File size: 2,093 Bytes
5bd6491 b0b63e0 5bd6491 b0b63e0 5bd6491 b0b63e0 5bd6491 b0b63e0 5bd6491 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 |
---
language:
- fa
license: apache-2.0
base_model: openai/whisper-small
tags:
- hf-asr-leaderboard
- generated_from_trainer
datasets:
- mozilla-foundation/common_voice_16_0
metrics:
- wer
model-index:
- name: Whisper Small Fa - Brett OConnor
results:
- task:
name: Automatic Speech Recognition
type: automatic-speech-recognition
dataset:
name: Common Voice 16.0
type: mozilla-foundation/common_voice_16_0
config: fa
split: None
args: 'config: fa, split: test'
metrics:
- name: Wer
type: wer
value: 36.3317501910689
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# Whisper Small Fa - Brett OConnor
This model is a fine-tuned version of [openai/whisper-small](https://huggingface.co/openai/whisper-small) on the Common Voice 16.0 dataset.
It achieves the following results on the evaluation set:
- Loss: 0.3430
- Wer: 36.3318
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 16
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 500
- training_steps: 5000
### Training results
| Training Loss | Epoch | Step | Validation Loss | Wer |
|:-------------:|:-----:|:----:|:---------------:|:-------:|
| 0.2622 | 0.41 | 1000 | 0.4714 | 46.2155 |
| 0.2145 | 0.81 | 2000 | 0.4000 | 42.0843 |
| 0.1135 | 1.22 | 3000 | 0.3757 | 38.7570 |
| 0.1198 | 1.63 | 4000 | 0.3489 | 36.7330 |
| 0.0721 | 2.03 | 5000 | 0.3430 | 36.3318 |
### Framework versions
- Transformers 4.39.1
- Pytorch 2.2.1+cu121
- Datasets 2.18.0
- Tokenizers 0.15.2
|