--- license: apache-2.0 language: - en - zh pipeline_tag: text-generation tags: - ' TransNormerLLM' ---
### Pre-training Logbook * Realtime Track: https://api.wandb.ai/links/opennlplab/kip314lq * Join to dicussion: [discord](https://discord.gg/JEU3nTcWKC) <<<>>> [wechat group](https://github.com/OpenNLPLab/TransnormerLLM/blob/main/images/contact_me_qr.png) > --23.12.25-- startup: [WeChat - 预训练启航](https://mp.weixin.qq.com/s/YjUY-uy89WkF75_-rBTuKw) <<<>>> [Twitter - Pre-training Commences ](https://twitter.com/opennlplab/status/1739568669502611825) <<<>>> [YouTube Recording](https://t.co/wk7svS4o5r) <<<>>> [bilibili 回放](https://www.bilibili.com/video/BV11j411J7Dy) > --24.01.02-- first week review: [WeChat - 第一周概览](https://mp.weixin.qq.com/s/zwGnZZI3itNPoxzzXkuU2w) <<<>>> [Twitter - First Week Review](https://twitter.com/opennlplab/status/1742187694078501038) > --24.01.09-- second week review: [WeChat - 第二周概览](https://mp.weixin.qq.com/s/6D0qi-0aBier05OKuHfPEA) <<<>>> [Twitter - Second Week Review](https://twitter.com/opennlplab/status/1744720007299523063) > --24.01.15-- third week review: [WeChat - 第三周概览](https://mp.weixin.qq.com/s/EQg8evZ2cNtAk4HruwCXPA) <<<>>> [Twitter - Third Week Review](https://twitter.com/opennlplab/status/1746920293069910190) # Released Weights | param | token | Hugging Face | Model Scope | Wisemodel | | :-----: | :---: | :--------------------------------------------------------------------------------------------------------------------: | :---------: | :-------: | | **15B** | 50B | 🤗[step13000](https://huggingface.co/OpenNLPLab/TransNormerLLM3-15B-Intermediate-Checkpoints/tree/step13000-50Btokens) | 🤖 | 🐯 | | **15B** | 100B | 🤗[step26000](https://huggingface.co/OpenNLPLab/TransNormerLLM3-15B-Intermediate-Checkpoints/tree/step26000-100Btokens) | 🤖 | 🐯 | | **15B** | 150B | 🤗[step39000](https://huggingface.co/OpenNLPLab/TransNormerLLM3-15B-Intermediate-Checkpoints/tree/step39000-150Btokens) | 🤖 | 🐯 | | **15B** | 200B | 🤗[step52000](https://huggingface.co/OpenNLPLab/TransNormerLLM3-15B-Intermediate-Checkpoints/tree/step52000-200Btokens) | 🤖 | 🐯 | ```python from transformers import AutoModelForCausalLM, AutoTokenizer tokenizer = AutoTokenizer.from_pretrained("OpenNLPLab/TransNormerLLM3-15B-Intermediate-Checkpoints", revision='step26000-100Btokens', trust_remote_code=True) model = AutoModelForCausalLM.from_pretrained("OpenNLPLab/TransNormerLLM3-15B-Intermediate-Checkpoints", torch_dtype=torch.bfloat16, revision='step26000-100Btokens', device_map="auto", trust_remote_code=True) ``` # Benchmark Results The evaluations of all models are conducted using the official settings and the [lm-evaluation-harness](https://github.com/EleutherAI/lm-evaluation-harness) framework. | Model | P | T | BoolQ | PIQA | HS | WG | ARC-e | ARC-c | OBQA | C-Eval | MMLU | | ----------------------- | --- | ---- | ----- | ----- | ----- | ----- | ----- | ----- | ----- | ------ | ----- | | **TransNormerLLM3-15B** | 15 | 0.05 | 62.08 | 72.52 | 55.55 | 57.14 | 62.12 | 31.14 | 32.40 | 26.18 | 27.50 | | **TransNormerLLM3-15B** | 15 | 0.10 | 63.98 | 74.70 | 61.09 | 61.33 | 65.95 | 34.64 | 35.60 | 25.38 | 27.40 | | **TransNormerLLM3-15B** | 15 | 0.15 | 60.34 | 75.08 | 63.99 | 62.04 | 64.56 | 34.90 | 35.20 | 22.64 | 26.60 | | **TransNormerLLM3-15B** | 15 | 0.20 | 52.05 | 74.48 | 64.72 | 62.75 | 66.16 | 35.15 | 36.80 | 27.25 | 30.80 | | **TransNormerLLM3-15B** | 15 | 0.25 | 66.70 | 76.50 | 66.51 | 64.80 | 66.84 | 36.18 | 39.40 | 30.87 | 36.10 | | **TransNormerLLM3-15B** | 15 | 0.30 | 67.00 | 76.50 | 67.17 | 64.40 | 66.29 | 36.77 | 38.80 | 33.99 | 37.60 | > **P**: parameter size (billion). **T**: tokens (trillion). **BoolQ**: acc. **PIQA**: acc. **HellaSwag**: acc_norm. **WinoGrande**: acc. **ARC-easy**: acc. **ARC-challenge**: acc_norm. **OpenBookQA**: acc_norm. **MMLU**: 5-shot acc. **C-Eval**: 5-shot acc. ```bash # Please configure the following settings when do evaluation export do_eval=True export use_triton=False ``` # Acknowledgments and Citation ## Acknowledgments Our project is developed based on the following open source projects: - [tiktoken](https://github.com/openai/tiktoken) for the tokenizer. - [metaseq](https://github.com/facebookresearch/metaseq) for training. - [lm-evaluation-harness](https://github.com/EleutherAI/lm-evaluation-harness) for evaluation. ## Citation If you wish to cite our work, please use the following reference: ``` @article{qin2023scaling, title={Scaling transnormer to 175 billion parameters}, author={Qin, Zhen and Li, Dong and Sun, Weigao and Sun, Weixuan and Shen, Xuyang and Han, Xiaodong and Wei, Yunshen and Lv, Baohong and Yuan, Fei and Luo, Xiao and others}, journal={arXiv preprint arXiv:2307.14995}, year={2023} } @misc{qin2024lightning, title={Lightning Attention-2: A Free Lunch for Handling Unlimited Sequence Lengths in Large Language Models}, author={Zhen Qin and Weigao Sun and Dong Li and Xuyang Shen and Weixuan Sun and Yiran Zhong}, year={2024}, eprint={2401.04658}, archivePrefix={arXiv}, primaryClass={cs.CL} } ```
- OpenNLPLab @2024 -