from transformers import MixtralForCausalLM, MixtralConfig from transformers.modeling_outputs import MoeCausalLMOutputWithPast, MoECausalLMOutputWithPast from transformers.models.mixtral.modeling_mixtral import MixtralDecoderLayer, MixtralSparseMoeBlock, load_balancing_loss_func from .noisy_gate import NoisyGate import torch import torch.nn as nn from typing import List, Optional, Tuple, Union def router_z_loss_func( gate_logits: torch.Tensor, num_experts: torch.Tensor = None, top_k=2 ) -> float: """Router z-loss used in ST-MoE.""" if gate_logits is None or not isinstance(gate_logits, tuple): return 0 if isinstance(gate_logits, tuple): compute_device = gate_logits[0].device concatenated_gate_logits = torch.cat([layer_gate.to(compute_device) for layer_gate in gate_logits], dim=0) router_z_loss = torch.logsumexp(concatenated_gate_logits, dim = -1) router_z_loss = torch.square(router_z_loss) router_z_loss = router_z_loss.mean() return router_z_loss class CustomMixtralConfig(MixtralConfig): def __init__(self, **kwargs): super().__init__(**kwargs) class CustomMixtralForCausalLM(MixtralForCausalLM): """Mixtral with z-loss. Gating improvement based on ST-MoE.""" def __init__(self, config): super().__init__(config) self.router_z_loss_coef = 1e-3 for layer in self.model.layers: layer.block_sparse_moe.gate = NoisyGate(config.hidden_size, config.num_local_experts, noise_mult=1.0, bias=False) def forward( self, input_ids: torch.LongTensor = None, attention_mask: Optional[torch.Tensor] = None, position_ids: Optional[torch.LongTensor] = None, past_key_values: Optional[List[torch.FloatTensor]] = None, inputs_embeds: Optional[torch.FloatTensor] = None, labels: Optional[torch.LongTensor] = None, use_cache: Optional[bool] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, output_router_logits: Optional[bool] = None, return_dict: Optional[bool] = None, ): output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions output_router_logits = ( output_router_logits if output_router_logits is not None else self.config.output_router_logits ) output_hidden_states = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) return_dict = return_dict if return_dict is not None else self.config.use_return_dict # decoder outputs consists of (dec_features, layer_state, dec_hidden, dec_attn) outputs = self.model( input_ids=input_ids, attention_mask=attention_mask, position_ids=position_ids, past_key_values=past_key_values, inputs_embeds=inputs_embeds, use_cache=use_cache, output_attentions=output_attentions, output_hidden_states=output_hidden_states, output_router_logits=output_router_logits, return_dict=return_dict, ) hidden_states = outputs[0] logits = self.lm_head(hidden_states) logits = logits.float() loss = None if labels is not None: # Shift so that tokens < n predict n shift_logits = logits[..., :-1, :].contiguous() shift_labels = labels[..., 1:].contiguous() # Flatten the tokens loss_fct = nn.CrossEntropyLoss() shift_logits = shift_logits.view(-1, self.config.vocab_size) shift_labels = shift_labels.view(-1) # Enable model parallelism shift_labels = shift_labels.to(shift_logits.device) loss = loss_fct(shift_logits, shift_labels) aux_loss = None if output_router_logits: aux_loss = load_balancing_loss_func( outputs.router_logits if return_dict else outputs[-1], self.num_experts, self.num_experts_per_tok, attention_mask, ) if labels is not None: loss += self.router_aux_loss_coef * aux_loss.to(loss.device) # make sure to reside in the same device router_z_loss = None if output_router_logits: router_z_loss = router_z_loss_func( outputs.router_logits if return_dict else outputs[-1], self.num_experts, self.num_experts_per_tok, ) if labels is not None: loss += self.router_z_loss_coef * router_z_loss.to(loss.device) if not return_dict: output = (logits,) + outputs[1:] if output_router_logits: output = (router_z_loss,) + output output = (aux_loss,) + output return (loss,) + output if loss is not None else output return MoECausalLMOutputWithPast( loss=loss, aux_loss=aux_loss, z_loss=router_z_loss, logits=logits, past_key_values=outputs.past_key_values, hidden_states=outputs.hidden_states, attentions=outputs.attentions, router_logits=outputs.router_logits, )