File size: 4,392 Bytes
b6f5f63
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
#    Copyright 2024 OpenNLPLab
#
#    Licensed under the Apache License, Version 2.0 (the "License");
#    you may not use this file except in compliance with the License.
#    You may obtain a copy of the License at
#
#        http://www.apache.org/licenses/LICENSE-2.0
#
#    Unless required by applicable law or agreed to in writing, software
#    distributed under the License is distributed on an "AS IS" BASIS,
#    WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
#    See the License for the specific language governing permissions and
#    limitations under the License.

# coding=utf-8

import logging
import os
import sys

import torch
from torch import nn
import torch.distributed as dist
import torch.nn.functional as F

from .norm import SimpleRMSNorm as SimpleRMSNormTorch
from .srmsnorm_triton import SimpleRMSNorm as SimpleRMSNormTriton

use_triton = eval(os.environ.get("use_triton", default="True"))
debug = eval(os.environ.get("debug", default="False"))

if use_triton:
    SimpleRMSNorm = SimpleRMSNormTriton
else:
    SimpleRMSNorm = SimpleRMSNormTorch

logging.basicConfig(
    format="%(asctime)s | %(levelname)s | %(name)s | %(message)s",
    datefmt="%Y-%m-%d %H:%M:%S",
    level=os.environ.get("LOGLEVEL", "INFO").upper(),
    stream=sys.stdout,
)
logger = logging.getLogger("print_config")

BASE_DIM = 256


def is_dist_avail_and_initialized():
    if not dist.is_available():
        return False
    if not dist.is_initialized():
        return False
    return True


def get_world_size():
    if not is_dist_avail_and_initialized():
        return 1
    return dist.get_world_size()


def get_rank():
    if not is_dist_avail_and_initialized():
        return 0
    return dist.get_rank()


def is_main_process():
    return get_rank() == 0


def logging_info(string):
    if is_main_process():
        logger.info(string)


def print_params(**kwargs):
    if is_main_process():
        logger.info(f"start print config of {kwargs['__class__']}")
        for key in kwargs:
            if key in ["__class__", "self"]:
                continue
            logger.info(f"{key}: {kwargs[key]}")
        logger.info(f"end print config of {kwargs['__class__']}")


def print_config(config):
    if is_main_process():
        logger.info(f"start print config of {config['__class__']}")
        for key in config:
            if key in ["__class__", "self"]:
                continue
            logger.info(f"{key}: {config[key]}")
        logger.info(f"end print config of {config['__class__']}")


def print_module(module):
    named_modules = set()
    for p in module.named_modules():
        named_modules.update([p[0]])
    named_modules = list(named_modules)

    string_repr = ""
    for p in module.named_parameters():
        name = p[0].split(".")[0]
        if name not in named_modules:
            string_repr = (string_repr + "(" + name + "): " + "Tensor(" +
                           str(tuple(p[1].shape)) + ", requires_grad=" +
                           str(p[1].requires_grad) + ")\n")

    return string_repr.rstrip("\n")


def get_activation_fn(activation):
    if debug:
        logger.info(f"activation: {activation}")
    if activation == "gelu":
        return F.gelu
    elif activation == "relu":
        return F.relu
    elif activation == "elu":
        return F.elu
    elif activation == "sigmoid":
        return F.sigmoid
    elif activation == "exp":

        def f(x):
            with torch.no_grad():
                x_max = torch.max(x, dim=-1, keepdims=True).values
            y = torch.exp(x - x_max)

            return y

        return f
    elif activation == "leak":
        return F.leaky_relu
    elif activation == "1+elu":

        def f(x):
            return 1 + F.elu(x)

        return f
    elif activation == "2+elu":

        def f(x):
            return 2 + F.elu(x)

        return f
    elif activation == "silu" or activation == "swish":
        return F.silu
    elif activation == "sine":
        return torch.sin
    else:
        logger.info(
            f"activation: does not support {activation}, use Identity!!!")
        return lambda x: x


def get_norm_fn(norm_type):
    if norm_type == "simplermsnorm":
        return SimpleRMSNorm
    else:
        return nn.LayerNorm


def convert_to_multiple_of_base(x):
    return BASE_DIM * ((x + BASE_DIM - 1) // BASE_DIM)