = attn_outputs[2:]
|
232 |
+
residual = hidden_states
|
233 |
+
# Layer norm post the self attention.
|
234 |
+
attn_output = nn.functional.dropout(attn_output, p=self.dropout, training=self.training)
|
235 |
+
layernorm_input = residual + attn_output
|
236 |
+
layernorm_output = self.post_attn_layernorm(layernorm_input)
|
237 |
+
|
238 |
+
if self.is_decoder:
|
239 |
+
assert encoder_hidden_states is not None
|
240 |
+
attn_outputs = self.inter_attn(
|
241 |
+
layernorm_output,
|
242 |
+
attention_mask=encoder_attention_mask,
|
243 |
+
key_value_states=encoder_hidden_states,
|
244 |
+
position_ids=position_ids,
|
245 |
+
layer_head_mask=cross_attn_layer_head_mask,
|
246 |
+
past_key_value=cross_attn_past_key_value,
|
247 |
+
use_cache=use_cache,
|
248 |
+
output_attentions=output_attentions,
|
249 |
+
)
|
250 |
+
attn_output = attn_outputs[0]
|
251 |
+
attn_output = nn.functional.dropout(attn_output, p=self.dropout, training=self.training)
|
252 |
+
# residual connection
|
253 |
+
residual = layernorm_input
|
254 |
+
layernorm_input = residual + attn_output
|
255 |
+
layernorm_output = self.post_inter_attn_layernorm(layernorm_input)
|
256 |
+
# Combine self attn and cross attn key value states
|
257 |
+
if present_key_value_state is not None:
|
258 |
+
present_key_value_state += attn_outputs[1]
|
259 |
+
attn_weights += attn_outputs[2:]
|
260 |
+
|
261 |
+
# MLP.
|
262 |
+
mlp_output = self.mlp(layernorm_output)
|
263 |
+
mlp_output = nn.functional.dropout(mlp_output, p=self.dropout, training=self.training)
|
264 |
+
# Second residual connection.
|
265 |
+
residual = layernorm_input
|
266 |
+
output = residual + mlp_output
|
267 |
+
outputs = (output,)
|
268 |
+
|
269 |
+
if use_cache:
|
270 |
+
outputs += (present_key_value_state,) + attn_weights
|
271 |
+
else:
|
272 |
+
outputs += attn_weights
|
273 |
+
return outputs
|
274 |
+
|
275 |
+
|
276 |
+
class OpenBAPreTrainedModel(PreTrainedModel):
|
277 |
+
config_class = OpenBAConfig
|
278 |
+
base_model_prefix = "transformer"
|
279 |
+
_no_split_modules = ["OpenBABlock"]
|
280 |
+
|
281 |
+
def _set_gradient_checkpointing(self, module, value=False):
|
282 |
+
if isinstance(module, (OpenBAAttention, OpenBAStack)):
|
283 |
+
module.gradient_checkpointing = value
|
284 |
+
|
285 |
+
def _init_weights(self, module):
|
286 |
+
"""Initialize the weights"""
|
287 |
+
factor = self.config.initializer_factor
|
288 |
+
if isinstance(module, nn.LayerNorm):
|
289 |
+
module.weight.data.fill_(1.0)
|
290 |
+
module.bias.data.zero_()
|
291 |
+
elif isinstance(module, OpenBAForConditionalGeneration):
|
292 |
+
module.shared_embedding.weight.data.normal_(mean=0.0, std=factor * 1.0)
|
293 |
+
if hasattr(module, "lm_head") and not self.config.tie_word_embeddings:
|
294 |
+
module.lm_head.weight.data.normal_(mean=0.0, std=factor * 1.0)
|
295 |
+
elif isinstance(module, SwiGLUMLP):
|
296 |
+
module.fc_in.weight.data.normal_(mean=0.0, std=factor * ((self.config.hidden_size) ** -0.5))
|
297 |
+
if hasattr(module.fc_in, "bias") and module.fc_in.bias is not None:
|
298 |
+
module.fc_in.bias.data.zero_()
|
299 |
+
module.fc_out.weight.data.normal_(mean=0.0, std=factor * ((module.ffn_hidden_size) ** -0.5))
|
300 |
+
if hasattr(module.fc_out, "bias") and module.fc_out.bias is not None:
|
301 |
+
module.fc_out.bias.data.zero_()
|
302 |
+
elif isinstance(module, OpenBAAttention):
|
303 |
+
hidden_size = self.config.hidden_size
|
304 |
+
kv_channels = self.config.kv_channels
|
305 |
+
n_heads = self.config.num_heads
|
306 |
+
if module.attn_type == 'self':
|
307 |
+
module.qkv.weight.data[:n_heads * kv_channels].normal_(mean=0.0, std=factor * ((hidden_size * kv_channels) ** -0.5))
|
308 |
+
module.qkv.weight.data[n_heads * kv_channels:].normal_(mean=0.0, std=factor * (hidden_size ** -0.5))
|
309 |
+
else:
|
310 |
+
module.q.weight.data.normal_(mean=0.0, std=factor * ((hidden_size * kv_channels) ** -0.5))
|
311 |
+
module.kv.weight.data.normal_(mean=0.0, std=factor * (hidden_size ** -0.5))
|
312 |
+
module.o.weight.data.normal_(mean=0.0, std=factor * ((n_heads * kv_channels) ** -0.5))
|
313 |
+
|
314 |
+
def _shift_right(self, input_ids):
|
315 |
+
decoder_start_token_id = self.config.decoder_start_token_id
|
316 |
+
pad_token_id = self.config.pad_token_id
|
317 |
+
|
318 |
+
if decoder_start_token_id is None:
|
319 |
+
raise ValueError(
|
320 |
+
"self.model.config.decoder_start_token_id has to be defined. In T5 it is usually set to the pad_token_id."
|
321 |
+
"See T5 docs for more information."
|
322 |
+
)
|
323 |
+
|
324 |
+
# shift inputs to the right
|
325 |
+
if is_torch_fx_proxy(input_ids):
|
326 |
+
# Item assignment is not supported natively for proxies.
|
327 |
+
shifted_input_ids = torch.full(input_ids.shape[:-1] + (1,), decoder_start_token_id)
|
328 |
+
shifted_input_ids = torch.cat([shifted_input_ids, input_ids[..., :-1]], dim=-1)
|
329 |
+
else:
|
330 |
+
shifted_input_ids = input_ids.new_zeros(input_ids.shape)
|
331 |
+
shifted_input_ids[..., 1:] = input_ids[..., :-1].clone()
|
332 |
+
shifted_input_ids[..., 0] = decoder_start_token_id
|
333 |
+
|
334 |
+
if pad_token_id is None:
|
335 |
+
raise ValueError("self.model.config.pad_token_id has to be defined.")
|
336 |
+
# replace possible -100 values in labels by `pad_token_id`
|
337 |
+
shifted_input_ids.masked_fill_(shifted_input_ids == -100, pad_token_id)
|
338 |
+
|
339 |
+
return shifted_input_ids
|
340 |
+
|
341 |
+
class OpenBAStack(OpenBAPreTrainedModel):
|
342 |
+
def __init__(self, config, embed_tokens):
|
343 |
+
super().__init__(config)
|
344 |
+
self.embed_tokens = embed_tokens
|
345 |
+
self.is_decoder = config.is_decoder
|
346 |
+
self.block = nn.ModuleList(
|
347 |
+
[OpenBABlock(config) for _ in range(config.num_layers)]
|
348 |
+
)
|
349 |
+
self.final_layernorm = nn.LayerNorm(config.hidden_size)
|
350 |
+
|
351 |
+
def forward(
|
352 |
+
self,
|
353 |
+
input_ids=None,
|
354 |
+
attention_mask=None,
|
355 |
+
encoder_hidden_states=None,
|
356 |
+
encoder_attention_mask=None,
|
357 |
+
inputs_embeds=None,
|
358 |
+
head_mask=None,
|
359 |
+
cross_attn_head_mask=None,
|
360 |
+
past_key_values=None,
|
361 |
+
use_cache=None,
|
362 |
+
output_attentions=None,
|
363 |
+
output_hidden_states=None,
|
364 |
+
return_dict=None,
|
365 |
+
):
|
366 |
+
use_cache = use_cache if use_cache is not None else self.config.use_cache
|
367 |
+
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
368 |
+
output_hidden_states = (
|
369 |
+
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
370 |
+
)
|
371 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
372 |
+
|
373 |
+
# get batch size and seq_length
|
374 |
+
if input_ids is not None and inputs_embeds is not None:
|
375 |
+
raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time")
|
376 |
+
elif input_ids is not None:
|
377 |
+
input_shape = input_ids.size()
|
378 |
+
input_ids = input_ids.view(-1, input_shape[-1])
|
379 |
+
elif inputs_embeds is not None:
|
380 |
+
input_shape = inputs_embeds.size()[:-1]
|
381 |
+
else:
|
382 |
+
raise ValueError("You have to specify either input_ids or inputs_embeds")
|
383 |
+
|
384 |
+
batch_size, seq_length = input_shape
|
385 |
+
device = input_ids.device if input_ids is not None else inputs_embeds.device
|
386 |
+
|
387 |
+
# required mask seq length can be calculated via length of past
|
388 |
+
if past_key_values is None:
|
389 |
+
past_length = 0
|
390 |
+
past_key_values = [None] * len(self.block)
|
391 |
+
else:
|
392 |
+
past_length = past_key_values[0][0].size(-2)
|
393 |
+
cur_length = past_length + seq_length
|
394 |
+
|
395 |
+
# position ids
|
396 |
+
position_ids = torch.arange(past_length, cur_length, dtype=torch.long, device=device)
|
397 |
+
position_ids = position_ids.unsqueeze(0).view(-1, seq_length)
|
398 |
+
|
399 |
+
# Attention mask
|
400 |
+
if attention_mask is None:
|
401 |
+
attention_mask = torch.ones(batch_size, seq_length, device=device)
|
402 |
+
# get extended self-attention mask
|
403 |
+
if self.is_decoder:
|
404 |
+
if len(attention_mask.shape) == 2:
|
405 |
+
seq_ids = torch.arange(seq_length, device=device)
|
406 |
+
causal_mask = seq_ids[None, None, :].repeat(batch_size, seq_length, 1) <= seq_ids[None, :, None]
|
407 |
+
causal_mask = causal_mask.to(attention_mask.dtype)
|
408 |
+
extended_attention_mask = causal_mask[:, None, :, :] * attention_mask[:, None, None, :]
|
409 |
+
elif len(attention_mask.shape) == 3:
|
410 |
+
extended_attention_mask = attention_mask[:, None, :, :]
|
411 |
+
else:
|
412 |
+
raise ValueError
|
413 |
+
else:
|
414 |
+
extended_attention_mask = attention_mask[:, None, None, :]
|
415 |
+
extended_attention_mask = extended_attention_mask < 0.5
|
416 |
+
# get extended self-attention mask
|
417 |
+
# here we replace encoder_decoder_attention_mask with encoder_attention_mask
|
418 |
+
if self.is_decoder and encoder_hidden_states is not None:
|
419 |
+
if encoder_attention_mask is None:
|
420 |
+
encoder_seq_length = encoder_hidden_states.shape[1]
|
421 |
+
encoder_attention_mask = torch.ones(
|
422 |
+
batch_size, encoder_seq_length, device=device, dtype=torch.long
|
423 |
+
)
|
424 |
+
extended_encoder_attention_mask = encoder_attention_mask[:, None, None, :]
|
425 |
+
extended_encoder_attention_mask = extended_encoder_attention_mask < 0.5
|
426 |
+
else:
|
427 |
+
extended_encoder_attention_mask = None
|
428 |
+
|
429 |
+
|
430 |
+
# input embeddings
|
431 |
+
if inputs_embeds is None:
|
432 |
+
inputs_embeds = self.embed_tokens(input_ids)
|
433 |
+
|
434 |
+
# Prepare head mask if needed
|
435 |
+
head_mask = self.get_head_mask(head_mask, self.config.num_layers)
|
436 |
+
cross_attn_head_mask = self.get_head_mask(cross_attn_head_mask, self.config.num_layers)
|
437 |
+
present_key_value_states = () if use_cache else None
|
438 |
+
all_hidden_states = () if output_hidden_states else None
|
439 |
+
all_attentions = () if output_attentions else None
|
440 |
+
all_cross_attentions = () if (output_attentions and self.is_decoder) else None
|
441 |
+
hidden_states = inputs_embeds
|
442 |
+
|
443 |
+
for i, (layer_module, past_key_value) in enumerate(zip(self.block, past_key_values)):
|
444 |
+
layer_head_mask = head_mask[i]
|
445 |
+
cross_attn_layer_head_mask = cross_attn_head_mask[i]
|
446 |
+
if output_hidden_states:
|
447 |
+
all_hidden_states += (hidden_states,)
|
448 |
+
layer_outputs = layer_module(
|
449 |
+
hidden_states,
|
450 |
+
attention_mask=extended_attention_mask,
|
451 |
+
position_ids=position_ids,
|
452 |
+
encoder_hidden_states=encoder_hidden_states,
|
453 |
+
encoder_attention_mask=extended_encoder_attention_mask,
|
454 |
+
layer_head_mask=layer_head_mask,
|
455 |
+
cross_attn_layer_head_mask=cross_attn_layer_head_mask,
|
456 |
+
past_key_value=past_key_value,
|
457 |
+
use_cache=use_cache,
|
458 |
+
output_attentions=output_attentions,
|
459 |
+
)
|
460 |
+
# layer_outputs is a tuple with:
|
461 |
+
# hidden-states, key-value-states, (self-attention weights), (cross-attention weights)
|
462 |
+
if use_cache is False:
|
463 |
+
layer_outputs = layer_outputs[:1] + (None,) + layer_outputs[1:]
|
464 |
+
|
465 |
+
hidden_states, present_key_value_state = layer_outputs[:2]
|
466 |
+
if use_cache:
|
467 |
+
present_key_value_states += (present_key_value_state,)
|
468 |
+
|
469 |
+
if output_attentions:
|
470 |
+
all_attentions = all_attentions + (layer_outputs[2],)
|
471 |
+
if self.is_decoder:
|
472 |
+
all_cross_attentions = all_cross_attentions + (layer_outputs[3],)
|
473 |
+
|
474 |
+
hidden_states = self.final_layernorm(hidden_states)
|
475 |
+
|
476 |
+
if output_hidden_states:
|
477 |
+
all_hidden_states += (hidden_states,)
|
478 |
+
|
479 |
+
if not return_dict:
|
480 |
+
return tuple(
|
481 |
+
v
|
482 |
+
for v in [
|
483 |
+
hidden_states,
|
484 |
+
present_key_value_states,
|
485 |
+
all_hidden_states,
|
486 |
+
all_attentions,
|
487 |
+
all_cross_attentions,
|
488 |
+
]
|
489 |
+
if v is not None
|
490 |
+
)
|
491 |
+
return BaseModelOutputWithPastAndCrossAttentions(
|
492 |
+
last_hidden_state=hidden_states,
|
493 |
+
past_key_values=present_key_value_states,
|
494 |
+
hidden_states=all_hidden_states,
|
495 |
+
attentions=all_attentions,
|
496 |
+
cross_attentions=all_cross_attentions,
|
497 |
+
)
|
498 |
+
|
499 |
+
|
500 |
+
class OpenBAForConditionalGeneration(OpenBAPreTrainedModel):
|
501 |
+
_keys_to_ignore_on_load_missing = [
|
502 |
+
r"encoder.embed_tokens.weight",
|
503 |
+
r"decoder.embed_tokens.weight",
|
504 |
+
]
|
505 |
+
def __init__(self, config):
|
506 |
+
super().__init__(config)
|
507 |
+
self.shared_embedding = nn.Embedding(config.vocab_size, config.hidden_size)
|
508 |
+
self.hidden_size = config.hidden_size
|
509 |
+
|
510 |
+
encoder_config = copy.deepcopy(config)
|
511 |
+
encoder_config.is_decoder = False
|
512 |
+
encoder_config.use_cache = False
|
513 |
+
encoder_config.is_encoder_decoder = False
|
514 |
+
self.encoder = OpenBAStack(encoder_config, self.shared_embedding)
|
515 |
+
|
516 |
+
decoder_config = copy.deepcopy(config)
|
517 |
+
decoder_config.is_decoder = True
|
518 |
+
decoder_config.is_encoder_decoder = False
|
519 |
+
decoder_config.num_layers = config.num_decoder_layers
|
520 |
+
decoder_config.max_seq_length = config.decoder_max_seq_length
|
521 |
+
self.decoder = OpenBAStack(decoder_config, self.shared_embedding)
|
522 |
+
|
523 |
+
self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=config.add_lm_head_bias)
|
524 |
+
|
525 |
+
# Initialize weights and apply final processing
|
526 |
+
self.post_init()
|
527 |
+
|
528 |
+
# Model parallel
|
529 |
+
self.model_parallel = False
|
530 |
+
self.device_map = None
|
531 |
+
|
532 |
+
def get_input_embeddings(self):
|
533 |
+
return self.shared_embedding
|
534 |
+
|
535 |
+
def set_input_embeddings(self, new_embeddings):
|
536 |
+
self.shared_embedding = new_embeddings
|
537 |
+
self.encoder.set_input_embeddings(new_embeddings)
|
538 |
+
self.decoder.set_input_embeddings(new_embeddings)
|
539 |
+
|
540 |
+
def set_output_embeddings(self, new_embeddings):
|
541 |
+
self.lm_head = new_embeddings
|
542 |
+
|
543 |
+
def get_output_embeddings(self):
|
544 |
+
return self.lm_head
|
545 |
+
|
546 |
+
def get_encoder(self):
|
547 |
+
return self.encoder
|
548 |
+
|
549 |
+
def get_decoder(self):
|
550 |
+
return self.decoder
|
551 |
+
|
552 |
+
def forward(
|
553 |
+
self,
|
554 |
+
input_ids: Optional[torch.LongTensor] = None,
|
555 |
+
attention_mask: Optional[torch.FloatTensor] = None,
|
556 |
+
decoder_input_ids: Optional[torch.LongTensor] = None,
|
557 |
+
decoder_attention_mask: Optional[torch.BoolTensor] = None,
|
558 |
+
head_mask: Optional[torch.FloatTensor] = None,
|
559 |
+
decoder_head_mask: Optional[torch.FloatTensor] = None,
|
560 |
+
cross_attn_head_mask: Optional[torch.Tensor] = None,
|
561 |
+
encoder_outputs: Optional[Tuple[Tuple[torch.FloatTensor]]] = None,
|
562 |
+
past_key_values: Optional[Tuple[Tuple[torch.FloatTensor]]] = None,
|
563 |
+
inputs_embeds: Optional[torch.Tensor] = None,
|
564 |
+
decoder_inputs_embeds: Optional[torch.Tensor] = None,
|
565 |
+
labels: Optional[torch.LongTensor] = None,
|
566 |
+
use_cache: Optional[bool] = None,
|
567 |
+
output_attentions: Optional[bool] = None,
|
568 |
+
output_hidden_states: Optional[bool] = None,
|
569 |
+
return_dict: Optional[bool] = None,
|
570 |
+
) -> Union[Tuple[torch.FloatTensor], Seq2SeqLMOutput]:
|
571 |
+
|
572 |
+
use_cache = use_cache if use_cache is not None else self.config.use_cache
|
573 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
574 |
+
|
575 |
+
# Encode if needed (training, first prediction pass)
|
576 |
+
if encoder_outputs is None:
|
577 |
+
encoder_outputs = self.encoder(
|
578 |
+
input_ids=input_ids,
|
579 |
+
attention_mask=attention_mask,
|
580 |
+
inputs_embeds=inputs_embeds,
|
581 |
+
head_mask=head_mask,
|
582 |
+
output_attentions=output_attentions,
|
583 |
+
output_hidden_states=output_hidden_states,
|
584 |
+
return_dict=return_dict,
|
585 |
+
)
|
586 |
+
elif return_dict and not isinstance(encoder_outputs, BaseModelOutput):
|
587 |
+
encoder_outputs = BaseModelOutput(
|
588 |
+
last_hidden_state=encoder_outputs[0],
|
589 |
+
hidden_states=encoder_outputs[1] if len(encoder_outputs) > 1 else None,
|
590 |
+
attentions=encoder_outputs[2] if len(encoder_outputs) > 2 else None,\
|
591 |
+
)
|
592 |
+
|
593 |
+
hidden_states = encoder_outputs[0]
|
594 |
+
|
595 |
+
if labels is not None and decoder_input_ids is None and decoder_inputs_embeds is None:
|
596 |
+
# get decoder inputs from shifting lm labels to the right
|
597 |
+
decoder_input_ids = self._shift_right(labels)
|
598 |
+
|
599 |
+
# Decode
|
600 |
+
decoder_outputs = self.decoder(
|
601 |
+
input_ids=decoder_input_ids,
|
602 |
+
attention_mask=decoder_attention_mask,
|
603 |
+
inputs_embeds=decoder_inputs_embeds,
|
604 |
+
past_key_values=past_key_values,
|
605 |
+
encoder_hidden_states=hidden_states,
|
606 |
+
encoder_attention_mask=attention_mask,
|
607 |
+
head_mask=decoder_head_mask,
|
608 |
+
cross_attn_head_mask=cross_attn_head_mask,
|
609 |
+
use_cache=use_cache,
|
610 |
+
output_attentions=output_attentions,
|
611 |
+
output_hidden_states=output_hidden_states,
|
612 |
+
return_dict=return_dict,
|
613 |
+
)
|
614 |
+
|
615 |
+
sequence_output = decoder_outputs[0]
|
616 |
+
# share embedding and softmax embedding
|
617 |
+
if self.config.tie_word_embeddings:
|
618 |
+
# Rescale output before projecting on vocab
|
619 |
+
sequence_output = sequence_output * (self.hidden_size ** -0.5)
|
620 |
+
|
621 |
+
lm_logits = self.lm_head(sequence_output).to(torch.float32)
|
622 |
+
|
623 |
+
loss = None
|
624 |
+
if labels is not None:
|
625 |
+
loss_fct = nn.CrossEntropyLoss(ignore_index=-100)
|
626 |
+
# move labels to correct device to enable PP
|
627 |
+
labels = labels.to(lm_logits.device)
|
628 |
+
loss = loss_fct(lm_logits.view(-1, lm_logits.size(-1)), labels.view(-1))
|
629 |
+
loss = loss.to(hidden_states.dtype)
|
630 |
+
|
631 |
+
if not return_dict:
|
632 |
+
output = (lm_logits,) + decoder_outputs[1:] + encoder_outputs
|
633 |
+
return ((loss,) + output) if loss is not None else output
|
634 |
+
|
635 |
+
return Seq2SeqLMOutput(
|
636 |
+
loss=loss,
|
637 |
+
logits=lm_logits,
|
638 |
+
past_key_values=decoder_outputs.past_key_values,
|
639 |
+
decoder_hidden_states=decoder_outputs.hidden_states,
|
640 |
+
decoder_attentions=decoder_outputs.attentions,
|
641 |
+
cross_attentions=decoder_outputs.cross_attentions,
|
642 |
+
encoder_last_hidden_state=encoder_outputs.last_hidden_state,
|
643 |
+
encoder_hidden_states=encoder_outputs.hidden_states,
|
644 |
+
encoder_attentions=encoder_outputs.attentions,
|
645 |
+
)
|
646 |
+
|
647 |
+
def prepare_inputs_for_generation(
|
648 |
+
self,
|
649 |
+
input_ids,
|
650 |
+
past_key_values=None,
|
651 |
+
attention_mask=None,
|
652 |
+
head_mask=None,
|
653 |
+
decoder_head_mask=None,
|
654 |
+
decoder_attention_mask=None,
|
655 |
+
cross_attn_head_mask=None,
|
656 |
+
use_cache=None,
|
657 |
+
encoder_outputs=None,
|
658 |
+
**kwargs,
|
659 |
+
):
|
660 |
+
# cut decoder_input_ids if past is used
|
661 |
+
if past_key_values is not None:
|
662 |
+
input_ids = input_ids[:, -1:]
|
663 |
+
|
664 |
+
return {
|
665 |
+
"decoder_input_ids": input_ids,
|
666 |
+
"past_key_values": past_key_values,
|
667 |
+
"encoder_outputs": encoder_outputs,
|
668 |
+
"attention_mask": attention_mask,
|
669 |
+
"head_mask": head_mask,
|
670 |
+
"decoder_head_mask": decoder_head_mask,
|
671 |
+
"decoder_attention_mask": decoder_attention_mask,
|
672 |
+
"cross_attn_head_mask": cross_attn_head_mask,
|
673 |
+
"use_cache": use_cache,
|
674 |
+
}
|
675 |
+
|
676 |
+
def prepare_decoder_input_ids_from_labels(self, labels: torch.Tensor):
|
677 |
+
return self._shift_right(labels)
|
678 |
+
|
679 |
+
def _reorder_cache(self, past_key_values, beam_idx):
|
680 |
+
# if decoder past is not included in output
|
681 |
+
# speedy decoding is disabled and no need to reorder
|
682 |
+
if past_key_values is None:
|
683 |
+
logger.warning("You might want to consider setting `use_cache=True` to speed up decoding")
|
684 |
+
return past_key_values
|
685 |
+
|
686 |
+
reordered_decoder_past = ()
|
687 |
+
for layer_past_states in past_key_values:
|
688 |
+
# get the correct batch idx from layer past batch dim
|
689 |
+
# batch dim of `past` is at 2nd position
|
690 |
+
reordered_layer_past_states = ()
|
691 |
+
for layer_past_state in layer_past_states:
|
692 |
+
# need to set correct `past` for each of the four key / value states
|
693 |
+
reordered_layer_past_states = reordered_layer_past_states + (
|
694 |
+
layer_past_state.index_select(0, beam_idx.to(layer_past_state.device)),
|
695 |
+
)
|
696 |
+
|
697 |
+
if reordered_layer_past_states[0].shape != layer_past_states[0].shape:
|
698 |
+
raise ValueError(
|
699 |
+
f"reordered_layer_past_states[0] shape {reordered_layer_past_states[0].shape} and layer_past_states[0] shape {layer_past_states[0].shape} mismatched"
|
700 |
+
)
|
701 |
+
if len(reordered_layer_past_states) != len(layer_past_states):
|
702 |
+
raise ValueError(
|
703 |
+
f"length of reordered_layer_past_states {len(reordered_layer_past_states)} and length of layer_past_states {len(layer_past_states)} mismatched"
|
704 |
+
)
|
705 |
+
|
706 |
+
reordered_decoder_past = reordered_decoder_past + (reordered_layer_past_states,)
|
707 |
+
return reordered_decoder_past
|
pytorch_model.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:738865e96f4567a71f238e3ced6120d7fa8b44c8461966f64a1ce66ee232d526
|
3 |
+
size 7617363989
|
special_tokens_map.json
ADDED
@@ -0,0 +1,107 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"additional_special_tokens": [
|
3 |
+
"<extra_id_0>",
|
4 |
+
"<extra_id_1>",
|
5 |
+
"<extra_id_2>",
|
6 |
+
"<extra_id_3>",
|
7 |
+
"<extra_id_4>",
|
8 |
+
"<extra_id_5>",
|
9 |
+
"<extra_id_6>",
|
10 |
+
"<extra_id_7>",
|
11 |
+
"<extra_id_8>",
|
12 |
+
"<extra_id_9>",
|
13 |
+
"<extra_id_10>",
|
14 |
+
"<extra_id_11>",
|
15 |
+
"<extra_id_12>",
|
16 |
+
"<extra_id_13>",
|
17 |
+
"<extra_id_14>",
|
18 |
+
"<extra_id_15>",
|
19 |
+
"<extra_id_16>",
|
20 |
+
"<extra_id_17>",
|
21 |
+
"<extra_id_18>",
|
22 |
+
"<extra_id_19>",
|
23 |
+
"<extra_id_20>",
|
24 |
+
"<extra_id_21>",
|
25 |
+
"<extra_id_22>",
|
26 |
+
"<extra_id_23>",
|
27 |
+
"<extra_id_24>",
|
28 |
+
"<extra_id_25>",
|
29 |
+
"<extra_id_26>",
|
30 |
+
"<extra_id_27>",
|
31 |
+
"<extra_id_28>",
|
32 |
+
"<extra_id_29>",
|
33 |
+
"<extra_id_30>",
|
34 |
+
"<extra_id_31>",
|
35 |
+
"<extra_id_32>",
|
36 |
+
"<extra_id_33>",
|
37 |
+
"<extra_id_34>",
|
38 |
+
"<extra_id_35>",
|
39 |
+
"<extra_id_36>",
|
40 |
+
"<extra_id_37>",
|
41 |
+
"<extra_id_38>",
|
42 |
+
"<extra_id_39>",
|
43 |
+
"<extra_id_40>",
|
44 |
+
"<extra_id_41>",
|
45 |
+
"<extra_id_42>",
|
46 |
+
"<extra_id_43>",
|
47 |
+
"<extra_id_44>",
|
48 |
+
"<extra_id_45>",
|
49 |
+
"<extra_id_46>",
|
50 |
+
"<extra_id_47>",
|
51 |
+
"<extra_id_48>",
|
52 |
+
"<extra_id_49>",
|
53 |
+
"<extra_id_50>",
|
54 |
+
"<extra_id_51>",
|
55 |
+
"<extra_id_52>",
|
56 |
+
"<extra_id_53>",
|
57 |
+
"<extra_id_54>",
|
58 |
+
"<extra_id_55>",
|
59 |
+
"<extra_id_56>",
|
60 |
+
"<extra_id_57>",
|
61 |
+
"<extra_id_58>",
|
62 |
+
"<extra_id_59>",
|
63 |
+
"<extra_id_60>",
|
64 |
+
"<extra_id_61>",
|
65 |
+
"<extra_id_62>",
|
66 |
+
"<extra_id_63>",
|
67 |
+
"<extra_id_64>",
|
68 |
+
"<extra_id_65>",
|
69 |
+
"<extra_id_66>",
|
70 |
+
"<extra_id_67>",
|
71 |
+
"<extra_id_68>",
|
72 |
+
"<extra_id_69>",
|
73 |
+
"<extra_id_70>",
|
74 |
+
"<extra_id_71>",
|
75 |
+
"<extra_id_72>",
|
76 |
+
"<extra_id_73>",
|
77 |
+
"<extra_id_74>",
|
78 |
+
"<extra_id_75>",
|
79 |
+
"<extra_id_76>",
|
80 |
+
"<extra_id_77>",
|
81 |
+
"<extra_id_78>",
|
82 |
+
"<extra_id_79>",
|
83 |
+
"<extra_id_80>",
|
84 |
+
"<extra_id_81>",
|
85 |
+
"<extra_id_82>",
|
86 |
+
"<extra_id_83>",
|
87 |
+
"<extra_id_84>",
|
88 |
+
"<extra_id_85>",
|
89 |
+
"<extra_id_86>",
|
90 |
+
"<extra_id_87>",
|
91 |
+
"<extra_id_88>",
|
92 |
+
"<extra_id_89>",
|
93 |
+
"<extra_id_90>",
|
94 |
+
"<extra_id_91>",
|
95 |
+
"<extra_id_92>",
|
96 |
+
"<extra_id_93>",
|
97 |
+
"<extra_id_94>",
|
98 |
+
"<extra_id_95>",
|
99 |
+
"<extra_id_96>",
|
100 |
+
"<extra_id_97>",
|
101 |
+
"<extra_id_98>",
|
102 |
+
"<extra_id_99>"
|
103 |
+
],
|
104 |
+
"eos_token": "</s>",
|
105 |
+
"pad_token": "<pad>",
|
106 |
+
"unk_token": "<unk>"
|
107 |
+
}
|
spiece.model
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:ef78f86560d809067d12bac6c09f19a462cb3af3f54d2b8acbba26e1433125d6
|
3 |
+
size 4309802
|
tokenization_openba.py
ADDED
@@ -0,0 +1,263 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
|
3 |
+
|
4 |
+
import os
|
5 |
+
import re
|
6 |
+
import warnings
|
7 |
+
from shutil import copyfile
|
8 |
+
from typing import Any, Dict, List, Optional, Tuple
|
9 |
+
|
10 |
+
import sentencepiece as spm
|
11 |
+
|
12 |
+
from transformers.tokenization_utils import PreTrainedTokenizer
|
13 |
+
from transformers.utils import logging
|
14 |
+
|
15 |
+
|
16 |
+
logger = logging.get_logger(__name__)
|
17 |
+
|
18 |
+
VOCAB_FILES_NAMES = {"vocab_file": "spiece.model"}
|
19 |
+
|
20 |
+
|
21 |
+
class OpenBATokenizer(PreTrainedTokenizer):
|
22 |
+
|
23 |
+
vocab_files_names = VOCAB_FILES_NAMES
|
24 |
+
model_input_names = ["input_ids", "attention_mask"]
|
25 |
+
|
26 |
+
def __init__(
|
27 |
+
self,
|
28 |
+
vocab_file,
|
29 |
+
eos_token="</s>",
|
30 |
+
unk_token="<unk>",
|
31 |
+
pad_token="<pad>",
|
32 |
+
extra_ids=100,
|
33 |
+
additional_special_tokens=None,
|
34 |
+
sp_model_kwargs: Optional[Dict[str, Any]] = None,
|
35 |
+
**kwargs,
|
36 |
+
) -> None:
|
37 |
+
# Add extra_ids to the special token list
|
38 |
+
if extra_ids > 0 and additional_special_tokens is None:
|
39 |
+
additional_special_tokens = [f"<extra_id_{i}>" for i in range(extra_ids)]
|
40 |
+
elif extra_ids > 0 and additional_special_tokens is not None:
|
41 |
+
# Check that we have the right number of extra_id special tokens
|
42 |
+
extra_tokens = len(set(filter(lambda x: bool("extra_id" in str(x)), additional_special_tokens)))
|
43 |
+
if extra_tokens != extra_ids:
|
44 |
+
raise ValueError(
|
45 |
+
f"Both extra_ids ({extra_ids}) and additional_special_tokens ({additional_special_tokens}) are"
|
46 |
+
" provided to T5Tokenizer. In this case the additional_special_tokens must include the extra_ids"
|
47 |
+
" tokens"
|
48 |
+
)
|
49 |
+
|
50 |
+
self.sp_model_kwargs = {} if sp_model_kwargs is None else sp_model_kwargs
|
51 |
+
|
52 |
+
super().__init__(
|
53 |
+
eos_token=eos_token,
|
54 |
+
unk_token=unk_token,
|
55 |
+
pad_token=pad_token,
|
56 |
+
extra_ids=extra_ids,
|
57 |
+
additional_special_tokens=additional_special_tokens,
|
58 |
+
sp_model_kwargs=self.sp_model_kwargs,
|
59 |
+
**kwargs,
|
60 |
+
)
|
61 |
+
|
62 |
+
self.vocab_file = vocab_file
|
63 |
+
self._extra_ids = extra_ids
|
64 |
+
|
65 |
+
self.sp_model = spm.SentencePieceProcessor(**self.sp_model_kwargs)
|
66 |
+
self.sp_model.Load(vocab_file)
|
67 |
+
|
68 |
+
@staticmethod
|
69 |
+
def _eventually_correct_t5_max_length(pretrained_model_name_or_path, max_model_length, init_max_model_length):
|
70 |
+
if pretrained_model_name_or_path in OpenBATokenizer.max_model_input_sizes:
|
71 |
+
deprecated_max_model_length = OpenBATokenizer.max_model_input_sizes[pretrained_model_name_or_path]
|
72 |
+
if init_max_model_length is not None and init_max_model_length != max_model_length:
|
73 |
+
return init_max_model_length
|
74 |
+
elif init_max_model_length is None:
|
75 |
+
warnings.warn(
|
76 |
+
"This tokenizer was incorrectly instantiated with a model max length of"
|
77 |
+
f" {deprecated_max_model_length} which will be corrected in Transformers v5.\nFor now, this"
|
78 |
+
" behavior is kept to avoid breaking backwards compatibility when padding/encoding with"
|
79 |
+
" `truncation is True`.\n- Be aware that you SHOULD NOT rely on"
|
80 |
+
f" {pretrained_model_name_or_path} automatically truncating your input to"
|
81 |
+
f" {deprecated_max_model_length} when padding/encoding.\n- If you want to encode/pad to sequences"
|
82 |
+
f" longer than {deprecated_max_model_length} you can either instantiate this tokenizer with"
|
83 |
+
" `model_max_length` or pass `max_length` when encoding/padding.\n- To avoid this warning, please"
|
84 |
+
" instantiate this tokenizer with `model_max_length` set to your preferred value.",
|
85 |
+
FutureWarning,
|
86 |
+
)
|
87 |
+
|
88 |
+
return max_model_length
|
89 |
+
|
90 |
+
@property
|
91 |
+
def vocab_size(self):
|
92 |
+
return self.sp_model.get_piece_size() + self._extra_ids
|
93 |
+
|
94 |
+
def get_vocab(self):
|
95 |
+
vocab = {self.convert_ids_to_tokens(i): i for i in range(self.vocab_size)}
|
96 |
+
vocab.update(self.added_tokens_encoder)
|
97 |
+
return vocab
|
98 |
+
|
99 |
+
def get_special_tokens_mask(
|
100 |
+
self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None, already_has_special_tokens: bool = False
|
101 |
+
) -> List[int]:
|
102 |
+
"""
|
103 |
+
Retrieve sequence ids from a token list that has no special tokens added. This method is called when adding
|
104 |
+
special tokens using the tokenizer `prepare_for_model` method.
|
105 |
+
|
106 |
+
Args:
|
107 |
+
token_ids_0 (`List[int]`):
|
108 |
+
List of IDs.
|
109 |
+
token_ids_1 (`List[int]`, *optional*):
|
110 |
+
Optional second list of IDs for sequence pairs.
|
111 |
+
already_has_special_tokens (`bool`, *optional*, defaults to `False`):
|
112 |
+
Whether or not the token list is already formatted with special tokens for the model.
|
113 |
+
|
114 |
+
Returns:
|
115 |
+
`List[int]`: A list of integers in the range [0, 1]: 1 for a special token, 0 for a sequence token.
|
116 |
+
"""
|
117 |
+
if already_has_special_tokens:
|
118 |
+
return super().get_special_tokens_mask(
|
119 |
+
token_ids_0=token_ids_0, token_ids_1=token_ids_1, already_has_special_tokens=True
|
120 |
+
)
|
121 |
+
|
122 |
+
# normal case: some special tokens
|
123 |
+
if token_ids_1 is None:
|
124 |
+
return ([0] * len(token_ids_0)) + [1]
|
125 |
+
return ([0] * len(token_ids_0)) + [1] + ([0] * len(token_ids_1)) + [1]
|
126 |
+
|
127 |
+
def get_sentinel_tokens(self):
|
128 |
+
return list(
|
129 |
+
set(filter(lambda x: bool(re.search(r"<extra_id_\d+>", x)) is not None, self.additional_special_tokens))
|
130 |
+
)
|
131 |
+
|
132 |
+
def get_sentinel_token_ids(self):
|
133 |
+
return [self._convert_token_to_id(token) for token in self.get_sentinel_tokens()]
|
134 |
+
|
135 |
+
def _add_eos_if_not_present(self, token_ids: List[int]) -> List[int]:
|
136 |
+
"""Do not add eos again if user already added it."""
|
137 |
+
if len(token_ids) > 0 and token_ids[-1] == self.eos_token_id:
|
138 |
+
warnings.warn(
|
139 |
+
f"This sequence already has {self.eos_token}. In future versions this behavior may lead to duplicated"
|
140 |
+
" eos tokens being added."
|
141 |
+
)
|
142 |
+
return token_ids
|
143 |
+
else:
|
144 |
+
return token_ids + [self.eos_token_id]
|
145 |
+
|
146 |
+
def create_token_type_ids_from_sequences(
|
147 |
+
self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None
|
148 |
+
) -> List[int]:
|
149 |
+
"""
|
150 |
+
Create a mask from the two sequences passed to be used in a sequence-pair classification task. T5 does not make
|
151 |
+
use of token type ids, therefore a list of zeros is returned.
|
152 |
+
|
153 |
+
Args:
|
154 |
+
token_ids_0 (`List[int]`):
|
155 |
+
List of IDs.
|
156 |
+
token_ids_1 (`List[int]`, *optional*):
|
157 |
+
Optional second list of IDs for sequence pairs.
|
158 |
+
|
159 |
+
Returns:
|
160 |
+
`List[int]`: List of zeros.
|
161 |
+
"""
|
162 |
+
eos = [self.eos_token_id]
|
163 |
+
|
164 |
+
if token_ids_1 is None:
|
165 |
+
return len(token_ids_0 + eos) * [0]
|
166 |
+
return len(token_ids_0 + eos + token_ids_1 + eos) * [0]
|
167 |
+
|
168 |
+
def build_inputs_with_special_tokens(
|
169 |
+
self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None
|
170 |
+
) -> List[int]:
|
171 |
+
"""
|
172 |
+
Build model inputs from a sequence or a pair of sequence for sequence classification tasks by concatenating and
|
173 |
+
adding special tokens. A sequence has the following format:
|
174 |
+
|
175 |
+
- single sequence: `X </s>`
|
176 |
+
- pair of sequences: `A </s> B </s>`
|
177 |
+
|
178 |
+
Args:
|
179 |
+
token_ids_0 (`List[int]`):
|
180 |
+
List of IDs to which the special tokens will be added.
|
181 |
+
token_ids_1 (`List[int]`, *optional*):
|
182 |
+
Optional second list of IDs for sequence pairs.
|
183 |
+
|
184 |
+
Returns:
|
185 |
+
`List[int]`: List of [input IDs](../glossary#input-ids) with the appropriate special tokens.
|
186 |
+
"""
|
187 |
+
token_ids_0 = self._add_eos_if_not_present(token_ids_0)
|
188 |
+
if token_ids_1 is None:
|
189 |
+
return token_ids_0
|
190 |
+
else:
|
191 |
+
token_ids_1 = self._add_eos_if_not_present(token_ids_1)
|
192 |
+
return token_ids_0 + token_ids_1
|
193 |
+
|
194 |
+
def __getstate__(self):
|
195 |
+
state = self.__dict__.copy()
|
196 |
+
state["sp_model"] = None
|
197 |
+
return state
|
198 |
+
|
199 |
+
def __setstate__(self, d):
|
200 |
+
self.__dict__ = d
|
201 |
+
|
202 |
+
# for backward compatibility
|
203 |
+
if not hasattr(self, "sp_model_kwargs"):
|
204 |
+
self.sp_model_kwargs = {}
|
205 |
+
|
206 |
+
self.sp_model = spm.SentencePieceProcessor(**self.sp_model_kwargs)
|
207 |
+
self.sp_model.Load(self.vocab_file)
|
208 |
+
|
209 |
+
def _tokenize(self, text: str) -> List[str]:
|
210 |
+
"""Take as input a string and return a list of strings (tokens) for words/sub-words"""
|
211 |
+
return self.sp_model.encode(text, out_type=str)
|
212 |
+
|
213 |
+
def _convert_token_to_id(self, token):
|
214 |
+
"""Converts a token (str) in an id using the vocab."""
|
215 |
+
if token.startswith("<extra_id_"):
|
216 |
+
match = re.match(r"<extra_id_(\d+)>", token)
|
217 |
+
num = int(match.group(1))
|
218 |
+
return self.vocab_size - num - 1
|
219 |
+
return self.sp_model.piece_to_id(token)
|
220 |
+
|
221 |
+
def _convert_id_to_token(self, index):
|
222 |
+
"""Converts an index (integer) in a token (str) using the vocab."""
|
223 |
+
if index < self.sp_model.get_piece_size():
|
224 |
+
token = self.sp_model.IdToPiece(index)
|
225 |
+
else:
|
226 |
+
token = f"<extra_id_{self.vocab_size - 1 - index}>"
|
227 |
+
return token
|
228 |
+
|
229 |
+
def convert_tokens_to_string(self, tokens):
|
230 |
+
"""Converts a sequence of tokens (string) in a single string."""
|
231 |
+
current_sub_tokens = []
|
232 |
+
out_string = ""
|
233 |
+
prev_is_special = False
|
234 |
+
for token in tokens:
|
235 |
+
# make sure that special tokens are not decoded using sentencepiece model
|
236 |
+
if token in self.all_special_tokens:
|
237 |
+
if not prev_is_special:
|
238 |
+
out_string += " "
|
239 |
+
out_string += self.sp_model.decode(current_sub_tokens) + token
|
240 |
+
prev_is_special = True
|
241 |
+
current_sub_tokens = []
|
242 |
+
else:
|
243 |
+
current_sub_tokens.append(token)
|
244 |
+
prev_is_special = False
|
245 |
+
out_string += self.sp_model.decode(current_sub_tokens)
|
246 |
+
return out_string.strip()
|
247 |
+
|
248 |
+
def save_vocabulary(self, save_directory: str, filename_prefix: Optional[str] = None) -> Tuple[str]:
|
249 |
+
if not os.path.isdir(save_directory):
|
250 |
+
logger.error(f"Vocabulary path ({save_directory}) should be a directory")
|
251 |
+
return
|
252 |
+
out_vocab_file = os.path.join(
|
253 |
+
save_directory, (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"]
|
254 |
+
)
|
255 |
+
|
256 |
+
if os.path.abspath(self.vocab_file) != os.path.abspath(out_vocab_file) and os.path.isfile(self.vocab_file):
|
257 |
+
copyfile(self.vocab_file, out_vocab_file)
|
258 |
+
elif not os.path.isfile(self.vocab_file):
|
259 |
+
with open(out_vocab_file, "wb") as fi:
|
260 |
+
content_spiece_model = self.sp_model.serialized_model_proto()
|
261 |
+
fi.write(content_spiece_model)
|
262 |
+
|
263 |
+
return (out_vocab_file,)
|
tokenizer_config.json
ADDED
@@ -0,0 +1,120 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"additional_special_tokens": [
|
3 |
+
"<extra_id_0>",
|
4 |
+
"<extra_id_1>",
|
5 |
+
"<extra_id_2>",
|
6 |
+
"<extra_id_3>",
|
7 |
+
"<extra_id_4>",
|
8 |
+
"<extra_id_5>",
|
9 |
+
"<extra_id_6>",
|
10 |
+
"<extra_id_7>",
|
11 |
+
"<extra_id_8>",
|
12 |
+
"<extra_id_9>",
|
13 |
+
"<extra_id_10>",
|
14 |
+
"<extra_id_11>",
|
15 |
+
"<extra_id_12>",
|
16 |
+
"<extra_id_13>",
|
17 |
+
"<extra_id_14>",
|
18 |
+
"<extra_id_15>",
|
19 |
+
"<extra_id_16>",
|
20 |
+
"<extra_id_17>",
|
21 |
+
"<extra_id_18>",
|
22 |
+
"<extra_id_19>",
|
23 |
+
"<extra_id_20>",
|
24 |
+
"<extra_id_21>",
|
25 |
+
"<extra_id_22>",
|
26 |
+
"<extra_id_23>",
|
27 |
+
"<extra_id_24>",
|
28 |
+
"<extra_id_25>",
|
29 |
+
"<extra_id_26>",
|
30 |
+
"<extra_id_27>",
|
31 |
+
"<extra_id_28>",
|
32 |
+
"<extra_id_29>",
|
33 |
+
"<extra_id_30>",
|
34 |
+
"<extra_id_31>",
|
35 |
+
"<extra_id_32>",
|
36 |
+
"<extra_id_33>",
|
37 |
+
"<extra_id_34>",
|
38 |
+
"<extra_id_35>",
|
39 |
+
"<extra_id_36>",
|
40 |
+
"<extra_id_37>",
|
41 |
+
"<extra_id_38>",
|
42 |
+
"<extra_id_39>",
|
43 |
+
"<extra_id_40>",
|
44 |
+
"<extra_id_41>",
|
45 |
+
"<extra_id_42>",
|
46 |
+
"<extra_id_43>",
|
47 |
+
"<extra_id_44>",
|
48 |
+
"<extra_id_45>",
|
49 |
+
"<extra_id_46>",
|
50 |
+
"<extra_id_47>",
|
51 |
+
"<extra_id_48>",
|
52 |
+
"<extra_id_49>",
|
53 |
+
"<extra_id_50>",
|
54 |
+
"<extra_id_51>",
|
55 |
+
"<extra_id_52>",
|
56 |
+
"<extra_id_53>",
|
57 |
+
"<extra_id_54>",
|
58 |
+
"<extra_id_55>",
|
59 |
+
"<extra_id_56>",
|
60 |
+
"<extra_id_57>",
|
61 |
+
"<extra_id_58>",
|
62 |
+
"<extra_id_59>",
|
63 |
+
"<extra_id_60>",
|
64 |
+
"<extra_id_61>",
|
65 |
+
"<extra_id_62>",
|
66 |
+
"<extra_id_63>",
|
67 |
+
"<extra_id_64>",
|
68 |
+
"<extra_id_65>",
|
69 |
+
"<extra_id_66>",
|
70 |
+
"<extra_id_67>",
|
71 |
+
"<extra_id_68>",
|
72 |
+
"<extra_id_69>",
|
73 |
+
"<extra_id_70>",
|
74 |
+
"<extra_id_71>",
|
75 |
+
"<extra_id_72>",
|
76 |
+
"<extra_id_73>",
|
77 |
+
"<extra_id_74>",
|
78 |
+
"<extra_id_75>",
|
79 |
+
"<extra_id_76>",
|
80 |
+
"<extra_id_77>",
|
81 |
+
"<extra_id_78>",
|
82 |
+
"<extra_id_79>",
|
83 |
+
"<extra_id_80>",
|
84 |
+
"<extra_id_81>",
|
85 |
+
"<extra_id_82>",
|
86 |
+
"<extra_id_83>",
|
87 |
+
"<extra_id_84>",
|
88 |
+
"<extra_id_85>",
|
89 |
+
"<extra_id_86>",
|
90 |
+
"<extra_id_87>",
|
91 |
+
"<extra_id_88>",
|
92 |
+
"<extra_id_89>",
|
93 |
+
"<extra_id_90>",
|
94 |
+
"<extra_id_91>",
|
95 |
+
"<extra_id_92>",
|
96 |
+
"<extra_id_93>",
|
97 |
+
"<extra_id_94>",
|
98 |
+
"<extra_id_95>",
|
99 |
+
"<extra_id_96>",
|
100 |
+
"<extra_id_97>",
|
101 |
+
"<extra_id_98>",
|
102 |
+
"<extra_id_99>"
|
103 |
+
],
|
104 |
+
"auto_map": {
|
105 |
+
"AutoTokenizer": [
|
106 |
+
"tokenization_openba.OpenBATokenizer",
|
107 |
+
null
|
108 |
+
]
|
109 |
+
},
|
110 |
+
"clean_up_tokenization_spaces": true,
|
111 |
+
"eos_token": "</s>",
|
112 |
+
"extra_ids": 100,
|
113 |
+
"model_max_length": 1000000000000000019884624838656,
|
114 |
+
"pad_token": "<pad>",
|
115 |
+
"sp_model_kwargs": {},
|
116 |
+
"tokenizer_class": "OpenBATokenizer",
|
117 |
+
"tokenizer_file": null,
|
118 |
+
"unk_token": "<unk>"
|
119 |
+
}
|
120 |
+
|