Create audio.py
Browse files
audio.py
ADDED
@@ -0,0 +1,434 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import base64
|
2 |
+
import gzip
|
3 |
+
from dataclasses import dataclass
|
4 |
+
from typing import Dict, Iterable, Optional, List
|
5 |
+
|
6 |
+
import numpy as np
|
7 |
+
import torch
|
8 |
+
import torch.nn.functional as F
|
9 |
+
from torch import Tensor, nn
|
10 |
+
from subprocess import CalledProcessError, run, Popen, PIPE
|
11 |
+
|
12 |
+
import os
|
13 |
+
from functools import lru_cache
|
14 |
+
from typing import Optional, Union
|
15 |
+
|
16 |
+
def exact_div(x, y):
|
17 |
+
assert x % y == 0
|
18 |
+
return x // y
|
19 |
+
|
20 |
+
# hard-coded audio hyperparameters
|
21 |
+
SAMPLE_RATE = 16000
|
22 |
+
N_FFT = 400
|
23 |
+
N_MELS = 80
|
24 |
+
HOP_LENGTH = 160
|
25 |
+
CHUNK_LENGTH = 30
|
26 |
+
N_SAMPLES = CHUNK_LENGTH * SAMPLE_RATE # 480000 samples in a 30-second chunk
|
27 |
+
N_FRAMES = exact_div(N_SAMPLES, HOP_LENGTH) # 3000 frames in a mel spectrogram input
|
28 |
+
|
29 |
+
N_SAMPLES_PER_TOKEN = HOP_LENGTH * 2 # the initial convolutions has stride 2
|
30 |
+
FRAMES_PER_SECOND = exact_div(SAMPLE_RATE, HOP_LENGTH) # 10ms per audio frame
|
31 |
+
TOKENS_PER_SECOND = exact_div(SAMPLE_RATE, N_SAMPLES_PER_TOKEN) # 20ms per audio token
|
32 |
+
|
33 |
+
|
34 |
+
|
35 |
+
def get_T_after_cnn(L_in, dilation=1):
|
36 |
+
for (padding, kernel_size, stride) in eval("[(1,3,1)] + [(1,3,2)] "):
|
37 |
+
L_out = L_in + 2 * padding - dilation * (kernel_size - 1) - 1
|
38 |
+
L_out = 1 + L_out // stride
|
39 |
+
L_in = L_out
|
40 |
+
return L_out
|
41 |
+
|
42 |
+
def load_bytesio_audio(content, sr: int = SAMPLE_RATE):
|
43 |
+
cmd = [
|
44 |
+
"ffmpeg",
|
45 |
+
"-nostdin",
|
46 |
+
"-threads", "0",
|
47 |
+
"-i", "pipe:",
|
48 |
+
"-f", "s16le",
|
49 |
+
"-ac", "1",
|
50 |
+
"-acodec", "pcm_s16le",
|
51 |
+
"-ar", str(sr),
|
52 |
+
"pipe:"
|
53 |
+
]
|
54 |
+
p = Popen(cmd, stdin=PIPE, stdout=PIPE, stderr=PIPE, bufsize=-1)
|
55 |
+
out, _ = p.communicate(input=content)
|
56 |
+
return np.frombuffer(out, np.int16).flatten().astype(np.float32) / 32768.0
|
57 |
+
|
58 |
+
def load_audio(file: str, sr: int = SAMPLE_RATE):
|
59 |
+
"""
|
60 |
+
Open an audio file and read as mono waveform, resampling as necessary
|
61 |
+
Parameters
|
62 |
+
----------
|
63 |
+
file: str
|
64 |
+
The audio file to open
|
65 |
+
sr: int
|
66 |
+
The sample rate to resample the audio if necessary
|
67 |
+
Returns
|
68 |
+
-------
|
69 |
+
A NumPy array containing the audio waveform, in float32 dtype.
|
70 |
+
"""
|
71 |
+
|
72 |
+
# This launches a subprocess to decode audio while down-mixing
|
73 |
+
# and resampling as necessary. Requires the ffmpeg CLI in PATH.
|
74 |
+
# fmt: off
|
75 |
+
cmd = [
|
76 |
+
"ffmpeg",
|
77 |
+
"-nostdin",
|
78 |
+
"-threads", "0",
|
79 |
+
"-i", file,
|
80 |
+
"-f", "s16le",
|
81 |
+
"-ac", "1",
|
82 |
+
"-acodec", "pcm_s16le",
|
83 |
+
"-ar", str(sr),
|
84 |
+
"-"
|
85 |
+
]
|
86 |
+
# fmt: on
|
87 |
+
try:
|
88 |
+
out = run(cmd, capture_output=True, check=True).stdout
|
89 |
+
except CalledProcessError as e:
|
90 |
+
raise RuntimeError(f"Failed to load audio: {e.stderr.decode()}") from e
|
91 |
+
|
92 |
+
return np.frombuffer(out, np.int16).flatten().astype(np.float32) / 32768.0
|
93 |
+
|
94 |
+
|
95 |
+
def pad_or_trim(array, length: int = N_SAMPLES, *, axis: int = -1):
|
96 |
+
"""
|
97 |
+
Pad or trim the audio array to N_SAMPLES, as expected by the encoder.
|
98 |
+
"""
|
99 |
+
if torch.is_tensor(array):
|
100 |
+
if array.shape[axis] > length:
|
101 |
+
array = array.index_select(
|
102 |
+
dim=axis, index=torch.arange(length, device=array.device)
|
103 |
+
)
|
104 |
+
|
105 |
+
if array.shape[axis] < length:
|
106 |
+
pad_widths = [(0, 0)] * array.ndim
|
107 |
+
pad_widths[axis] = (0, length - array.shape[axis])
|
108 |
+
array = F.pad(array, [pad for sizes in pad_widths[::-1] for pad in sizes])
|
109 |
+
else:
|
110 |
+
if array.shape[axis] > length:
|
111 |
+
array = array.take(indices=range(length), axis=axis)
|
112 |
+
|
113 |
+
if array.shape[axis] < length:
|
114 |
+
pad_widths = [(0, 0)] * array.ndim
|
115 |
+
pad_widths[axis] = (0, length - array.shape[axis])
|
116 |
+
array = np.pad(array, pad_widths)
|
117 |
+
|
118 |
+
return array
|
119 |
+
|
120 |
+
def trim(array, length: int = N_SAMPLES, *, axis: int = -1):
|
121 |
+
"""
|
122 |
+
Pad or trim the audio array to N_SAMPLES, as expected by the encoder.
|
123 |
+
"""
|
124 |
+
if torch.is_tensor(array):
|
125 |
+
if array.shape[axis] > length:
|
126 |
+
array = array.index_select(
|
127 |
+
dim=axis, index=torch.arange(length, device=array.device)
|
128 |
+
)
|
129 |
+
else:
|
130 |
+
if array.shape[axis] > length:
|
131 |
+
array = array.take(indices=range(length), axis=axis)
|
132 |
+
return array
|
133 |
+
|
134 |
+
|
135 |
+
@lru_cache(maxsize=None)
|
136 |
+
def mel_filters(device, n_mels: int = N_MELS) -> torch.Tensor:
|
137 |
+
"""
|
138 |
+
load the mel filterbank matrix for projecting STFT into a Mel spectrogram.
|
139 |
+
Allows decoupling librosa dependency; saved using:
|
140 |
+
np.savez_compressed(
|
141 |
+
"mel_filters.npz",
|
142 |
+
mel_80=librosa.filters.mel(sr=16000, n_fft=400, n_mels=80),
|
143 |
+
)
|
144 |
+
"""
|
145 |
+
assert n_mels == 80, f"Unsupported n_mels: {n_mels}"
|
146 |
+
with np.load(
|
147 |
+
os.path.join(os.path.dirname(__file__), "mel_filters.npz") # todo
|
148 |
+
# os.path.join("assets", "mel_filters.npz")
|
149 |
+
) as f:
|
150 |
+
return torch.from_numpy(f[f"mel_{n_mels}"]).to(device)
|
151 |
+
|
152 |
+
|
153 |
+
def log_mel_spectrogram(
|
154 |
+
audio: Union[str, np.ndarray, torch.Tensor],
|
155 |
+
n_mels: int = N_MELS,
|
156 |
+
padding: int = 0,
|
157 |
+
device: Optional[Union[str, torch.device]] = None,
|
158 |
+
):
|
159 |
+
"""
|
160 |
+
Compute the log-Mel spectrogram of
|
161 |
+
Parameters
|
162 |
+
----------
|
163 |
+
audio: Union[str, np.ndarray, torch.Tensor], shape = (*)
|
164 |
+
The path to audio or either a NumPy array or Tensor containing the audio waveform in 16 kHz
|
165 |
+
n_mels: int
|
166 |
+
The number of Mel-frequency filters, only 80 is supported
|
167 |
+
padding: int
|
168 |
+
Number of zero samples to pad to the right
|
169 |
+
device: Optional[Union[str, torch.device]]
|
170 |
+
If given, the audio tensor is moved to this device before STFT
|
171 |
+
Returns
|
172 |
+
-------
|
173 |
+
torch.Tensor, shape = (80, n_frames)
|
174 |
+
A Tensor that contains the Mel spectrogram
|
175 |
+
"""
|
176 |
+
if not torch.is_tensor(audio):
|
177 |
+
if isinstance(audio, str):
|
178 |
+
audio = load_audio(audio)
|
179 |
+
audio = torch.from_numpy(audio)
|
180 |
+
|
181 |
+
if device is not None:
|
182 |
+
audio = audio.to(device)
|
183 |
+
if padding > 0:
|
184 |
+
audio = F.pad(audio, (0, padding))
|
185 |
+
window = torch.hann_window(N_FFT).to(audio.device)
|
186 |
+
stft = torch.stft(audio, N_FFT, HOP_LENGTH, window=window, return_complex=True)
|
187 |
+
magnitudes = stft[..., :-1].abs() ** 2
|
188 |
+
|
189 |
+
filters = mel_filters(audio.device, n_mels)
|
190 |
+
mel_spec = filters @ magnitudes
|
191 |
+
|
192 |
+
log_spec = torch.clamp(mel_spec, min=1e-10).log10()
|
193 |
+
log_spec = torch.maximum(log_spec, log_spec.max() - 8.0)
|
194 |
+
log_spec = (log_spec + 4.0) / 4.0
|
195 |
+
return log_spec
|
196 |
+
|
197 |
+
|
198 |
+
@dataclass
|
199 |
+
class ModelDimensions:
|
200 |
+
n_mels: int
|
201 |
+
n_audio_ctx: int
|
202 |
+
n_audio_state: int
|
203 |
+
n_audio_head: int
|
204 |
+
n_audio_layer: int
|
205 |
+
n_vocab: int
|
206 |
+
n_text_ctx: int
|
207 |
+
n_text_state: int
|
208 |
+
n_text_head: int
|
209 |
+
n_text_layer: int
|
210 |
+
|
211 |
+
|
212 |
+
class LayerNorm(nn.LayerNorm):
|
213 |
+
def forward(self, x: Tensor) -> Tensor:
|
214 |
+
# return super().forward(x.float()).type(x.dtype)
|
215 |
+
return super().forward(x).type(x.dtype)
|
216 |
+
|
217 |
+
|
218 |
+
|
219 |
+
|
220 |
+
class Linear(nn.Linear):
|
221 |
+
def forward(self, x: Tensor) -> Tensor:
|
222 |
+
return F.linear(
|
223 |
+
x,
|
224 |
+
self.weight.to(x.dtype),
|
225 |
+
None if self.bias is None else self.bias.to(x.dtype),
|
226 |
+
)
|
227 |
+
|
228 |
+
|
229 |
+
class Conv1d(nn.Conv1d):
|
230 |
+
def _conv_forward(
|
231 |
+
self, x: Tensor, weight: Tensor, bias: Optional[Tensor]
|
232 |
+
) -> Tensor:
|
233 |
+
return super()._conv_forward(
|
234 |
+
x, weight.to(x.dtype), None if bias is None else bias.to(x.dtype)
|
235 |
+
)
|
236 |
+
|
237 |
+
|
238 |
+
def sinusoids(length, channels, max_timescale=10000):
|
239 |
+
"""Returns sinusoids for positional embedding"""
|
240 |
+
assert channels % 2 == 0
|
241 |
+
log_timescale_increment = np.log(max_timescale) / (channels // 2 - 1)
|
242 |
+
inv_timescales = torch.exp(-log_timescale_increment * torch.arange(channels // 2))
|
243 |
+
scaled_time = torch.arange(length)[:, np.newaxis] * inv_timescales[np.newaxis, :]
|
244 |
+
return torch.cat([torch.sin(scaled_time), torch.cos(scaled_time)], dim=1)
|
245 |
+
|
246 |
+
|
247 |
+
class MultiHeadAttention(nn.Module):
|
248 |
+
def __init__(self, n_state: int, n_head: int):
|
249 |
+
super().__init__()
|
250 |
+
self.n_head = n_head
|
251 |
+
self.query = Linear(n_state, n_state)
|
252 |
+
self.key = Linear(n_state, n_state, bias=False)
|
253 |
+
self.value = Linear(n_state, n_state)
|
254 |
+
self.out = Linear(n_state, n_state)
|
255 |
+
|
256 |
+
def forward(
|
257 |
+
self,
|
258 |
+
x: Tensor,
|
259 |
+
xa: Optional[Tensor] = None,
|
260 |
+
mask: Optional[Tensor] = None,
|
261 |
+
kv_cache: Optional[dict] = None,
|
262 |
+
):
|
263 |
+
q = self.query(x)
|
264 |
+
|
265 |
+
if kv_cache is None or xa is None or self.key not in kv_cache:
|
266 |
+
# hooks, if installed (i.e. kv_cache is not None), will prepend the cached kv tensors;
|
267 |
+
# otherwise, perform key/value projections for self- or cross-attention as usual.
|
268 |
+
k = self.key(x if xa is None else xa)
|
269 |
+
v = self.value(x if xa is None else xa)
|
270 |
+
else:
|
271 |
+
# for cross-attention, calculate keys and values once and reuse in subsequent calls.
|
272 |
+
k = kv_cache[self.key]
|
273 |
+
v = kv_cache[self.value]
|
274 |
+
|
275 |
+
wv, qk = self.qkv_attention(q, k, v, mask)
|
276 |
+
return self.out(wv), qk
|
277 |
+
|
278 |
+
def qkv_attention(
|
279 |
+
self, q: Tensor, k: Tensor, v: Tensor, mask: Optional[Tensor] = None
|
280 |
+
):
|
281 |
+
n_batch, n_ctx, n_state = q.shape
|
282 |
+
scale = (n_state // self.n_head) ** -0.25
|
283 |
+
q = q.view(*q.shape[:2], self.n_head, -1).permute(0, 2, 1, 3) * scale
|
284 |
+
k = k.view(*k.shape[:2], self.n_head, -1).permute(0, 2, 3, 1) * scale
|
285 |
+
v = v.view(*v.shape[:2], self.n_head, -1).permute(0, 2, 1, 3)
|
286 |
+
|
287 |
+
qk = q @ k
|
288 |
+
if mask is not None:
|
289 |
+
qk += mask
|
290 |
+
|
291 |
+
w = F.softmax(qk, dim=-1).to(q.dtype)
|
292 |
+
return (w @ v).permute(0, 2, 1, 3).flatten(start_dim=2), qk.detach()
|
293 |
+
|
294 |
+
|
295 |
+
class ResidualAttentionBlock(nn.Module):
|
296 |
+
def __init__(self, n_state: int, n_head: int, cross_attention: bool = False):
|
297 |
+
super().__init__()
|
298 |
+
|
299 |
+
self.attn = MultiHeadAttention(n_state, n_head)
|
300 |
+
self.attn_ln = LayerNorm(n_state)
|
301 |
+
|
302 |
+
self.cross_attn = (
|
303 |
+
MultiHeadAttention(n_state, n_head) if cross_attention else None
|
304 |
+
)
|
305 |
+
self.cross_attn_ln = LayerNorm(n_state) if cross_attention else None
|
306 |
+
|
307 |
+
n_mlp = n_state * 4
|
308 |
+
self.mlp = nn.Sequential(
|
309 |
+
Linear(n_state, n_mlp), nn.GELU(), Linear(n_mlp, n_state)
|
310 |
+
)
|
311 |
+
self.mlp_ln = LayerNorm(n_state)
|
312 |
+
|
313 |
+
def forward(
|
314 |
+
self,
|
315 |
+
x: Tensor,
|
316 |
+
xa: Optional[Tensor] = None,
|
317 |
+
mask: Optional[Tensor] = None,
|
318 |
+
kv_cache: Optional[dict] = None,
|
319 |
+
):
|
320 |
+
x = x + self.attn(self.attn_ln(x), mask=mask, kv_cache=kv_cache)[0]
|
321 |
+
if self.cross_attn:
|
322 |
+
x = x + self.cross_attn(self.cross_attn_ln(x), xa, kv_cache=kv_cache)[0]
|
323 |
+
x = x + self.mlp(self.mlp_ln(x))
|
324 |
+
return x
|
325 |
+
|
326 |
+
|
327 |
+
class AudioEncoder(nn.Module):
|
328 |
+
def __init__(
|
329 |
+
self,
|
330 |
+
n_mels: int,
|
331 |
+
n_ctx: int,
|
332 |
+
n_state: int,
|
333 |
+
n_head: int,
|
334 |
+
n_layer: int,
|
335 |
+
output_dim: int = 512,
|
336 |
+
avg_pool: bool = True,
|
337 |
+
add_audio_bos_eos_token: bool = True,
|
338 |
+
**kwargs
|
339 |
+
):
|
340 |
+
super().__init__()
|
341 |
+
self.conv1 = Conv1d(n_mels, n_state, kernel_size=3, padding=1)
|
342 |
+
self.conv2 = Conv1d(n_state, n_state, kernel_size=3, stride=2, padding=1)
|
343 |
+
self.register_buffer("positional_embedding", sinusoids(n_ctx, n_state))
|
344 |
+
|
345 |
+
self.blocks: Iterable[ResidualAttentionBlock] = nn.ModuleList(
|
346 |
+
[ResidualAttentionBlock(n_state, n_head) for _ in range(n_layer)]
|
347 |
+
)
|
348 |
+
self.ln_post = LayerNorm(n_state)
|
349 |
+
|
350 |
+
if avg_pool:
|
351 |
+
self.avg_pooler = nn.AvgPool1d(2, stride=2)
|
352 |
+
else:
|
353 |
+
self.avg_pooler = None
|
354 |
+
self.proj = nn.Linear(n_state, output_dim)
|
355 |
+
if add_audio_bos_eos_token:
|
356 |
+
self.audio_bos_eos_token = nn.Embedding(2, output_dim)
|
357 |
+
else:
|
358 |
+
self.audio_bos_eos_token = None
|
359 |
+
self.output_dim = output_dim
|
360 |
+
self.n_head = n_head
|
361 |
+
|
362 |
+
def forward(self, x: Tensor, padding_mask: Tensor=None, audio_lengths: Tensor=None):
|
363 |
+
"""
|
364 |
+
x : torch.Tensor, shape = (batch_size, n_mels, n_ctx)
|
365 |
+
the mel spectrogram of the audio
|
366 |
+
"""
|
367 |
+
x = x.to(dtype=self.conv1.weight.dtype,
|
368 |
+
device=self.conv1.weight.device)
|
369 |
+
if audio_lengths is not None:
|
370 |
+
input_mel_len = audio_lengths[:,0] * 2
|
371 |
+
max_mel_len_in_batch = input_mel_len.max()
|
372 |
+
x = x[:, :, :max_mel_len_in_batch]
|
373 |
+
x = F.gelu(self.conv1(x))
|
374 |
+
x = F.gelu(self.conv2(x))
|
375 |
+
x = x.permute(0, 2, 1) # B, L, D
|
376 |
+
bsz = x.size(0)
|
377 |
+
src_len = x.size(1)
|
378 |
+
|
379 |
+
|
380 |
+
self.input_positional_embedding = self.positional_embedding[:src_len]
|
381 |
+
assert x.shape[1:] == self.input_positional_embedding.shape, f"incorrect audio shape: {x.shape[1:], self.input_positional_embedding.shape}"
|
382 |
+
x = (x + self.input_positional_embedding).to(x.dtype)
|
383 |
+
if padding_mask is not None:
|
384 |
+
padding_mask = padding_mask.to(dtype=self.conv1.weight.dtype,
|
385 |
+
device=self.conv1.weight.device)
|
386 |
+
batch_src_len = padding_mask.size(1)
|
387 |
+
x = x[:, :batch_src_len, :]
|
388 |
+
padding_mask = padding_mask.view(
|
389 |
+
bsz, -1, batch_src_len
|
390 |
+
)
|
391 |
+
padding_mask_ = padding_mask.all(1)
|
392 |
+
x[padding_mask_] = 0
|
393 |
+
key_padding_mask = padding_mask_.view(bsz, 1, 1, batch_src_len). \
|
394 |
+
expand(-1, self.n_head, -1, -1).reshape(bsz, self.n_head, 1, batch_src_len)
|
395 |
+
new_padding_mask = torch.zeros_like(key_padding_mask, dtype=x.dtype)
|
396 |
+
padding_mask = new_padding_mask.masked_fill(key_padding_mask, float("-inf"))
|
397 |
+
|
398 |
+
for block in self.blocks:
|
399 |
+
x = block(x, mask=padding_mask)
|
400 |
+
|
401 |
+
|
402 |
+
if self.avg_pooler:
|
403 |
+
x = x.permute(0, 2, 1)
|
404 |
+
x = self.avg_pooler(x)
|
405 |
+
x = x.permute(0, 2, 1)
|
406 |
+
|
407 |
+
|
408 |
+
x = self.ln_post(x)
|
409 |
+
x = self.proj(x)
|
410 |
+
|
411 |
+
if self.audio_bos_eos_token is not None:
|
412 |
+
bos = self.audio_bos_eos_token.weight[0][None, :]
|
413 |
+
eos = self.audio_bos_eos_token.weight[1][None, :]
|
414 |
+
else:
|
415 |
+
bos, eos = None, None
|
416 |
+
return x, bos, eos
|
417 |
+
|
418 |
+
def encode(self, input_audios: Tensor, input_audio_lengths: Tensor, audio_span_tokens: List):
|
419 |
+
real_input_audio_lens = input_audio_lengths[:, 0].tolist()
|
420 |
+
max_len_in_batch = max(real_input_audio_lens)
|
421 |
+
padding_mask = torch.ones([input_audios.size(0), max_len_in_batch]).to(dtype=self.conv1.weight.dtype,
|
422 |
+
device=self.conv1.weight.device)
|
423 |
+
for index in range(len(input_audios)):
|
424 |
+
padding_mask[index, :input_audio_lengths[index][0].item()] = 0
|
425 |
+
x, bos, eos = self(input_audios, padding_mask,input_audio_lengths)
|
426 |
+
output_audios = []
|
427 |
+
for i in range(len(audio_span_tokens)):
|
428 |
+
audio_span = audio_span_tokens[i]
|
429 |
+
audio = x[i][:audio_span-2]
|
430 |
+
if bos is not None:
|
431 |
+
audio = torch.concat([bos, audio, eos])
|
432 |
+
assert len(audio) == audio_span
|
433 |
+
output_audios.append(audio)
|
434 |
+
return output_audios
|