|
from transformers import MixtralForCausalLM, MixtralConfig |
|
from transformers.modeling_outputs import MoeCausalLMOutputWithPast, MoECausalLMOutputWithPast |
|
from transformers.models.mixtral.modeling_mixtral import MixtralDecoderLayer, MixtralSparseMoeBlock, load_balancing_loss_func |
|
from .noisy_gate import NoisyGate |
|
import torch |
|
import torch.nn as nn |
|
from typing import List, Optional, Tuple, Union |
|
|
|
def router_z_loss_func( |
|
gate_logits: torch.Tensor, num_experts: torch.Tensor = None, top_k=2 |
|
) -> float: |
|
"""Router z-loss used in ST-MoE.""" |
|
if gate_logits is None or not isinstance(gate_logits, tuple): |
|
return 0 |
|
|
|
if isinstance(gate_logits, tuple): |
|
compute_device = gate_logits[0].device |
|
concatenated_gate_logits = torch.cat([layer_gate.to(compute_device) for layer_gate in gate_logits], dim=0) |
|
|
|
router_z_loss = torch.logsumexp(concatenated_gate_logits, dim = -1) |
|
router_z_loss = torch.square(router_z_loss) |
|
router_z_loss = router_z_loss.mean() |
|
|
|
return router_z_loss |
|
|
|
class CustomMixtralConfig(MixtralConfig): |
|
def __init__(self, **kwargs): |
|
super().__init__(**kwargs) |
|
|
|
class CustomMixtralForCausalLM(MixtralForCausalLM): |
|
"""Mixtral with z-loss. Gating improvement based on ST-MoE.""" |
|
def __init__(self, config): |
|
super().__init__(config) |
|
self.router_z_loss_coef = 1e-3 |
|
for layer in self.model.layers: |
|
layer.block_sparse_moe.gate = NoisyGate(config.hidden_size, config.num_local_experts, noise_mult=1.0, bias=False) |
|
|
|
|
|
def forward( |
|
self, |
|
input_ids: torch.LongTensor = None, |
|
attention_mask: Optional[torch.Tensor] = None, |
|
position_ids: Optional[torch.LongTensor] = None, |
|
past_key_values: Optional[List[torch.FloatTensor]] = None, |
|
inputs_embeds: Optional[torch.FloatTensor] = None, |
|
labels: Optional[torch.LongTensor] = None, |
|
use_cache: Optional[bool] = None, |
|
output_attentions: Optional[bool] = None, |
|
output_hidden_states: Optional[bool] = None, |
|
output_router_logits: Optional[bool] = None, |
|
return_dict: Optional[bool] = None, |
|
): |
|
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions |
|
output_router_logits = ( |
|
output_router_logits if output_router_logits is not None else self.config.output_router_logits |
|
) |
|
|
|
output_hidden_states = ( |
|
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states |
|
) |
|
return_dict = return_dict if return_dict is not None else self.config.use_return_dict |
|
|
|
|
|
outputs = self.model( |
|
input_ids=input_ids, |
|
attention_mask=attention_mask, |
|
position_ids=position_ids, |
|
past_key_values=past_key_values, |
|
inputs_embeds=inputs_embeds, |
|
use_cache=use_cache, |
|
output_attentions=output_attentions, |
|
output_hidden_states=output_hidden_states, |
|
output_router_logits=output_router_logits, |
|
return_dict=return_dict, |
|
) |
|
|
|
hidden_states = outputs[0] |
|
logits = self.lm_head(hidden_states) |
|
logits = logits.float() |
|
|
|
loss = None |
|
if labels is not None: |
|
|
|
shift_logits = logits[..., :-1, :].contiguous() |
|
shift_labels = labels[..., 1:].contiguous() |
|
|
|
loss_fct = nn.CrossEntropyLoss() |
|
shift_logits = shift_logits.view(-1, self.config.vocab_size) |
|
shift_labels = shift_labels.view(-1) |
|
|
|
shift_labels = shift_labels.to(shift_logits.device) |
|
loss = loss_fct(shift_logits, shift_labels) |
|
|
|
aux_loss = None |
|
if output_router_logits: |
|
aux_loss = load_balancing_loss_func( |
|
outputs.router_logits if return_dict else outputs[-1], |
|
self.num_experts, |
|
self.num_experts_per_tok, |
|
attention_mask, |
|
) |
|
if labels is not None: |
|
loss += self.router_aux_loss_coef * aux_loss.to(loss.device) |
|
|
|
router_z_loss = None |
|
if output_router_logits: |
|
router_z_loss = router_z_loss_func( |
|
outputs.router_logits if return_dict else outputs[-1], |
|
self.num_experts, |
|
self.num_experts_per_tok, |
|
) |
|
if labels is not None: |
|
loss += self.router_z_loss_coef * router_z_loss.to(loss.device) |
|
|
|
if not return_dict: |
|
output = (logits,) + outputs[1:] |
|
if output_router_logits: |
|
output = (router_z_loss,) + output |
|
output = (aux_loss,) + output |
|
return (loss,) + output if loss is not None else output |
|
|
|
return MoECausalLMOutputWithPast( |
|
loss=loss, |
|
aux_loss=aux_loss, |
|
z_loss=router_z_loss, |
|
logits=logits, |
|
past_key_values=outputs.past_key_values, |
|
hidden_states=outputs.hidden_states, |
|
attentions=outputs.attentions, |
|
router_logits=outputs.router_logits, |
|
) |
|
|