File size: 2,024 Bytes
6e5491b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
---
license: apache-2.0
base_model: distilbert-base-uncased
tags:
- generated_from_trainer
metrics:
- accuracy
model-index:
- name: checkpoints
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# checkpoints

This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.8798
- Accuracy: 0.8667

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 32
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 10
- mixed_precision_training: Native AMP

### Training results

| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
| 1.0973        | 1.0   | 2    | 1.0807          | 0.4667   |
| 1.0801        | 2.0   | 4    | 1.0622          | 0.5333   |
| 1.0713        | 3.0   | 6    | 1.0386          | 0.5333   |
| 1.0396        | 4.0   | 8    | 1.0092          | 0.6      |
| 1.0034        | 5.0   | 10   | 0.9786          | 0.8      |
| 0.9929        | 6.0   | 12   | 0.9501          | 0.8667   |
| 0.9552        | 7.0   | 14   | 0.9236          | 0.8667   |
| 0.9386        | 8.0   | 16   | 0.9011          | 0.8667   |
| 0.9084        | 9.0   | 18   | 0.8862          | 0.8667   |
| 0.897         | 10.0  | 20   | 0.8798          | 0.8667   |


### Framework versions

- Transformers 4.41.0
- Pytorch 2.3.0+cu121
- Datasets 2.19.1
- Tokenizers 0.19.1