PaidDatasetsBad commited on
Commit
910f182
1 Parent(s): 4dae8ff

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +88 -88
README.md CHANGED
@@ -1,88 +1,88 @@
1
- ---
2
- language:
3
- - en
4
- license: apache-2.0
5
- base_model: openai/whisper-small
6
- tags:
7
- - generated_from_trainer
8
- datasets:
9
- - mozilla-foundation/common_voice_11_0
10
- metrics:
11
- - wer
12
- model-index:
13
- - name: Whisper Small Refined - Seagate Lim
14
- results:
15
- - task:
16
- name: Automatic Speech Recognition
17
- type: automatic-speech-recognition
18
- dataset:
19
- name: Common Voice 11.0
20
- type: mozilla-foundation/common_voice_11_0
21
- args: 'config: en, split: test'
22
- metrics:
23
- - name: Wer
24
- type: wer
25
- value: 15.384615384615385
26
- ---
27
-
28
- <!-- This model card has been generated automatically according to the information the Trainer had access to. You
29
- should probably proofread and complete it, then remove this comment. -->
30
-
31
- # Whisper Small Refined - Seagate Lim
32
-
33
- This model is a fine-tuned version of [openai/whisper-small](https://huggingface.co/openai/whisper-small) on the Common Voice 11.0 dataset.
34
- It achieves the following results on the evaluation set:
35
- - Loss: 0.8921
36
- - Wer: 15.3846
37
-
38
- ## Model description
39
-
40
- More information needed
41
-
42
- ## Intended uses & limitations
43
-
44
- More information needed
45
-
46
- ## Training and evaluation data
47
-
48
- More information needed
49
-
50
- ## Training procedure
51
-
52
- ### Training hyperparameters
53
-
54
- The following hyperparameters were used during training:
55
- - learning_rate: 5e-08
56
- - train_batch_size: 16
57
- - eval_batch_size: 8
58
- - seed: 42
59
- - gradient_accumulation_steps: 2
60
- - total_train_batch_size: 32
61
- - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
62
- - lr_scheduler_type: linear
63
- - lr_scheduler_warmup_steps: 250
64
- - training_steps: 4000
65
- - mixed_precision_training: Native AMP
66
-
67
- ### Training results
68
-
69
- | Training Loss | Epoch | Step | Validation Loss | Wer |
70
- |:-------------:|:------:|:----:|:---------------:|:-------:|
71
- | 0.0045 | 400.0 | 400 | 0.9209 | 30.7692 |
72
- | 0.0008 | 800.0 | 800 | 0.8990 | 15.3846 |
73
- | 0.0003 | 1200.0 | 1200 | 0.8957 | 15.3846 |
74
- | 0.0002 | 1600.0 | 1600 | 0.8931 | 15.3846 |
75
- | 0.0001 | 2000.0 | 2000 | 0.8927 | 15.3846 |
76
- | 0.0001 | 2400.0 | 2400 | 0.8927 | 15.3846 |
77
- | 0.0001 | 2800.0 | 2800 | 0.8919 | 15.3846 |
78
- | 0.0001 | 3200.0 | 3200 | 0.8912 | 15.3846 |
79
- | 0.0001 | 3600.0 | 3600 | 0.8918 | 15.3846 |
80
- | 0.0001 | 4000.0 | 4000 | 0.8921 | 15.3846 |
81
-
82
-
83
- ### Framework versions
84
-
85
- - Transformers 4.42.4
86
- - Pytorch 2.3.0
87
- - Datasets 2.19.1
88
- - Tokenizers 0.19.1
 
1
+ ---
2
+ language:
3
+ - en
4
+ license: apache-2.0
5
+ base_model: openai/whisper-small
6
+ tags:
7
+ - generated_from_trainer
8
+ datasets:
9
+ - mozilla-foundation/common_voice_11_0
10
+ metrics:
11
+ - wer
12
+ model-index:
13
+ - name: Whisper Small Refined
14
+ results:
15
+ - task:
16
+ name: Automatic Speech Recognition
17
+ type: automatic-speech-recognition
18
+ dataset:
19
+ name: Common Voice 11.0
20
+ type: mozilla-foundation/common_voice_11_0
21
+ args: 'config: en, split: test'
22
+ metrics:
23
+ - name: Wer
24
+ type: wer
25
+ value: 15.384615384615385
26
+ ---
27
+
28
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
29
+ should probably proofread and complete it, then remove this comment. -->
30
+
31
+ # Whisper Small Refined - Seagate Lim
32
+
33
+ This model is a fine-tuned version of [openai/whisper-small](https://huggingface.co/openai/whisper-small) on the Common Voice 11.0 dataset.
34
+ It achieves the following results on the evaluation set:
35
+ - Loss: 0.8921
36
+ - Wer: 15.3846
37
+
38
+ ## Model description
39
+
40
+ More information needed
41
+
42
+ ## Intended uses & limitations
43
+
44
+ More information needed
45
+
46
+ ## Training and evaluation data
47
+
48
+ More information needed
49
+
50
+ ## Training procedure
51
+
52
+ ### Training hyperparameters
53
+
54
+ The following hyperparameters were used during training:
55
+ - learning_rate: 5e-08
56
+ - train_batch_size: 16
57
+ - eval_batch_size: 8
58
+ - seed: 42
59
+ - gradient_accumulation_steps: 2
60
+ - total_train_batch_size: 32
61
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
62
+ - lr_scheduler_type: linear
63
+ - lr_scheduler_warmup_steps: 250
64
+ - training_steps: 4000
65
+ - mixed_precision_training: Native AMP
66
+
67
+ ### Training results
68
+
69
+ | Training Loss | Epoch | Step | Validation Loss | Wer |
70
+ |:-------------:|:------:|:----:|:---------------:|:-------:|
71
+ | 0.0045 | 400.0 | 400 | 0.9209 | 30.7692 |
72
+ | 0.0008 | 800.0 | 800 | 0.8990 | 15.3846 |
73
+ | 0.0003 | 1200.0 | 1200 | 0.8957 | 15.3846 |
74
+ | 0.0002 | 1600.0 | 1600 | 0.8931 | 15.3846 |
75
+ | 0.0001 | 2000.0 | 2000 | 0.8927 | 15.3846 |
76
+ | 0.0001 | 2400.0 | 2400 | 0.8927 | 15.3846 |
77
+ | 0.0001 | 2800.0 | 2800 | 0.8919 | 15.3846 |
78
+ | 0.0001 | 3200.0 | 3200 | 0.8912 | 15.3846 |
79
+ | 0.0001 | 3600.0 | 3600 | 0.8918 | 15.3846 |
80
+ | 0.0001 | 4000.0 | 4000 | 0.8921 | 15.3846 |
81
+
82
+
83
+ ### Framework versions
84
+
85
+ - Transformers 4.42.4
86
+ - Pytorch 2.3.0
87
+ - Datasets 2.19.1
88
+ - Tokenizers 0.19.1