OpenNLPLab
commited on
Commit
•
4e73edd
1
Parent(s):
bb9fa21
Upgrade to lightning att2
Browse files- lightning_attention2.py +540 -0
- modeling_transnormer.py +4 -3
lightning_attention2.py
ADDED
@@ -0,0 +1,540 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright 2024 OpenNLPLab
|
2 |
+
#
|
3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4 |
+
# you may not use this file except in compliance with the License.
|
5 |
+
# You may obtain a copy of the License at
|
6 |
+
#
|
7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8 |
+
#
|
9 |
+
# Unless required by applicable law or agreed to in writing, software
|
10 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12 |
+
# See the License for the specific language governing permissions and
|
13 |
+
# limitations under the License.
|
14 |
+
|
15 |
+
# coding=utf-8
|
16 |
+
import torch
|
17 |
+
import triton
|
18 |
+
import triton.language as tl
|
19 |
+
|
20 |
+
|
21 |
+
@triton.jit
|
22 |
+
def _fwd_kernel(
|
23 |
+
Q,
|
24 |
+
K,
|
25 |
+
V,
|
26 |
+
Out,
|
27 |
+
S,
|
28 |
+
stride_qz,
|
29 |
+
stride_qh,
|
30 |
+
stride_qm,
|
31 |
+
stride_qk,
|
32 |
+
stride_kz,
|
33 |
+
stride_kh,
|
34 |
+
stride_kn,
|
35 |
+
stride_kk,
|
36 |
+
stride_vz,
|
37 |
+
stride_vh,
|
38 |
+
stride_vn,
|
39 |
+
stride_ve,
|
40 |
+
stride_oz,
|
41 |
+
stride_oh,
|
42 |
+
stride_om,
|
43 |
+
stride_oe,
|
44 |
+
stride_sh,
|
45 |
+
Z,
|
46 |
+
H,
|
47 |
+
N_CTX,
|
48 |
+
BLOCK_M: tl.constexpr,
|
49 |
+
BLOCK_DMODEL_QK: tl.constexpr,
|
50 |
+
BLOCK_N: tl.constexpr,
|
51 |
+
BLOCK_DMODEL_V: tl.constexpr,
|
52 |
+
IS_CAUSAL: tl.constexpr,
|
53 |
+
USE_DECAY: tl.constexpr,
|
54 |
+
):
|
55 |
+
start_m = tl.program_id(0)
|
56 |
+
off_hz = tl.program_id(1)
|
57 |
+
off_h = off_hz % H
|
58 |
+
# initialize offsets
|
59 |
+
offs_m = start_m * BLOCK_M + tl.arange(0, BLOCK_M)
|
60 |
+
offs_n = tl.arange(0, BLOCK_N)
|
61 |
+
offs_k = tl.arange(0, BLOCK_DMODEL_QK)
|
62 |
+
offs_e = tl.arange(0, BLOCK_DMODEL_V)
|
63 |
+
# get current offset of q k v
|
64 |
+
off_q = (off_hz * stride_qh + offs_m[:, None] * stride_qm
|
65 |
+
+ offs_k[None, :] * stride_qk)
|
66 |
+
off_k = (off_hz * stride_kh + offs_n[:, None] * stride_kn
|
67 |
+
+ offs_k[None, :] * stride_kk)
|
68 |
+
off_v = (off_hz * stride_vh + offs_n[:, None] * stride_vn
|
69 |
+
+ offs_e[None, :] * stride_ve)
|
70 |
+
off_o = (off_hz * stride_oh + offs_m[:, None] * stride_om
|
71 |
+
+ offs_e[None, :] * stride_oe)
|
72 |
+
|
73 |
+
# Initialize pointers to Q, K, V
|
74 |
+
q_ptrs = Q + off_q
|
75 |
+
k_ptrs = K + off_k
|
76 |
+
v_ptrs = V + off_v
|
77 |
+
|
78 |
+
# initialize pointer to m and l
|
79 |
+
acc = tl.zeros([BLOCK_M, BLOCK_DMODEL_V], dtype=tl.float32)
|
80 |
+
# load q: it will stay in SRAM throughout
|
81 |
+
q = tl.load(q_ptrs, mask=offs_m[:, None] < N_CTX, other=0.0)
|
82 |
+
# loop over k, v and update accumulator
|
83 |
+
lo = 0
|
84 |
+
# print(start_m)
|
85 |
+
hi = (start_m + 1) * BLOCK_M if IS_CAUSAL else N_CTX
|
86 |
+
for start_n in range(lo, hi, BLOCK_N):
|
87 |
+
# -- load k, v --
|
88 |
+
k = tl.load(
|
89 |
+
k_ptrs + start_n * stride_kn,
|
90 |
+
mask=(start_n + offs_n)[:, None] < N_CTX,
|
91 |
+
other=0.0,
|
92 |
+
)
|
93 |
+
v = tl.load(
|
94 |
+
v_ptrs + start_n * stride_vn,
|
95 |
+
mask=(start_n + offs_n)[:, None] < N_CTX,
|
96 |
+
other=0.0,
|
97 |
+
)
|
98 |
+
# -- compute qk ---
|
99 |
+
# qk = tl.dot(q, k)
|
100 |
+
qk = tl.zeros([BLOCK_M, BLOCK_N], dtype=tl.float32)
|
101 |
+
# qk += tl.dot(q, k, trans_b=True)
|
102 |
+
qk += tl.dot(q, tl.trans(k))
|
103 |
+
if IS_CAUSAL:
|
104 |
+
index = offs_m[:, None] - (start_n + offs_n[None, :])
|
105 |
+
if USE_DECAY:
|
106 |
+
S_block_ptr = S + off_h * stride_sh
|
107 |
+
s = tl.load(S_block_ptr)
|
108 |
+
s_index = s * index
|
109 |
+
s_index = tl.where(s_index >= 0, -s_index, float("-inf"))
|
110 |
+
qk = tl.exp(s_index) * qk
|
111 |
+
else:
|
112 |
+
qk = tl.where(index >= 0, qk, 0)
|
113 |
+
acc += tl.dot(qk, v.to(qk.dtype))
|
114 |
+
|
115 |
+
out_ptrs = Out + off_o
|
116 |
+
tl.store(out_ptrs, acc.to(q.dtype), mask=offs_m[:, None] < N_CTX)
|
117 |
+
|
118 |
+
|
119 |
+
@triton.jit
|
120 |
+
def _bwd_kernel_kv(
|
121 |
+
Q,
|
122 |
+
K,
|
123 |
+
V,
|
124 |
+
S,
|
125 |
+
DO,
|
126 |
+
DQ,
|
127 |
+
DK,
|
128 |
+
DV,
|
129 |
+
stride_qz,
|
130 |
+
stride_qh,
|
131 |
+
stride_qm,
|
132 |
+
stride_qk,
|
133 |
+
stride_kz,
|
134 |
+
stride_kh,
|
135 |
+
stride_kn,
|
136 |
+
stride_kk,
|
137 |
+
stride_vz,
|
138 |
+
stride_vh,
|
139 |
+
stride_vn,
|
140 |
+
stride_ve,
|
141 |
+
stride_oz,
|
142 |
+
stride_oh,
|
143 |
+
stride_om,
|
144 |
+
stride_oe,
|
145 |
+
stride_sh,
|
146 |
+
Z,
|
147 |
+
H,
|
148 |
+
N_CTX,
|
149 |
+
num_block,
|
150 |
+
BLOCK_M: tl.constexpr,
|
151 |
+
BLOCK_DMODEL_QK: tl.constexpr,
|
152 |
+
BLOCK_N: tl.constexpr,
|
153 |
+
BLOCK_DMODEL_V: tl.constexpr,
|
154 |
+
CAUSAL: tl.constexpr,
|
155 |
+
USE_DECAY: tl.constexpr,
|
156 |
+
):
|
157 |
+
start_n = tl.program_id(0)
|
158 |
+
off_hz = tl.program_id(1)
|
159 |
+
|
160 |
+
off_z = off_hz // H
|
161 |
+
off_h = off_hz % H
|
162 |
+
# offset pointers for batch/head
|
163 |
+
Q += off_z * stride_qz + off_h * stride_qh
|
164 |
+
K += off_z * stride_kz + off_h * stride_kh
|
165 |
+
V += off_z * stride_vz + off_h * stride_vh
|
166 |
+
DO += off_z * stride_oz + off_h * stride_oh
|
167 |
+
DQ += off_z * stride_qz + off_h * stride_qh
|
168 |
+
DK += off_z * stride_kz + off_h * stride_kh
|
169 |
+
DV += off_z * stride_vz + off_h * stride_vh
|
170 |
+
|
171 |
+
# start of q
|
172 |
+
if CAUSAL:
|
173 |
+
lo = start_n * BLOCK_M
|
174 |
+
else:
|
175 |
+
lo = 0
|
176 |
+
# initialize row/col offsets
|
177 |
+
# seqlence offset
|
178 |
+
offs_qm = lo + tl.arange(0, BLOCK_M)
|
179 |
+
offs_kvn = start_n * BLOCK_N + tl.arange(0, BLOCK_N)
|
180 |
+
# feature offset
|
181 |
+
offs_qkk = tl.arange(0, BLOCK_DMODEL_QK)
|
182 |
+
offs_ve = tl.arange(0, BLOCK_DMODEL_V)
|
183 |
+
# row block index
|
184 |
+
offs_m = tl.arange(0, BLOCK_M)
|
185 |
+
# initialize pointers to value-like data
|
186 |
+
q_ptrs = Q + (offs_qm[:, None] * stride_qm + offs_qkk[None, :] * stride_qk)
|
187 |
+
k_ptrs = K + (offs_kvn[:, None] * stride_kn
|
188 |
+
+ offs_qkk[None, :] * stride_kk)
|
189 |
+
v_ptrs = V + (offs_kvn[:, None] * stride_vn + offs_ve[None, :] * stride_ve)
|
190 |
+
do_ptrs = DO + (offs_qm[:, None] * stride_om
|
191 |
+
+ offs_ve[None, :] * stride_oe)
|
192 |
+
dq_ptrs = DQ + (offs_qm[:, None] * stride_qm
|
193 |
+
+ offs_qkk[None, :] * stride_qk)
|
194 |
+
# initialize dv amd dk
|
195 |
+
dv = tl.zeros([BLOCK_N, BLOCK_DMODEL_V], dtype=tl.float32)
|
196 |
+
dk = tl.zeros([BLOCK_N, BLOCK_DMODEL_QK], dtype=tl.float32)
|
197 |
+
# k and v stay in SRAM throughout
|
198 |
+
k = tl.load(k_ptrs, mask=offs_kvn[:, None] < N_CTX, other=0.0)
|
199 |
+
v = tl.load(v_ptrs, mask=offs_kvn[:, None] < N_CTX, other=0.0)
|
200 |
+
# loop over rows
|
201 |
+
for start_m in range(lo, num_block * BLOCK_M, BLOCK_M):
|
202 |
+
offs_m_curr = start_m + offs_m
|
203 |
+
# load q, k, v, do on-chip
|
204 |
+
q = tl.load(q_ptrs, mask=offs_m_curr[:, None] < N_CTX, other=0.0)
|
205 |
+
qk = tl.dot(q, tl.trans(k))
|
206 |
+
# qk = tl.dot(q, k, trans_b=True)
|
207 |
+
if CAUSAL:
|
208 |
+
index = offs_m_curr[:, None] - offs_kvn[None, :]
|
209 |
+
if USE_DECAY:
|
210 |
+
S_block_ptr = S + off_h * stride_sh
|
211 |
+
s = tl.load(S_block_ptr)
|
212 |
+
s_index = s * index
|
213 |
+
s_index = tl.where(s_index >= 0, -s_index, float("-inf"))
|
214 |
+
s = tl.exp(s_index)
|
215 |
+
qk = qk * s
|
216 |
+
else:
|
217 |
+
qk = tl.where(index >= 0, qk, 0)
|
218 |
+
|
219 |
+
p = qk
|
220 |
+
# compute dv
|
221 |
+
do = tl.load(do_ptrs, mask=offs_m_curr[:, None] < N_CTX, other=0.0)
|
222 |
+
dv += tl.dot(tl.trans(p.to(do.dtype)), do)
|
223 |
+
dp = tl.dot(do, tl.trans(v).to(do.dtype))
|
224 |
+
if CAUSAL:
|
225 |
+
if USE_DECAY:
|
226 |
+
dp = dp * s
|
227 |
+
else:
|
228 |
+
dp = tl.where(index >= 0, dp, 0)
|
229 |
+
|
230 |
+
dk += tl.dot(tl.trans(dp.to(q.dtype)), q).to(tl.float32)
|
231 |
+
|
232 |
+
# increment pointers
|
233 |
+
q_ptrs += BLOCK_M * stride_qm
|
234 |
+
do_ptrs += BLOCK_M * stride_om
|
235 |
+
# write-back
|
236 |
+
dv_ptrs = DV + (offs_kvn[:, None] * stride_vn
|
237 |
+
+ offs_ve[None, :] * stride_ve)
|
238 |
+
dk_ptrs = DK + (offs_kvn[:, None] * stride_kn
|
239 |
+
+ offs_qkk[None, :] * stride_kk)
|
240 |
+
tl.store(dv_ptrs, dv, mask=offs_kvn[:, None] < N_CTX)
|
241 |
+
tl.store(dk_ptrs, dk, mask=offs_kvn[:, None] < N_CTX)
|
242 |
+
|
243 |
+
|
244 |
+
@triton.jit
|
245 |
+
def _bwd_kernel_q(
|
246 |
+
Q,
|
247 |
+
K,
|
248 |
+
V,
|
249 |
+
S,
|
250 |
+
DO,
|
251 |
+
DQ,
|
252 |
+
DK,
|
253 |
+
DV,
|
254 |
+
stride_qz,
|
255 |
+
stride_qh,
|
256 |
+
stride_qm,
|
257 |
+
stride_qk,
|
258 |
+
stride_kz,
|
259 |
+
stride_kh,
|
260 |
+
stride_kn,
|
261 |
+
stride_kk,
|
262 |
+
stride_vz,
|
263 |
+
stride_vh,
|
264 |
+
stride_vn,
|
265 |
+
stride_ve,
|
266 |
+
stride_oz,
|
267 |
+
stride_oh,
|
268 |
+
stride_om,
|
269 |
+
stride_oe,
|
270 |
+
stride_sh,
|
271 |
+
Z,
|
272 |
+
H,
|
273 |
+
N_CTX,
|
274 |
+
num_block,
|
275 |
+
BLOCK_M: tl.constexpr,
|
276 |
+
BLOCK_DMODEL_QK: tl.constexpr,
|
277 |
+
BLOCK_N: tl.constexpr,
|
278 |
+
BLOCK_DMODEL_V: tl.constexpr,
|
279 |
+
CAUSAL: tl.constexpr,
|
280 |
+
USE_DECAY: tl.constexpr,
|
281 |
+
):
|
282 |
+
start_m = tl.program_id(0)
|
283 |
+
off_hz = tl.program_id(1)
|
284 |
+
off_z = off_hz // H
|
285 |
+
off_h = off_hz % H
|
286 |
+
# offset pointers for batch/head
|
287 |
+
K += off_z * stride_kz + off_h * stride_kh
|
288 |
+
V += off_z * stride_vz + off_h * stride_vh
|
289 |
+
DO += off_z * stride_oz + off_h * stride_oh
|
290 |
+
DQ += off_z * stride_qz + off_h * stride_qh
|
291 |
+
# feature offset
|
292 |
+
offs_qkk = tl.arange(0, BLOCK_DMODEL_QK)
|
293 |
+
offs_ve = tl.arange(0, BLOCK_DMODEL_V)
|
294 |
+
# row block index
|
295 |
+
offs_m = tl.arange(0, BLOCK_M)
|
296 |
+
# row block index
|
297 |
+
offs_qm = start_m * BLOCK_M + tl.arange(0, BLOCK_M)
|
298 |
+
# do
|
299 |
+
do_ptrs = DO + (offs_qm[:, None] * stride_om
|
300 |
+
+ offs_ve[None, :] * stride_oe)
|
301 |
+
dq_ptrs = DQ + (offs_qm[:, None] * stride_qm
|
302 |
+
+ offs_qkk[None, :] * stride_qk)
|
303 |
+
|
304 |
+
do = tl.load(do_ptrs, mask=offs_qm[:, None] < N_CTX, other=0.0)
|
305 |
+
|
306 |
+
dq = tl.zeros([BLOCK_M, BLOCK_DMODEL_QK], dtype=tl.float32)
|
307 |
+
lo = 0
|
308 |
+
hi = (start_m + 1) * BLOCK_M if CAUSAL else N_CTX
|
309 |
+
|
310 |
+
offs_m_curr = start_m * BLOCK_M + offs_m
|
311 |
+
|
312 |
+
for start_n in range(0, num_block):
|
313 |
+
offs_kvn = start_n * BLOCK_N + tl.arange(0, BLOCK_N)
|
314 |
+
k_ptrs = K + (offs_kvn[:, None] * stride_kn
|
315 |
+
+ offs_qkk[None, :] * stride_kk)
|
316 |
+
v_ptrs = V + (offs_kvn[:, None] * stride_vn
|
317 |
+
+ offs_ve[None, :] * stride_ve)
|
318 |
+
# k and v stay in SRAM throughout
|
319 |
+
k = tl.load(k_ptrs, mask=offs_kvn[:, None] < N_CTX, other=0.0)
|
320 |
+
v = tl.load(v_ptrs, mask=offs_kvn[:, None] < N_CTX, other=0.0)
|
321 |
+
# dp = do vT
|
322 |
+
dp = tl.dot(do, tl.trans(v).to(do.dtype))
|
323 |
+
if CAUSAL:
|
324 |
+
index = offs_m_curr[:, None] - offs_kvn[None, :]
|
325 |
+
if USE_DECAY:
|
326 |
+
S_block_ptr = S + off_h * stride_sh
|
327 |
+
s = tl.load(S_block_ptr)
|
328 |
+
s_index = s * index
|
329 |
+
s_index = tl.where(s_index >= 0, -s_index, float("-inf"))
|
330 |
+
s = tl.exp(s_index)
|
331 |
+
dp = dp * s
|
332 |
+
else:
|
333 |
+
dp = tl.where(index >= 0, dp, 0)
|
334 |
+
# dq = dq + dp k
|
335 |
+
dq += tl.dot(dp.to(k.dtype), k)
|
336 |
+
|
337 |
+
tl.store(dq_ptrs, dq, mask=offs_qm[:, None] < N_CTX)
|
338 |
+
|
339 |
+
|
340 |
+
class _attention(torch.autograd.Function):
|
341 |
+
|
342 |
+
@staticmethod
|
343 |
+
def forward(ctx, q, k, v, causal, s):
|
344 |
+
q = q.contiguous()
|
345 |
+
k = k.contiguous()
|
346 |
+
v = v.contiguous()
|
347 |
+
s = s.contiguous()
|
348 |
+
# only support for Ampere now
|
349 |
+
capability = torch.cuda.get_device_capability()
|
350 |
+
if capability[0] < 8:
|
351 |
+
raise RuntimeError(
|
352 |
+
"Lightning attention currently only supported for compute capability >= 80"
|
353 |
+
)
|
354 |
+
# shape constraints
|
355 |
+
Lq, Lk, Lv = q.shape[-1], k.shape[-1], v.shape[-1]
|
356 |
+
# right
|
357 |
+
o = torch.empty(
|
358 |
+
(q.shape[0], q.shape[1], q.shape[2], v.shape[-1]),
|
359 |
+
dtype=q.dtype,
|
360 |
+
device=q.device,
|
361 |
+
)
|
362 |
+
|
363 |
+
BLOCK_M = 128
|
364 |
+
BLOCK_N = 64
|
365 |
+
num_warps = 4 if Lk <= 64 else 8
|
366 |
+
num_stages = 1
|
367 |
+
|
368 |
+
grid = (triton.cdiv(q.shape[2], BLOCK_M), q.shape[0] * q.shape[1], 1)
|
369 |
+
use_decay = s.shape[0] > 0
|
370 |
+
_fwd_kernel[grid](
|
371 |
+
q,
|
372 |
+
k,
|
373 |
+
v,
|
374 |
+
o,
|
375 |
+
s,
|
376 |
+
q.stride(0),
|
377 |
+
q.stride(1),
|
378 |
+
q.stride(2),
|
379 |
+
q.stride(3),
|
380 |
+
k.stride(0),
|
381 |
+
k.stride(1),
|
382 |
+
k.stride(2),
|
383 |
+
k.stride(3),
|
384 |
+
v.stride(0),
|
385 |
+
v.stride(1),
|
386 |
+
v.stride(2),
|
387 |
+
v.stride(3),
|
388 |
+
o.stride(0),
|
389 |
+
o.stride(1),
|
390 |
+
o.stride(2),
|
391 |
+
o.stride(3),
|
392 |
+
s.stride(0),
|
393 |
+
q.shape[0],
|
394 |
+
q.shape[1],
|
395 |
+
q.shape[2],
|
396 |
+
BLOCK_M=BLOCK_M,
|
397 |
+
BLOCK_DMODEL_QK=Lk,
|
398 |
+
BLOCK_N=BLOCK_N,
|
399 |
+
BLOCK_DMODEL_V=Lv,
|
400 |
+
IS_CAUSAL=causal,
|
401 |
+
USE_DECAY=use_decay,
|
402 |
+
num_warps=num_warps,
|
403 |
+
num_stages=num_stages,
|
404 |
+
)
|
405 |
+
|
406 |
+
ctx.save_for_backward(q, k, v, s)
|
407 |
+
ctx.grid = grid
|
408 |
+
ctx.BLOCK_M = BLOCK_M
|
409 |
+
ctx.BLOCK_DMODEL_QK = Lk
|
410 |
+
ctx.BLOCK_N = BLOCK_N
|
411 |
+
ctx.BLOCK_DMODEL_V = Lv
|
412 |
+
ctx.causal = causal
|
413 |
+
ctx.use_decay = use_decay
|
414 |
+
return o
|
415 |
+
|
416 |
+
@staticmethod
|
417 |
+
def backward(ctx, do):
|
418 |
+
q, k, v, s = ctx.saved_tensors
|
419 |
+
BLOCK_M = 32
|
420 |
+
BLOCK_N = 32
|
421 |
+
num_warps = 4
|
422 |
+
num_stages = 1
|
423 |
+
|
424 |
+
do = do.contiguous()
|
425 |
+
dq = torch.zeros_like(q, dtype=torch.float32)
|
426 |
+
dk = torch.empty_like(k)
|
427 |
+
dv = torch.empty_like(v)
|
428 |
+
|
429 |
+
grid_kv = (triton.cdiv(k.shape[2],
|
430 |
+
BLOCK_N), k.shape[0] * k.shape[1], 1)
|
431 |
+
_bwd_kernel_kv[grid_kv](
|
432 |
+
q,
|
433 |
+
k,
|
434 |
+
v,
|
435 |
+
s,
|
436 |
+
do,
|
437 |
+
dq,
|
438 |
+
dk,
|
439 |
+
dv,
|
440 |
+
q.stride(0),
|
441 |
+
q.stride(1),
|
442 |
+
q.stride(2),
|
443 |
+
q.stride(3),
|
444 |
+
k.stride(0),
|
445 |
+
k.stride(1),
|
446 |
+
k.stride(2),
|
447 |
+
k.stride(3),
|
448 |
+
v.stride(0),
|
449 |
+
v.stride(1),
|
450 |
+
v.stride(2),
|
451 |
+
v.stride(3),
|
452 |
+
do.stride(0),
|
453 |
+
do.stride(1),
|
454 |
+
do.stride(2),
|
455 |
+
do.stride(3),
|
456 |
+
s.stride(0),
|
457 |
+
q.shape[0],
|
458 |
+
q.shape[1],
|
459 |
+
q.shape[2],
|
460 |
+
grid_kv[0],
|
461 |
+
BLOCK_M=BLOCK_M,
|
462 |
+
BLOCK_DMODEL_QK=ctx.BLOCK_DMODEL_QK,
|
463 |
+
BLOCK_N=BLOCK_N,
|
464 |
+
BLOCK_DMODEL_V=ctx.BLOCK_DMODEL_V,
|
465 |
+
CAUSAL=ctx.causal,
|
466 |
+
USE_DECAY=ctx.use_decay,
|
467 |
+
num_warps=num_warps,
|
468 |
+
num_stages=num_stages,
|
469 |
+
)
|
470 |
+
|
471 |
+
grid_q = (triton.cdiv(q.shape[2], BLOCK_M), q.shape[0] * q.shape[1], 1)
|
472 |
+
|
473 |
+
_bwd_kernel_q[grid_q](
|
474 |
+
q,
|
475 |
+
k,
|
476 |
+
v,
|
477 |
+
s,
|
478 |
+
do,
|
479 |
+
dq,
|
480 |
+
dk,
|
481 |
+
dv,
|
482 |
+
q.stride(0),
|
483 |
+
q.stride(1),
|
484 |
+
q.stride(2),
|
485 |
+
q.stride(3),
|
486 |
+
k.stride(0),
|
487 |
+
k.stride(1),
|
488 |
+
k.stride(2),
|
489 |
+
k.stride(3),
|
490 |
+
v.stride(0),
|
491 |
+
v.stride(1),
|
492 |
+
v.stride(2),
|
493 |
+
v.stride(3),
|
494 |
+
do.stride(0),
|
495 |
+
do.stride(1),
|
496 |
+
do.stride(2),
|
497 |
+
do.stride(3),
|
498 |
+
s.stride(0),
|
499 |
+
q.shape[0],
|
500 |
+
q.shape[1],
|
501 |
+
q.shape[2],
|
502 |
+
grid_q[0],
|
503 |
+
BLOCK_M=BLOCK_M,
|
504 |
+
BLOCK_DMODEL_QK=ctx.BLOCK_DMODEL_QK,
|
505 |
+
BLOCK_N=BLOCK_N,
|
506 |
+
BLOCK_DMODEL_V=ctx.BLOCK_DMODEL_V,
|
507 |
+
CAUSAL=ctx.causal,
|
508 |
+
USE_DECAY=ctx.use_decay,
|
509 |
+
num_warps=num_warps,
|
510 |
+
num_stages=num_stages,
|
511 |
+
)
|
512 |
+
|
513 |
+
return dq.to(q.dtype), dk, dv, None, None
|
514 |
+
|
515 |
+
|
516 |
+
attention = _attention.apply
|
517 |
+
|
518 |
+
|
519 |
+
def lightning_attention(q, k, v, causal, ed):
|
520 |
+
d = q.shape[-1]
|
521 |
+
e = v.shape[-1]
|
522 |
+
# arr = f(d)
|
523 |
+
if d >= 128:
|
524 |
+
m = 128
|
525 |
+
else:
|
526 |
+
m = 64
|
527 |
+
arr = [m * i for i in range(d // m + 1)]
|
528 |
+
if arr[-1] != d:
|
529 |
+
arr.append(d)
|
530 |
+
n = len(arr)
|
531 |
+
output = 0
|
532 |
+
for i in range(n - 1):
|
533 |
+
s = arr[i]
|
534 |
+
e = arr[i + 1]
|
535 |
+
q1 = q[..., s:e]
|
536 |
+
k1 = k[..., s:e]
|
537 |
+
o = attention(q1, k1, v, causal, ed)
|
538 |
+
output = output + o
|
539 |
+
|
540 |
+
return output
|
modeling_transnormer.py
CHANGED
@@ -63,7 +63,7 @@ BLOCK = 256
|
|
63 |
|
64 |
if use_triton:
|
65 |
try:
|
66 |
-
from .
|
67 |
|
68 |
has_lightning_attention = True
|
69 |
except (ImportError, ModuleNotFoundError):
|
@@ -345,8 +345,9 @@ class NormLinearAttention(nn.Module):
|
|
345 |
k[:, :, i:i + 1],
|
346 |
v[:, :, i:i + 1],
|
347 |
)
|
348 |
-
qkv = torch.einsum("... n e, ... e d -> ... n d",
|
349 |
-
|
|
|
350 |
output.append(qkv)
|
351 |
output = torch.concat(output, dim=-2)
|
352 |
|
|
|
63 |
|
64 |
if use_triton:
|
65 |
try:
|
66 |
+
from .lightning_attention2 import lightning_attention
|
67 |
|
68 |
has_lightning_attention = True
|
69 |
except (ImportError, ModuleNotFoundError):
|
|
|
345 |
k[:, :, i:i + 1],
|
346 |
v[:, :, i:i + 1],
|
347 |
)
|
348 |
+
qkv = torch.einsum("... n e, ... e d -> ... n d", q[:, :,
|
349 |
+
i:i + 1],
|
350 |
+
kv.to(q.dtype))
|
351 |
output.append(qkv)
|
352 |
output = torch.concat(output, dim=-2)
|
353 |
|