P0x0 commited on
Commit
3cde4d6
1 Parent(s): e0a1de5

Upload README.md

Browse files
Files changed (1) hide show
  1. README.md +53 -0
README.md ADDED
@@ -0,0 +1,53 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: apache-2.0
3
+ base_model: mistralai/Mistral-Nemo-Base-2407
4
+ tags:
5
+ - general-purpose
6
+ - text-generation
7
+ ---
8
+
9
+ # Astra-v1-12B
10
+
11
+ Astra-v1-12B is a fine-tuned version of the base model [Mistral-Nemo-Base-2407](https://huggingface.co/mistralai/Mistral-Nemo-Base-2407), developed for general-purpose natural language processing tasks. It was fine-tuned to replicate the quality and style of Claude 3's Sonnet and Opus models.
12
+
13
+ ![Astra-v1-12B](https://i.imgur.com/rCXcyno.png)
14
+
15
+
16
+ ### Model Description
17
+
18
+ Astra-v1-12B is a general-purpose transformer-based language model fine-tuned for instruction-following tasks. The fine-tuning was designed to match the high-quality generation seen in Claude 3's Sonnet and Opus models, optimized for tasks such as text generation, summarization, question answering, and more.
19
+
20
+ - **Developed by:** P0x0
21
+ - **Finetuned from:** [Mistral-Nemo-Base-2407](https://huggingface.co/mistralai/Mistral-Nemo-Base-2407)
22
+ - **License:** Apache 2.0
23
+
24
+ ### Model Sources
25
+
26
+ - **Repository:** [https://huggingface.co/P0x0/astra-v1-12b](https://huggingface.co/P0x0/astra-v1-12b)
27
+
28
+ ## Uses
29
+
30
+ ### Direct Use
31
+
32
+ Astra-v1-12B can be used directly for a wide range of NLP tasks, including:
33
+ - Text generation
34
+ - Summarization
35
+ - Question answering
36
+ - Dialogue systems
37
+
38
+ ### Out-of-Scope Use
39
+
40
+ Astra-v1-12B is not intended for real-time decision-making in critical applications or generating harmful or biased content.
41
+ ## How to Get Started with the Model
42
+
43
+ ```python
44
+ from transformers import AutoModelForCausalLM, AutoTokenizer
45
+
46
+ tokenizer = AutoTokenizer.from_pretrained("P0x0/astra-v1-12b")
47
+ model = AutoModelForCausalLM.from_pretrained("P0x0/astra-v1-12b")
48
+
49
+ input_text = "Explain the theory of relativity in simple terms."
50
+ inputs = tokenizer(input_text, return_tensors="pt")
51
+ outputs = model.generate(**inputs)
52
+
53
+ print(tokenizer.decode(outputs[0], skip_special_tokens=True))