--- language: - nb license: apache-2.0 tags: - generated_from_trainer datasets: - norwegian-parliament metrics: - wer model-index: - name: whisper-medium-nb-v3 results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Stortingskorpuset type: norwegian-parliament config: default split: validation args: default metrics: - name: Wer type: wer value: 10.024541720925574 --- # whisper-medium-nb-v3 This model is a fine-tuned version of [openai/whisper-medium](https://huggingface.co/openai/whisper-medium) on the Stortingskorpuset dataset. It achieves the following results on the evaluation set: - Loss: 0.1948 - Wer: 10.0245 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 16 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 1000 - training_steps: 8000 ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:-------:| | 0.4018 | 0.25 | 2000 | 0.4179 | 25.0751 | | 0.1617 | 1.1 | 4000 | 0.2911 | 16.5849 | | 0.0885 | 1.35 | 6000 | 0.2264 | 12.5146 | | 0.0269 | 2.2 | 8000 | 0.1948 | 10.0245 | ### Framework versions - Transformers 4.27.4 - Pytorch 2.0.0+cu117 - Datasets 2.11.0 - Tokenizers 0.13.2