Image-Text-to-Text
Safetensors
English
llava_llama
medical
File size: 3,554 Bytes
6fad9b5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3b497b4
6fad9b5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
62e4479
6fad9b5
62e4479
6fad9b5
 
62e4479
6fad9b5
 
 
 
3b497b4
6fad9b5
3b497b4
 
 
 
 
 
 
6fad9b5
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
---
license: apache-2.0
datasets:
- PULSE-ECG/ECGInstruct
- PULSE-ECG/ECGBench
language:
- en
pipeline_tag: image-text-to-text
tags:
- medical
---

# PULSE-7B

Dataset for paper "Teach Multimodal LLMs to Comprehend Electrocardiographic Images".

🌐 Project Page: [https://aimedlab.github.io/PULSE/](https://aimedlab.github.io/PULSE/)

πŸ“„ Paper: [https://arxiv.org/abs/2410.19008](https://arxiv.org/abs/2410.19008)

πŸ§‘β€πŸ’» Code: [https://github.com/AIMedLab/PULSE](https://github.com/AIMedLab/PULSE)

πŸ‘©β€βš•οΈ ECGInstruct(Training): [https://huggingface.co/datasets/PULSE-ECG/ECGInstruct](https://huggingface.co/datasets/PULSE-ECG/ECGInstruct)

βš–οΈ ECGBench(Testing): [https://huggingface.co/datasets/PULSE-ECG/ECGBench](https://huggingface.co/datasets/PULSE-ECG/ECGBench)


## Introduction

We introduce **PULSE-7B**, a multimodal large language model (MLLM) specifically designed for ECG image interpretation. Leveraging the comprehensive **ECGInstruct** dataset, which contains over one million instruction-tuning samples, PULSE-7B is tailored to handle a wide range of ECG-related tasks drawn from diverse data sources. While traditional ECG interpretation methods are often constrained by their reliance on raw physiological signals and limited to specific cardiac conditions, PULSE-7B addresses these limitations by enabling robust interpretation of both printed and digital ECG images, making it especially valuable in resource-limited settings where access to raw signals may be restricted. In conjunction with the introduction of **ECGBench**, a benchmark that includes four key tasks spanning nine datasets, our experiments demonstrate that PULSE-7B establishes new state-of-the-art performance, surpassing general MLLMs with an average accuracy improvement of 15% to 30%. This model showcases the potential to significantly advance ECG image interpretation, providing a more versatile and accurate tool for clinical practice.

Overall performance of PULSE-7B on ECGBench

![image/jpeg](https://cdn-uploads.huggingface.co/production/uploads/640701cb4dc5f2846c91d4eb/_WI6DO6sjY1SsHF8vn0ZF.jpeg)

## Model Performance

### In-domain


![image/jpeg](https://cdn-uploads.huggingface.co/production/uploads/640701cb4dc5f2846c91d4eb/KmFO7LZpj2K-ASszAdlMF.jpeg)

### Out-of-domain


![image/jpeg](https://cdn-uploads.huggingface.co/production/uploads/640701cb4dc5f2846c91d4eb/DHXAJt-mrNNtrPOCVWZBC.jpeg)

## Case Study

<img src="https://cdn-uploads.huggingface.co/production/uploads/640701cb4dc5f2846c91d4eb/4opsQpGP_SiSnfQbZj22b.png" alt="ECG Image" width="700"/>
<!-- ![image/png](https://cdn-uploads.huggingface.co/production/uploads/640701cb4dc5f2846c91d4eb/4opsQpGP_SiSnfQbZj22b.png) -->

<img src="https://cdn-uploads.huggingface.co/production/uploads/640701cb4dc5f2846c91d4eb/qelm-5ki0g_OEJoSPS8p_.png" alt="ECG Image" width="700"/>
<!-- ![image/png](https://cdn-uploads.huggingface.co/production/uploads/640701cb4dc5f2846c91d4eb/qelm-5ki0g_OEJoSPS8p_.png) -->

<img src="https://cdn-uploads.huggingface.co/production/uploads/640701cb4dc5f2846c91d4eb/YfKUgi3lsXRu4epinS9BY.png" alt="ECG Image" width="700"/>
<!-- ![image/png](https://cdn-uploads.huggingface.co/production/uploads/640701cb4dc5f2846c91d4eb/YfKUgi3lsXRu4epinS9BY.png) -->

## Citation
If you find this work helpful, please cite our paper:

```
@article{liu2024teach,
  title={Teach Multimodal LLMs to Comprehend Electrocardiographic Images},
  author={Ruoqi Liu, Yuelin Bai, Xiang Yue, Ping Zhang},
  journal={arXiv preprint arXiv:2410.19008},
  year={2024}
}
```