--- license: apache-2.0 base_model: distilbert-base-uncased tags: - generated_from_trainer metrics: - accuracy model-index: - name: fine-url-classifier results: [] datasets: - PDAP/fine-labeled-urls-headers pipeline_tag: text-classification --- # fine-url-classifier This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the dataset [PDAP/fine-labeled-urls-headers](https://huggingface.co/datasets/PDAP/fine-labeled-urls-headers).. It achieves the following results on the evaluation set: - Loss: 1.7291 - Accuracy: 0.5702 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 100 - num_epochs: 4 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | No log | 1.0 | 375 | 2.2771 | 0.4146 | | 2.6525 | 2.0 | 750 | 1.9316 | 0.5441 | | 1.9453 | 3.0 | 1125 | 1.7770 | 0.5565 | | 1.6729 | 4.0 | 1500 | 1.7291 | 0.5702 | ### Framework versions - Transformers 4.36.2 - Pytorch 2.1.2 - Datasets 2.16.1 - Tokenizers 0.15.0