File size: 5,749 Bytes
92d0fa0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
# CREDITS: This comes almost as-is from the Triton layer norm tutorial
# https://github.com/openai/triton/blob/master/python/tutorials/05-layer-norm.py
#    Copyright 2023 OpenNLPLab
#
#    Licensed under the Apache License, Version 2.0 (the "License");
#    you may not use this file except in compliance with the License.
#    You may obtain a copy of the License at
#
#        http://www.apache.org/licenses/LICENSE-2.0
#
#    Unless required by applicable law or agreed to in writing, software
#    distributed under the License is distributed on an "AS IS" BASIS,
#    WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
#    See the License for the specific language governing permissions and
#    limitations under the License.

import torch
import torch.nn.functional as F
import triton
import triton.language as tl


# fmt: off
@triton.jit
def srms_norm_fw(X, Y, V, stride, N, eps, BLOCK_SIZE_N: tl.constexpr):
    # fmt: on
    row = tl.program_id(0)
    cols = tl.arange(0, BLOCK_SIZE_N)
    mask = cols < N

    # Move to this row
    x_ptrs = X + row * stride + cols
    x = tl.load(x_ptrs, mask=mask, other=0.0).to(tl.float32)

    x_zm = tl.where(mask, x, 0.0)

    x_var = tl.sum(x_zm * x_zm, axis=0) / N
    rstd = 1.0 / tl.sqrt(x_var + eps)

    # Normalize, optionally affine
    y = x_zm * rstd
    tl.store(V + row, rstd)

    y_ptrs = Y + row * stride + cols
    tl.store(y_ptrs, y, mask=mask)


# Backward pass (DX + partial DW + partial DB)
# fmt: off
@triton.jit
def srms_norm_bwd_dx_fused(
    DX, DY,
    X, V,
    stride, N,
    # META-parameters
    BLOCK_SIZE_N: tl.constexpr,
):
    # fmt: on

    # position of elements processed by this program
    row = tl.program_id(0)
    cols = tl.arange(0, BLOCK_SIZE_N)
    mask = cols < N

    # offset data pointers to start at the row of interest
    x_ptrs = X + row * stride + cols
    dy_ptrs = DY + row * stride + cols

    # load data to SRAM
    x = tl.load(x_ptrs, mask=mask, other=0)
    dy = tl.load(dy_ptrs, mask=mask, other=0)
    rstd = tl.load(V + row)

    # compute dx
    xhat = x * rstd
    wdy = dy

    xhat = tl.where(mask, xhat, 0.)
    wdy = tl.where(mask, wdy, 0.)
    mean1 = tl.sum(xhat * wdy, axis=0) / N
    dx = (wdy - (xhat * mean1)) * rstd

    # write-back dx
    mask = cols < N  # re-materialize the mask to save registers
    dx_ptrs = DX + row * stride + cols
    tl.store(dx_ptrs, dx, mask=mask)


class _SrmsNorm(torch.autograd.Function):

    @staticmethod
    def forward(ctx, x, eps):
        # catch eps being too small if the tensors are fp16
        if x.dtype == torch.float16:
            eps = max(eps, 1.6e-5)

        # allocate output
        y = torch.empty_like(x)

        # reshape input data into 2D tensor
        x_arg = x.reshape(-1, x.shape[-1])
        M, N = x_arg.shape

        # allocate mean and std, they'll be used in the backward pass
        rstd = torch.empty((M, ), dtype=torch.float32, device=x.device)

        # Less than 64KB per feature: enqueue fused kernel
        MAX_FUSED_SIZE = 65536 // x.element_size()
        BLOCK_SIZE_N = min(MAX_FUSED_SIZE, triton.next_power_of_2(N))
        if N > BLOCK_SIZE_N:
            raise RuntimeError(
                "This layer norm doesn't support feature dim >= 64KB.")

        if not x_arg.is_contiguous() or not y.is_contiguous():
            x_arg = x_arg.contiguous()
            y = y.contiguous()

        # heuristics for number of warps.
        num_warps = min(max(BLOCK_SIZE_N // 256, 1), 16)

        # enqueue kernel
        # fmt: off
        srms_norm_fw[(M,)](
            x_arg, y, rstd,
            x_arg.stride(0),
            N,
            eps,
            num_warps=num_warps,
            BLOCK_SIZE_N=BLOCK_SIZE_N,
        )
        # fmt: on

        ctx.save_for_backward(x, rstd)
        ctx.BLOCK_SIZE_N = BLOCK_SIZE_N
        ctx.num_warps = num_warps

        return y.reshape_as(x)

    @staticmethod
    def backward(
        ctx, dy
    ):  # pragma: no cover  # this is covered, but called directly from C++
        x, rstd = ctx.saved_tensors

        # flatten the batch dimension, if any.
        # We're interested in 'samples' x norm_dimension
        x = x.reshape(-1, x.size(-1))
        M, N = x.size()

        # heuristics for amount of parallel reduction stream for DG/DB
        GROUP_SIZE_M = 32
        if N <= 8192:
            GROUP_SIZE_M = 64
        if N <= 4096:
            GROUP_SIZE_M = 96
        if N <= 2048:
            GROUP_SIZE_M = 128
        if N <= 1024:
            GROUP_SIZE_M = 256

        if dy.dtype == torch.float32:
            GROUP_SIZE_M = GROUP_SIZE_M // 2

        # allocate output
        dy = dy.contiguous()
        dx = torch.empty_like(dy)

        # Check the tensor shapes and layouts
        # we suppose in the kernel that they have the same size and are contiguous
        assert (
            dy.numel() == x.numel()
        ), "Something is wrong in the backward graph, possibly because of an inplace operation after the layernorm"

        # enqueue kernel using forward pass heuristics
        # also compute partial sums for DW and DB
        num_warps = min(max(ctx.BLOCK_SIZE_N // 256, 1), 16)

        # fmt: off
        srms_norm_bwd_dx_fused[(M,)](
            dx, dy, x,
            rstd,
            x.stride(0),
            N,
            BLOCK_SIZE_N=ctx.BLOCK_SIZE_N,
            num_warps=num_warps
        )
        # fmt: on

        dx = dx.reshape_as(dy)
        return dx, None, None


class SimpleRMSNorm(torch.nn.Module):

    def __init__(self, dim: int, eps: float = 1e-6):
        super().__init__()
        self.eps = eps
        self.dim = dim

    def forward(self, x):
        return _SrmsNorm.apply(x, self.eps)