--- language: - en license: apache-2.0 base_model: openai/whisper-small tags: - generated_from_trainer datasets: - mozilla-foundation/common_voice_11_0 metrics: - wer model-index: - name: Whisper Small Refined results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Common Voice 11.0 type: mozilla-foundation/common_voice_11_0 args: 'config: en, split: test' metrics: - name: Wer type: wer value: 15.384615384615385 --- # Whisper Small Refined This model is a fine-tuned version of [openai/whisper-small](https://huggingface.co/openai/whisper-small) on the Common Voice 11.0 dataset. It achieves the following results on the evaluation set: - Loss: 0.8921 - Wer: 15.3846 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-08 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 250 - training_steps: 4000 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:------:|:----:|:---------------:|:-------:| | 0.0045 | 400.0 | 400 | 0.9209 | 30.7692 | | 0.0008 | 800.0 | 800 | 0.8990 | 15.3846 | | 0.0003 | 1200.0 | 1200 | 0.8957 | 15.3846 | | 0.0002 | 1600.0 | 1600 | 0.8931 | 15.3846 | | 0.0001 | 2000.0 | 2000 | 0.8927 | 15.3846 | | 0.0001 | 2400.0 | 2400 | 0.8927 | 15.3846 | | 0.0001 | 2800.0 | 2800 | 0.8919 | 15.3846 | | 0.0001 | 3200.0 | 3200 | 0.8912 | 15.3846 | | 0.0001 | 3600.0 | 3600 | 0.8918 | 15.3846 | | 0.0001 | 4000.0 | 4000 | 0.8921 | 15.3846 | ### Framework versions - Transformers 4.42.4 - Pytorch 2.3.0 - Datasets 2.19.1 - Tokenizers 0.19.1