File size: 2,717 Bytes
255a3b9
 
 
 
 
e7da494
547f7fe
e7da494
547f7fe
 
 
 
 
e7da494
40760e5
e7da494
 
 
40760e5
 
 
 
 
e7da494
40760e5
547f7fe
 
e7da494
 
 
 
547f7fe
e7da494
547f7fe
e7da494
547f7fe
 
 
 
 
e7da494
 
547f7fe
 
 
 
5bbbd8d
547f7fe
 
 
 
 
 
 
 
 
 
e313eec
547f7fe
 
 
 
 
e7da494
 
 
 
 
547f7fe
e7da494
547f7fe
e7da494
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
---
license: apache-2.0
language:
- en
---

# Mixtral-8x7b-Instruct-v0.1-int4-ov

 * Model creator: [Mistral AI](https://huggingface.co/mistralai)
 * Original model: [Mixtral 8X7B Instruct v0.1](https://huggingface.co/mistralai/Mixtral-8x7B-Instruct-v0.1)

## Description

This is [Mixtral-8x7b-Instruct-v0.1](https://huggingface.co/mistralai/Mixtral-8x7B-Instruct-v0.1) model converted to the [OpenVINO™ IR](https://docs.openvino.ai/2024/documentation/openvino-ir-format.html) (Intermediate Representation) format with weights compressed to INT4 by [NNCF](https://github.com/openvinotoolkit/nncf).

## Quantization Parameters

Weight compression was performed using `nncf.compress_weights` with the following parameters:

* mode: **INT4_SYM**
* group_size: **128**
* ratio: **0.8**

For more information on quantization, check the [OpenVINO model optimization guide](https://docs.openvino.ai/2024/openvino-workflow/model-optimization-guide/weight-compression.html).

## Compatibility

The provided OpenVINO™ IR model is compatible with:

* OpenVINO version 2024.0.0 and higher
* Optimum Intel 1.16.0 and higher

## Running Model Inference

1. Install packages required for using [Optimum Intel](https://huggingface.co/docs/optimum/intel/index) integration with the OpenVINO backend:

```
pip install optimum[openvino]
```

2. Run model inference:

```
from transformers import AutoTokenizer
from optimum.intel.openvino import OVModelForCausalLM

model_id = "OpenVINO/mixtral-8x7b-instruct-v0.1-int4-ov"
tokenizer = AutoTokenizer.from_pretrained(model_id)
model = OVModelForCausalLM.from_pretrained(model_id)


messages = [
    {"role": "user", "content": "What is your favourite condiment?"},
    {"role": "assistant", "content": "Well, I'm quite partial to a good squeeze of fresh lemon juice. It adds just the right amount of zesty flavour to whatever I'm cooking up in the kitchen!"},
    {"role": "user", "content": "Do you have mayonnaise recipes?"}
]

inputs = tokenizer.apply_chat_template(messages, return_tensors="pt")

outputs = model.generate(inputs, max_new_tokens=20)
print(tokenizer.decode(outputs[0], skip_special_tokens=True))
```

For more examples and possible optimizations, refer to the [OpenVINO Large Language Model Inference Guide](https://docs.openvino.ai/2024/learn-openvino/llm_inference_guide.html).

## Limitations

Check the original model card for [limitations](https://huggingface.co/mistralai/Mixtral-8x7B-Instruct-v0.1#limitations).

## Legal information

The original model is distributed under [Apache 2.0](https://choosealicense.com/licenses/apache-2.0/) license. More details can be found in [original model card](https://huggingface.co/mistralai/Mixtral-8x7B-Instruct-v0.1).