File size: 4,182 Bytes
c88d963
fbb7c63
c88d963
fbb7c63
 
 
 
 
 
 
 
c88d963
fbb7c63
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
---

language: pt
license: mit
library_name: sentence-transformers
pipeline_tag: sentence-similarity
tags:
- sentence-transformers
- feature-extraction
- sentence-similarity
- transformers

---


# Serafim 900m Portuguese (PT) Sentence Encoder

This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 1536 dimensional dense vector space and can be used for tasks like clustering or semantic search.

<!--- Describe your model here -->

## Usage (Sentence-Transformers)

Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed:

```

pip install -U sentence-transformers

```

Then you can use the model like this:

```python

from sentence_transformers import SentenceTransformer

sentences = ["This is an example sentence", "Each sentence is converted"]



model = SentenceTransformer('{MODEL_NAME}')

embeddings = model.encode(sentences)

print(embeddings)

```



## Usage (HuggingFace Transformers)
Without [sentence-transformers](https://www.SBERT.net), you can use the model like this: First, you pass your input through the transformer model, then you have to apply the right pooling-operation on-top of the contextualized word embeddings.

```python

from transformers import AutoTokenizer, AutoModel

import torch





#Mean Pooling - Take attention mask into account for correct averaging

def mean_pooling(model_output, attention_mask):

    token_embeddings = model_output[0] #First element of model_output contains all token embeddings

    input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float()

    return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9)





# Sentences we want sentence embeddings for

sentences = ['This is an example sentence', 'Each sentence is converted']



# Load model from HuggingFace Hub

tokenizer = AutoTokenizer.from_pretrained('{MODEL_NAME}')

model = AutoModel.from_pretrained('{MODEL_NAME}')



# Tokenize sentences

encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt')



# Compute token embeddings

with torch.no_grad():

    model_output = model(**encoded_input)



# Perform pooling. In this case, mean pooling.

sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask'])



print("Sentence embeddings:")

print(sentence_embeddings)

```



## Evaluation Results

<!--- Describe how your model was evaluated -->

For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name={MODEL_NAME})


## Training
The model was trained with the parameters:

**DataLoader**:

`torch.utils.data.dataloader.DataLoader` of length 1183 with parameters:
```

{'batch_size': 16, 'sampler': 'torch.utils.data.sampler.RandomSampler', 'batch_sampler': 'torch.utils.data.sampler.BatchSampler'}

```

**Loss**:

`sentence_transformers.losses.CoSENTLoss.CoSENTLoss` with parameters:
  ```

  {'scale': 20.0, 'similarity_fct': 'pairwise_cos_sim'}

  ```

Parameters of the fit()-Method:
```

{

    "epochs": 10,

    "evaluation_steps": 119,

    "evaluator": "sentence_transformers.evaluation.EmbeddingSimilarityEvaluator.EmbeddingSimilarityEvaluator",

    "max_grad_norm": 1,

    "optimizer_class": "<class 'torch.optim.adamw.AdamW'>",

    "optimizer_params": {

        "lr": 1e-06

    },

    "scheduler": "WarmupLinear",

    "steps_per_epoch": 1183,

    "warmup_steps": 1183,

    "weight_decay": 0.01

}

```


## Full Model Architecture
```

SentenceTransformer(

  (0): Transformer({'max_seq_length': 128, 'do_lower_case': False}) with Transformer model: DebertaV2Model 

  (1): Pooling({'word_embedding_dimension': 1536, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})

)

```

## Citing & Authors

<!--- Describe where people can find more information -->